JPH01163720A - Distribution interference type optical modulator - Google Patents

Distribution interference type optical modulator

Info

Publication number
JPH01163720A
JPH01163720A JP32227487A JP32227487A JPH01163720A JP H01163720 A JPH01163720 A JP H01163720A JP 32227487 A JP32227487 A JP 32227487A JP 32227487 A JP32227487 A JP 32227487A JP H01163720 A JPH01163720 A JP H01163720A
Authority
JP
Japan
Prior art keywords
waveguide
modulation
phase
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32227487A
Other languages
Japanese (ja)
Other versions
JP2675033B2 (en
Inventor
Tadashi Okiyama
沖山 正
Hiroshi Nishimoto
央 西本
Naoki Kuwata
直樹 桑田
Yasunari Arai
荒井 康成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62322274A priority Critical patent/JP2675033B2/en
Publication of JPH01163720A publication Critical patent/JPH01163720A/en
Application granted granted Critical
Publication of JP2675033B2 publication Critical patent/JP2675033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce driving power and to obtain a wide band by providing plural electrodes for applying a modulation signal in the longitudinal direction of a phase modulation waveguide which is allowed to branch from an input side waveguide and executing a phase modulation, and thereafter, synthesizing them and sending out it to an output side waveguide. CONSTITUTION:When the waveguide of a basic mode brought to waveguide through an input side waveguide 1 is divided and brought to waveguide through phase modulation waveguides 2, 3, it is subjected to a phase variation corresponding to the strength of an electric field applied from an electrode 5, and these waveguide light beams are joined to an output side waveguide 4. The intensity of the waveguide light outputted to the waveguide 4 is varied in accordance with the phase difference of the waveguides 2, 3, and in accordance with a voltage applied to the electrode 5, an input waveguide light is brought to intensity modulation. As for the electrode 5, plural ones are provided in the longitudinal direction of the waveguides 2, 3, a driving current can be reduced, and also, the delay of a modulation signal is reduced and a wide band can be obtained.

Description

【発明の詳細な説明】 電気光学効果による導波路の屈折率変化を利用した分布
干渉型光変調器に関し、 低駆動電力化及び広帯域化を目的とし、単一モード導波
路の導波光を分割し、一方の導波光を位相変調して再び
合成することで合成光の強度変調を行なうようにした干
渉型光変調器において、入力側導波路と、該入力側導波
路から分岐される位相変調用導波路と、該位相変調用導
波路が合流する出力側導波路と、該位相変調用導波路の
長手方向に複数設けられる変調信号印加用の電極とを具
備して構成する。
[Detailed Description of the Invention] Regarding a distributed interference type optical modulator that utilizes a change in the refractive index of a waveguide due to the electro-optic effect, the guided light of a single mode waveguide is divided to achieve low driving power and wide band. In an interferometric optical modulator that performs intensity modulation of the combined light by phase modulating one waveguide light and recombining it, an input waveguide and a phase modulation waveguide branched from the input waveguide are used. It is configured to include a waveguide, an output side waveguide where the phase modulation waveguide joins, and a plurality of electrodes for applying a modulation signal provided in the longitudinal direction of the phase modulation waveguide.

isよ立置ユ11 本発明は、電気光学効果による導波路の屈折率変化を利
用した分布干渉型光変調器に関する。
FIELD OF THE INVENTION The present invention relates to a distributed interference type optical modulator that utilizes a change in the refractive index of a waveguide due to an electro-optic effect.

一般的な光通信システムにおいては、送信側で信号光を
強度変調し、受信側で受信光を直接検波して伝送情報を
再生するようにしている。送信側における変調は、LD
(半導体レーザ)等の光源の駆動電圧を変調信号に基づ
いて変化させることにより行なうことができるが、変調
速度の高速化が要求されるような場合には、光源と独立
した光変調器を用いる外部変調方式が有利であるとされ
ている。この種の光変調器の一つとして分布干渉型(マ
ツハツエンダ干渉計型)光変調器があり、超高速光通信
システムの実用化に向けてその構成の最適化が模索され
ている。分布干渉型光変調器l器に要求されることは、 (イ) 消費電力が小さいこと、つまり駆動電圧が低い
こと、 (ロ) 広帯域な変調が可能であること、等である。
In a typical optical communication system, signal light is intensity modulated on the transmitting side, and the received light is directly detected on the receiving side to reproduce transmitted information. The modulation on the transmitting side is LD
This can be done by changing the drive voltage of a light source such as a semiconductor laser (semiconductor laser) based on the modulation signal, but if a higher modulation speed is required, an optical modulator independent of the light source is used. External modulation schemes are said to be advantageous. One of this type of optical modulator is a distributed interference type (Matsuhatsu Ender interferometer type) optical modulator, and optimization of its configuration is being sought for the practical application of ultrahigh-speed optical communication systems. Distributed interference optical modulators are required to: (a) have low power consumption, that is, have a low driving voltage; and (b) be capable of wideband modulation.

1迷」口え亘 第4図は従来の一般的な分布干渉型光変調器の構成図で
ある。例えば、LiNbO3からなる導波路基板31に
Tiを拡散させることによって導波路32を形成し、こ
の導波路32の分岐部分32a、32bにそれぞれ駆動
電圧印加用の電極33.34を装架したものである。
Figure 4 is a block diagram of a conventional distributed interference type optical modulator. For example, a waveguide 32 is formed by diffusing Ti into a waveguide substrate 31 made of LiNbO3, and electrodes 33 and 34 for applying a driving voltage are mounted on branch portions 32a and 32b of this waveguide 32, respectively. be.

□上記構成によれば、導波路の分岐部分32a。□ According to the above configuration, the branch portion 32a of the waveguide.

32bの屈折率は印加電界の強さに応じて変化するから
、同位相で分岐された分岐光は異なる位相変化を受ける
ことになる。一方、導波路32は、その分岐部分を含め
て基本モード光のみを伝搬する単一モード導波路とされ
ているから、分岐光の位相差がOのときは出力される干
渉光の強度は最大となり、分岐光の位相差がπのとぎは
干渉光の強度は最小となる。また、位相差がOとπの間
のときは、位相差に応じた干渉光強度となる。このよう
に分布干渉型光変調器は、変調信号により駆動電圧を調
整することによって、出力光強度の制御を行なうもので
ある。
Since the refractive index of 32b changes depending on the strength of the applied electric field, the branched lights having the same phase will undergo different phase changes. On the other hand, since the waveguide 32 is a single mode waveguide that propagates only the fundamental mode light including its branched portion, when the phase difference of the branched light is O, the intensity of the output interference light is maximum. Therefore, the intensity of the interference light becomes the minimum when the phase difference of the branched lights is π. Furthermore, when the phase difference is between O and π, the intensity of the interference light corresponds to the phase difference. In this manner, the distributed interference type optical modulator controls the output light intensity by adjusting the drive voltage using a modulation signal.

明が 決しようとする問題点 一般に、第4図に示される分布干渉型光変調器において
その動作電圧を■、導波路の屈折率変化部分の長さをL
とすると、 ■・L−a(aは定数)・・・(1) と表わされる。また、変調帯域Δfは、Δf−1,4c
/π(n  −no)L−(2)■ と表わされる。ここでCは真空中の光速、nlは導波路
の変調信号マイクロ波に対する屈折率、noは導波路の
導波光に対する屈折率である。
Generally speaking, in the distributed interference type optical modulator shown in Fig. 4, its operating voltage is ■, and the length of the refractive index changing portion of the waveguide is L.
Then, it is expressed as (1) L-a (a is a constant) (1). Moreover, the modulation band Δf is Δf−1,4c
/π(n −no)L−(2)■. Here, C is the speed of light in vacuum, nl is the refractive index of the waveguide with respect to the modulated signal microwave, and no is the refractive index of the waveguide with respect to the guided light.

したがって、上記(1) 、 (2)式より変調帯域Δ
fは駆動電圧Vに比例することになり、広帯域化をはか
ると駆動電圧が高くなってしまう。このため、(イ)及
び(ロ)の要求を同時に満足することが困難であるとい
う問題があった。
Therefore, from equations (1) and (2) above, the modulation band Δ
f is proportional to the drive voltage V, and if the band is widened, the drive voltage becomes high. Therefore, there was a problem in that it was difficult to simultaneously satisfy requirements (a) and (b).

本発明はこのような事情に鑑みて創作されたちので、駆
動電力の低減及び広帯域化が可能な分布干渉型光変調器
の提供を目的としている。
The present invention was created in view of these circumstances, and an object of the present invention is to provide a distributed interference type optical modulator that can reduce driving power and widen the band.

1  を  するための (2)式を変形すると、 Δf−1,4/πL (nl/c−no/c)−1,4
/7rL (1/V、−1/Vo) ・(3)となるか
ら、駆11J電圧が一定の場合には導波路内における変
調信号マイクロ波の速度■、と導波光の速度■。との差
が小さい程帯域Δfが広くなるととになる。
If we transform equation (2) to calculate 1, we get Δf-1,4/πL (nl/c-no/c)-1,4
/7rL (1/V, -1/Vo) (3) Therefore, when the driver 11J voltage is constant, the speed of the modulated signal microwave in the waveguide (■) and the speed of the guided light (■). The smaller the difference between Δf and Δf, the wider the band Δf becomes.

そこで本発明では駆動電圧印加用の電極を分割して実質
的に当該速度差が小さくなるようにして、広帯域化をは
かつている。
Therefore, in the present invention, the electrode for applying the drive voltage is divided to substantially reduce the speed difference, thereby achieving a wide band.

すなわち、本発明の分布干渉型光変調器は、その原理図
が第1図に示されるように、単一モード導波路の導波光
を分割し、一方の導波光を位相変調して再び合成するこ
とで合成光の強度変調を行なうようにした干渉型光変調
器において、入力側導波路1と、該入力側導波路1から
分岐される位相変調用導波路2,3と、該位相変調用導
波路2゜3が合流する出力側導波路4と、該位相変調用
導波路2.3の長手方向に複数設けられる変調信号印加
用の電極5とを具備して構成される。
That is, the distributed interference type optical modulator of the present invention, as its principle diagram is shown in FIG. In an interferometric optical modulator that performs intensity modulation of combined light by It is configured to include an output side waveguide 4 where the waveguides 2.3 merge, and a plurality of electrodes 5 for applying modulation signals provided in the longitudinal direction of the phase modulation waveguide 2.3.

入力側導波路1を導波された基本モードの導波光は、分
割されて位相変調用導波路2,3を導波される際に、電
極5から印加される電界の強さに応じた位相変化を受け
る。これらの導波光は出力側導波路4に合流されるが、
出力側導波路4は基本モードの光だけを導波することが
できるから、当該導波光の強度は位相変調用導波路2,
3の導波光の位相差に応じて変化する。従って、電極5
に印加する電圧に応じて入力導波光を強度変調すること
ができる。
When the fundamental mode guided light guided through the input waveguide 1 is split and guided through the phase modulation waveguides 2 and 3, the phase changes depending on the strength of the electric field applied from the electrode 5. undergo change. These guided lights are merged into the output waveguide 4,
Since the output waveguide 4 can guide only the fundamental mode light, the intensity of the guided light is equal to the phase modulation waveguide 2,
It changes according to the phase difference of the guided light of No. 3. Therefore, electrode 5
The input guided light can be intensity-modulated depending on the voltage applied to the input waveguide.

電極5を位相変調用導波路2,3の長平方向に複数設け
ているのは、変調器@(例えばマイクロ波)の伝搬速度
が位相変調用導波路2.3の導波光の伝搬速度よりも小
さいことに起因して変調帯域が制限を受けることを防止
するためである。すなわち、電極5を複数設けることに
より、個々の電極における変調信号の遅れを小さくして
広帯域化をはかつているものである。
The reason why a plurality of electrodes 5 are provided in the longitudinal direction of the phase modulation waveguides 2 and 3 is because the propagation speed of the modulator @ (e.g. microwave) is higher than the propagation speed of the guided light in the phase modulation waveguides 2 and 3. This is to prevent the modulation band from being limited due to the small size. That is, by providing a plurality of electrodes 5, the delay of the modulated signal at each electrode is reduced, thereby achieving a wider band.

実  施  例 以下本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第2図は本発明の実施例を示す分布干渉型光変調器の構
成図である。11は例えばLiNbO3等の強誘電体結
晶からなる導波路基板であり、この導波路基板11上に
は、例えばTi(チタン)を選択的に拡散して基板結晶
の屈折率を部分的に大きくすることにより、入力側導波
路12、位相変調用導波路13.14及び出力側導波路
15が形成されている。位相変調用導波路13には変調
信号印加用の第1電極16及び第2電極18が導波光の
進行方向に向かってこの順で装架されている。17.1
9は図示しない接地部分に接続される接地電極である。
FIG. 2 is a block diagram of a distributed interference type optical modulator showing an embodiment of the present invention. 11 is a waveguide substrate made of a ferroelectric crystal such as LiNbO3, and on this waveguide substrate 11, for example, Ti (titanium) is selectively diffused to partially increase the refractive index of the substrate crystal. As a result, an input waveguide 12, phase modulation waveguides 13 and 14, and an output waveguide 15 are formed. A first electrode 16 and a second electrode 18 for applying a modulation signal are installed in the phase modulation waveguide 13 in this order toward the traveling direction of the guided light. 17.1
9 is a ground electrode connected to a ground portion (not shown).

21は変調信号を供給するためのストリップラインであ
り、ボンディングワイヤ20を介して第1電極16に接
続されている。
21 is a strip line for supplying a modulation signal, and is connected to the first electrode 16 via a bonding wire 20.

ストリップライン21は又、変調信号の位相を後述する
ように調整するための移相器26を介してストリップラ
イン23に接続されており、このストリップライン23
はさらにボンディングワイヤ22を介して第2電極18
に接続されている。24.25はそれぞれ第1電極16
と接地電極17間及び第2電極18と接地電極19間に
接続される負荷抵抗又は終端抵抗である。
The stripline 21 is also connected to a stripline 23 via a phase shifter 26 for adjusting the phase of the modulation signal as described below.
is further connected to the second electrode 18 via the bonding wire 22.
It is connected to the. 24 and 25 are the first electrodes 16, respectively.
This is a load resistance or a terminating resistance connected between the second electrode 18 and the ground electrode 17 and between the second electrode 18 and the ground electrode 19.

第3図は、位相変調用導波路13に導波される導波光A
1位相変調用導波路14に導波される導波光B、第1電
極16を伝搬する電気信号C1及び第2電l118を伝
搬する電気信号りのa−d点(第2図)における位相状
態を、導波光Bの位相を基準として示している。ここで
a点は入力側導波路12の分岐部分、b点は位相変調用
導波路13における第1電極16の装架開始部分、0点
は位相変調用導波路13.14間の部分、d点は位相変
調用導波路13における第2電極18の装架終了部分で
ある。
FIG. 3 shows guided light A guided to the phase modulation waveguide 13.
Phase states at points a-d (FIG. 2) of the guided light B guided by the 1-phase modulation waveguide 14, the electrical signal C1 propagated through the first electrode 16, and the electrical signal propagated through the second electric signal 118. is shown with the phase of the guided light B as a reference. Here, point a is the branching part of the input waveguide 12, point b is the starting part of the first electrode 16 in the phase modulation waveguide 13, point 0 is the part between the phase modulation waveguides 13 and 14, and d. The point is the end portion of the second electrode 18 in the phase modulation waveguide 13.

a、b点において導波光A、Bは同位相であるが、0点
においては、電気信号Cによる電界を受けた後であるか
ら、導波光Aは導波光Bに対して例えば位相がπ/2遅
れる。一方、電気信号Cは、導波光との伝搬速度の差に
応じて時間t、aれる。
At points a and b, guided lights A and B have the same phase, but at point 0, after receiving the electric field from electric signal C, guided light A has a phase with respect to guided light B, for example, π/. 2 late. On the other hand, the electric signal C is delayed for times t and a according to the difference in propagation speed with the guided light.

この遅れが第2電極18まで保存されると変調帯域が制
限を受けるから、本実施例では第2電極18に印加され
る電気信号りの印加タイミングをt、早めるように移相
器26の移相器を調整して、導波光と電気信号の伝搬速
度差を補償するようにしている。
If this delay is maintained up to the second electrode 18, the modulation band will be limited. Therefore, in this embodiment, the phase shifter 26 is shifted so that the timing of applying the electric signal to the second electrode 18 is advanced by t. The phaser is adjusted to compensate for the difference in propagation speed between the guided light and the electrical signal.

d点では導波光Aはさらにπ/2遅れて合計で導波光B
に対してπ遅れるから、これら導波光A。
At point d, the guided light A is further delayed by π/2 and becomes the guided light B in total.
These guided lights A are delayed by π.

Bは合流する際に互いに干渉し合い、その結果出力光強
度は0となる。
B interfere with each other when merging, and as a result, the output light intensity becomes 0.

このように本実施例では変調信号印加用の電極を2つに
(3つ以上でもよい)分割すると共に、それぞれに印加
する変調信号の位相を調整するようにしているので、導
波光と変調信号は見かけ上はぼ同一の速度で伝搬し、従
ってこの光変調器の広帯域化がはかられるものである。
In this way, in this embodiment, the electrode for applying the modulated signal is divided into two (or more than three), and the phase of the modulated signal applied to each is adjusted, so that the guided light and the modulated signal appear to propagate at almost the same speed, and therefore the optical modulator can be made to have a wider band.

発明の効果 以上詳述したように、本発明によれば、同一駆動電圧に
おける広帯域化が可能であるから、低駆動電力化及び広
帯域化に適した分布干渉型光変調器を提供することが可
能になるという効果を奏する。
Effects of the Invention As detailed above, according to the present invention, it is possible to achieve a wide band with the same driving voltage, so it is possible to provide a distributed interference type optical modulator suitable for low driving power and wide band. It has the effect of becoming

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の実施例を示す分布干渉型光変調器の構
成図、 第3図は第2図中各点における導波光及び電気信号の位
相状態を説明するための図、 第4図は従来の一般的な分布干渉型光変調器の構成図で
ある。 1.12・・・入力側導波路、 2.3,13.14・・・位相変調用導波路、4.15
・・・出力側導波路、 5・・・電極、       11・・・導波路基板、
16・・・第1電極、   17.19・・・接地電極
、18・・・第2電極、   26・・・移相器。 杏尤明の源理区 第1図 −〜ぐ C 一      因 m: 林へ へi 移(2イダ1 図 第3図 ス1 イメ〔、i(ブ列 凹 第4図
Figure 1 is a diagram of the principle of the present invention. Figure 2 is a configuration diagram of a distributed interference type optical modulator showing an embodiment of the present invention. Figure 3 is the phase state of guided light and electrical signals at each point in Figure 2. FIG. 4 is a configuration diagram of a conventional general distributed interference type optical modulator. 1.12... Input side waveguide, 2.3, 13.14... Phase modulation waveguide, 4.15
... Output side waveguide, 5... Electrode, 11... Waveguide substrate,
16... First electrode, 17.19... Ground electrode, 18... Second electrode, 26... Phase shifter. Anzumei's Genri District Figure 1 - ~ C 1 cause m: Hayashi hehe i transfer (2 Ida 1 Figure 3 S1 Image [, i (B row concave Figure 4)

Claims (1)

【特許請求の範囲】 単一モード導波路の導波光を分割し、一方の導波光を位
相変調して再び合成することで合成光の強度変調を行な
うようにした干渉型光変調器において、 入力側導波路(1)と、 該入力側導波路(1)から分岐される位相変調用導波路
(2、3)と、 該位相変調用導波路(2、3)が合流する出力側導波路
(4)と、 該位相変調用導波路(2、3)の長手方向に複数設けら
れる変調信号印加用の電極(5)とを具備して構成され
ることを特徴とする分布干渉型光変調器。
[Claims] In an interferometric optical modulator, the guided light of a single mode waveguide is split, one of the guided lights is phase modulated, and the combined light is combined again to perform intensity modulation of the combined light. A side waveguide (1), a phase modulation waveguide (2, 3) branched from the input side waveguide (1), and an output side waveguide where the phase modulation waveguide (2, 3) join together. (4); and a plurality of electrodes (5) for applying modulation signals provided in the longitudinal direction of the phase modulation waveguides (2, 3). vessel.
JP62322274A 1987-12-19 1987-12-19 Distributed interferometric optical modulator Expired - Fee Related JP2675033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322274A JP2675033B2 (en) 1987-12-19 1987-12-19 Distributed interferometric optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322274A JP2675033B2 (en) 1987-12-19 1987-12-19 Distributed interferometric optical modulator

Publications (2)

Publication Number Publication Date
JPH01163720A true JPH01163720A (en) 1989-06-28
JP2675033B2 JP2675033B2 (en) 1997-11-12

Family

ID=18141814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322274A Expired - Fee Related JP2675033B2 (en) 1987-12-19 1987-12-19 Distributed interferometric optical modulator

Country Status (1)

Country Link
JP (1) JP2675033B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302976A (en) * 1992-04-24 1993-11-16 Agency Of Ind Science & Technol Distance measuring apparatus
KR20020060899A (en) * 2001-01-13 2002-07-19 김춘성 Hot air device for housing
WO2011043079A1 (en) * 2009-10-09 2011-04-14 日本電気株式会社 Optical modulator module and method for modulating optical signal
WO2013121747A1 (en) * 2012-02-13 2013-08-22 日本電気株式会社 Optical modulator and optical modulation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114820A (en) * 1983-10-10 1985-06-21 テレフオンアクチ−ボラゲツト エル エム エリクソン High-speed optical modulation method and apparatus
JPS62265619A (en) * 1986-03-25 1987-11-18 テクトロニツクス・インコ−ポレイテツド Electrooptic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114820A (en) * 1983-10-10 1985-06-21 テレフオンアクチ−ボラゲツト エル エム エリクソン High-speed optical modulation method and apparatus
JPS62265619A (en) * 1986-03-25 1987-11-18 テクトロニツクス・インコ−ポレイテツド Electrooptic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302976A (en) * 1992-04-24 1993-11-16 Agency Of Ind Science & Technol Distance measuring apparatus
KR20020060899A (en) * 2001-01-13 2002-07-19 김춘성 Hot air device for housing
WO2011043079A1 (en) * 2009-10-09 2011-04-14 日本電気株式会社 Optical modulator module and method for modulating optical signal
US8744219B2 (en) 2009-10-09 2014-06-03 Nec Corporation Optical modulator module and method for modulating optical signal
WO2013121747A1 (en) * 2012-02-13 2013-08-22 日本電気株式会社 Optical modulator and optical modulation method

Also Published As

Publication number Publication date
JP2675033B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
EP0547394A2 (en) Optical transmitter having optical modulator
US7058241B2 (en) Optical modulator
KR0136969B1 (en) Optical modulator for producing a controllable chirp
US7668409B2 (en) Optical communication device and optical device
JP3433753B2 (en) Tunable chirped light modulator using a single modulation source
US5991471A (en) Configurable chirp mach-zehnder optical modulator
US6501867B2 (en) Chirp compensated Mach-Zehnder electro-optic modulator
US7630587B2 (en) Optical waveguide device
US6999223B2 (en) Optical modulator
US5708734A (en) Polarisation-independent optical device
JPS6261123B2 (en)
US5917642A (en) Optical modulator
JP4164179B2 (en) Optical modulator, bias control circuit thereof, and optical transmitter including the optical modulator
GB2302738A (en) Mach Zehnder modulator
US6717708B2 (en) Re-circulating optical pulse generator
US4842367A (en) Optoelectronic directional coupler for a bias-free control signal
US7239764B2 (en) Optical waveguide device with reduced driving voltage
JPH01163720A (en) Distribution interference type optical modulator
JP4703158B2 (en) Light control element
JPH02291518A (en) Optical modulator and its driving method, and optical modulator driving device
CN115729011A (en) Multi-path unequal-arm Mach-Zehnder interferometer based on thin film lithium niobate
JPH0414010A (en) Optical modulator
JP3020645B2 (en) Optical semiconductor device
JP2643162B2 (en) Optical integrated circuit type light intensity modulator
JP4197316B2 (en) Light modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees