JPH0359953A - Solid electrolyte-type fuel cell - Google Patents

Solid electrolyte-type fuel cell

Info

Publication number
JPH0359953A
JPH0359953A JP1192720A JP19272089A JPH0359953A JP H0359953 A JPH0359953 A JP H0359953A JP 1192720 A JP1192720 A JP 1192720A JP 19272089 A JP19272089 A JP 19272089A JP H0359953 A JPH0359953 A JP H0359953A
Authority
JP
Japan
Prior art keywords
solid electrolyte
cathode
zirconia
fuel cell
type fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192720A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP1192720A priority Critical patent/JPH0359953A/en
Publication of JPH0359953A publication Critical patent/JPH0359953A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To suppress reaction of lanthanide oxide with zirconia and prevent decrease of output power of a solid electrolyte-type fuel cell by using a stabilized zirconia as a solid electrolyte and a specified compound as a cathode. CONSTITUTION:A stabilized zirconia is used as a solid electrolyte and a compound having a formula (La1-ySry)1-HMO3[ 0<=Y<=0.2; 0<x<=0.2; M=Mn or Co] is used as a cathode. As a result, in a stabilized zirconia solid electrolyte- type fuel cell, reaction of the cathode material, (La, Sr)MnO3 or (La, Sr)CoO3, with zirconia is suppressed. Not desired La2Zr2O7 formation is thus suppressed and desirable and durable cell properties are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解質型燃料電池に係り、より詳しく述べ
ると、安定化ジルコニアを固体電解質とする燃料電池の
カソード材料の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to solid electrolyte fuel cells, and more specifically, to improvements in cathode materials for fuel cells using stabilized zirconia as a solid electrolyte.

〔従来の技術〕[Conventional technology]

固体電解質型燃料電池は装置設計の平易性と副生高温の
再利用可能性のゆえに有力な電池エネルギー源の候補と
考えられている。しかしながら、実際に、高性能の固体
電解質型燃料電池を得るた(1) めには、約1000℃という高い操作温度に由来する材
料に関する問題を解決しなければならない。
Solid oxide fuel cells are considered to be a promising candidate as a battery energy source because of their simplicity in device design and the possibility of reusing high-temperature by-products. However, in order to actually obtain a high-performance solid oxide fuel cell (1), it is necessary to solve problems related to materials resulting from the high operating temperature of about 1000°C.

現段階では固体電解質材料としてイツトリア安定化ジル
コニア(YSZ)が最も有力とされているが、最も困難
な材料は強力な酸化条件にさらされるカソード材料であ
る。そのカソード材料としては、現在まで、ペロブスカ
イト型の各種複合酸化物が盛んに検討されているが、ス
トロンチウムをドープしたランタンマンガナイトLa、
−、Sr、lMnO3が高い導電率とイツトリア安定化
ジルコニアとの適合性に優れるゆえに好ましいカソード
材料であると考えられている。
At present, itria-stabilized zirconia (YSZ) is considered to be the most promising solid electrolyte material, but the most difficult material is the cathode material, which is exposed to strong oxidizing conditions. Until now, various perovskite-type composite oxides have been actively studied as cathode materials, but strontium-doped lanthanum manganite La,
-, Sr, lMnO3 is considered to be a preferred cathode material due to its high conductivity and excellent compatibility with yttria-stabilized zirconia.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図に平板型固体電解質型燃料電池を模式的に示すが
、同図中lがイツトリア安定化ジルコニア電解質、2が
ランタン系酸化物カソード、3がN1/ZrO2サーメ
ットアノードである。第5図にカソード部分を拡大して
示すが、カソード2側に供給される酸素ガス4は電極粒
子2、ジルコニア電(2) 解質1の三相界面でイオン化して、その酸素イオンがジ
ルコニア電解質■中をアノード3に向って移動する一方
、酸素ガスがイオン化するとき発生した電子はカソード
2から集電体(図示せず)を介して集められる。
FIG. 4 schematically shows a flat plate solid electrolyte fuel cell, in which 1 is an yttria-stabilized zirconia electrolyte, 2 is a lanthanum-based oxide cathode, and 3 is an N1/ZrO2 cermet anode. Fig. 5 shows an enlarged view of the cathode part, and the oxygen gas 4 supplied to the cathode 2 side is ionized at the three-phase interface of electrode particles 2, zirconia electrons (2) and solute 1, and the oxygen ions are transferred to the zirconia Electrons generated when the oxygen gas is ionized are collected from the cathode 2 via a current collector (not shown) while moving toward the anode 3 in the electrolyte (2).

このように、カソード2と電解質1は酸素雰囲気下で接
触しており、1000℃という高温操作条件下ではカソ
ード材料であるランタン系酸化物が電解質であるジルコ
ニアと反応する傾向(下記式(1))があり、この傾向
はランタン系ペロブスカイト型複合酸化物でも同じであ
る(下記式(2))。
As described above, the cathode 2 and the electrolyte 1 are in contact with each other in an oxygen atmosphere, and under high-temperature operating conditions of 1000°C, the lanthanum-based oxide that is the cathode material tends to react with the zirconia that is the electrolyte (formula (1) below). ), and this tendency is the same for lanthanum-based perovskite complex oxides (formula (2) below).

%式%(1) (2) これらの反応生成物は導電率が低いので、電池の出力を
低下させる原因になる。
% Formula % (1) (2) Since these reaction products have low conductivity, they cause a decrease in the output of the battery.

そこで、本発明はランタン系酸化物のジルコニアとの反
応を抑制し、固体電解質型燃料電池の出力低下を防止す
ることを目的とする。
Therefore, an object of the present invention is to suppress the reaction of lanthanum-based oxide with zirconia and prevent a decrease in the output of a solid oxide fuel cell.

(3) 〔課題を解決するための手段〕 本発明は、上記課題を解決するために、安定化ジルコニ
アを固体電解質とし、式(La、−ySry) l−1
1−1l〔式中、0≦y≦0.2、Q<x≦0.2、M
はMn又はCOである〕で表わされる化合物をカソード
とすることを特徴とする固体電解質型燃料電池を提供す
る。
(3) [Means for Solving the Problems] In order to solve the above problems, the present invention uses stabilized zirconia as a solid electrolyte, and the formula (La, -ySry) l-1
1-1l [wherein, 0≦y≦0.2, Q<x≦0.2, M
is Mn or CO] as a cathode.

固体電解質としては、イツ) IJアなどを3モル%添
加して安定化した部分安定化ジルコニアから、8モル%
添加して安定化した完全安定化ジルコニアまで、その組
成は特に限定されない。
As a solid electrolyte, 8 mol% of partially stabilized zirconia stabilized by adding 3 mol% of IJA etc.
The composition is not particularly limited, including fully stabilized zirconia stabilized by addition.

カソード材料は式(La+ 、Sr、 )I−MMO3
で表わされる化合物である。この化合物はLaの一部を
Srで置換し又は置換しないLaMn0.及びLaCo
O3においてLa又は(La 、 Sr)が化学量論的
に不足している化合物である。La又は(La 、 S
r)が不足しているのでLa2O3とZrO2との反応
が抑制され、最終的にLa2ZrO7の生成が抑制され
る。La又は(La 、 Sr)の化学量論的不足が多
いほどLa2Zr07生成反応抑制の効果は大きいが、
導電率も低下す(4) るので、X≦0.2であることが好ましい。SrのLa
に対する置換は0≦y≦0.2である。これはSrの置
換量が多くなると、導電率が低下するからである。Mと
してMn とCOは同等である。
The cathode material has the formula (La+, Sr, )I-MMO3
It is a compound represented by This compound has LaMn0. and LaCo
It is a compound that is stoichiometrically deficient in La or (La, Sr) in O3. La or (La, S
Since r) is insufficient, the reaction between La2O3 and ZrO2 is suppressed, and finally the production of La2ZrO7 is suppressed. The greater the stoichiometric deficiency of La or (La, Sr), the greater the effect of suppressing the La2Zr07 production reaction.
Since the conductivity also decreases (4), it is preferable that X≦0.2. La of Sr.
The substitution for is 0≦y≦0.2. This is because as the amount of Sr substitution increases, the conductivity decreases. As M, Mn and CO are equivalent.

固体電解質へのカソード材料(La 、 Sr) I−
X Mn3の適用方法は特に限定されず、(La 、 
Sr)対Mのモル比を調整した上で基本的に(La 、
Sr)Mn3の適用方法に従うことができる。代表的に
は、La2O3原料、5r203原料、M2O3原料を
所定のLa/M比に調整し、酸素含有雰囲気中800〜
1400℃で焼成して(La 、 Sr)Mn3で表わ
されるペロブスカイト型化合物を得た後、これを電解質
表面に塗布し、焼成してカソードとする。ランタン源、
ストロンチウム源、マンガン源、コバルト源としては酸
化物、炭酸塩、硝酸塩などを用いることができる。その
他、スパッタ法、プラズマ溶射法などの適用方法も利用
できる。
Cathode material (La, Sr) to solid electrolyte I-
The application method of X Mn3 is not particularly limited, and (La,
After adjusting the molar ratio of Sr) to M, basically (La,
Sr)Mn3 application methods can be followed. Typically, La2O3 raw material, 5r203 raw material, and M2O3 raw material are adjusted to a predetermined La/M ratio, and 800~
After firing at 1400° C. to obtain a perovskite compound represented by (La, Sr)Mn3, this is applied to the surface of the electrolyte and fired to form a cathode. lanthanum source,
Oxides, carbonates, nitrates, etc. can be used as the strontium source, manganese source, and cobalt source. Other methods such as sputtering and plasma spraying can also be used.

〔作 用〕[For production]

作用機構は必ずしも明らかではないが、次のよ(5) うに考えられる。La不足の(La 、 Sr) l−
x Mn3はペロブスカイト型結晶構造の(La 、 
Sr)Mn3のLaが一部欠除した構造を有し、そのた
め化学量論的化合物と比べて結晶格子が少し小さく (
密度が大きく)なり、またLaやMの内部拡散速度も抑
制サレテイル。(La 、 Sr)MO,とY2+:+
3/2ro2の反応はLaやMがZrO□中に拡散して
起きることが知られているので、LaやMの拡散速度が
低下することは(La 、 Sr)MO3とY2O5/
ZrO2との反応が抑制されることを意味する。
Although the mechanism of action is not necessarily clear, it is thought to be as follows (5). La-deficient (La, Sr) l-
x Mn3 has a perovskite crystal structure (La,
Sr) Mn3 has a structure in which La is partially deleted, so the crystal lattice is slightly smaller than that of a stoichiometric compound (
The density increases) and the internal diffusion rate of La and M is also suppressed. (La, Sr)MO, and Y2+:+
It is known that the 3/2ro2 reaction occurs when La and M diffuse into ZrO□, so the decrease in the diffusion rate of La and M is due to (La, Sr) MO3 and Y2O5/
This means that the reaction with ZrO2 is suppressed.

〔実施例〕〔Example〕

参考例l La203(試薬級) 、5rCO3(試薬級)及びM
n203(試薬級〉を用い、La2O3は市販品を初め
に1000℃に加熱し室温に急冷したものを用いて、所
定の組成比に調合後、空気中1300℃で12時間焼成
してペロブスカイト型酸化物(La 、 Sr) 、−
)l Mn03(x = Q 〜0.2〉を作製した。
Reference example l La203 (reagent grade), 5rCO3 (reagent grade) and M
n203 (reagent grade) was used, and La2O3 was a commercially available product that was first heated to 1000°C and then rapidly cooled to room temperature. After mixing to a predetermined composition ratio, it was fired in air at 1300°C for 12 hours to produce perovskite-type oxidation. Thing (La, Sr), -
)l Mn03 (x = Q ~0.2>) was prepared.

それから粉砕してBET法による表面積値0.2〜0゜
3m”7gの粉末とした。
It was then ground into a powder with a surface area value of 0.2-0.3 m'' according to the BET method and a weight of 7 g.

(6) 東ソーから人手した8モル%Y2O3で安定化したジル
コニア(BET表面積値0.26m’/ g )を初め
に1450℃で3時間加熱してから、(La 、 Sr
) +−JnD3粉末と混合し、2500kg/CI+
tの圧力で直径1.2 cmのペレットにプレス成形し
た後、空気中1200〜1300℃で反応させた。
(6) Zirconia (BET surface area value 0.26 m'/g) stabilized with 8 mol% Y2O3 obtained from Tosoh was first heated at 1450°C for 3 hours, and then (La, Sr
) +-Mixed with JnD3 powder, 2500kg/CI+
After press-molding into pellets with a diameter of 1.2 cm at a pressure of t, the pellets were reacted in air at 1200 to 1300°C.

反応後、X線回折分析により、La2Zr207の生成
量を調べた。その結果を第1〜3図に示す。LaMnO
3のLaの一部をSrで置換することによってLa2Z
r207の生成はいくらか抑制されること、しかしLa
のMnに対する比率を低減することによってLa2Zr
20tの生成は遅れ、かつ生成速度も抑制され、また特
にその生成の遅れはLa量に依存することが見られる。
After the reaction, the amount of La2Zr207 produced was determined by X-ray diffraction analysis. The results are shown in Figures 1-3. LaMnO
By replacing part of La in 3 with Sr, La2Z
The production of r207 is somewhat suppressed, but La
By reducing the ratio of La2Zr to Mn
The production of 20t is delayed and the production speed is also suppressed, and in particular, the production delay is seen to depend on the amount of La.

実施例 酸化ランタンLa20326.4g(0,081モル)
炭酸ストロンチウム5rCOs  1.33 g (0
,009モル)炭酸マンガンMnCO311,5g (
0,1モル)これらの原料を乳鉢でよく混合し、800
℃で3時間焼成した。生成物をよく粉砕し、空気中13
00(7) ℃で3時間本焼成した。生成物と流動パラフィンのよう
な粘性有機物をよく混合し8モル%イツトリアで安定化
したジルコニア(厚さ200J−)表面に塗布し、空気
中1200〜1350℃で1時間焼成しカソードとした
。得られたカソードの組成は(La。、。
Example Lanthanum oxide La20326.4g (0,081 mol)
Strontium carbonate 5rCOs 1.33 g (0
,009 mol) Manganese carbonate MnCO311.5 g (
0.1 mol) These raw materials were mixed well in a mortar and 800
It was baked at ℃ for 3 hours. Thoroughly grind the product and store it in the air for 13 minutes.
Main firing was performed at 00(7)°C for 3 hours. The product and a viscous organic substance such as liquid paraffin were thoroughly mixed and applied to the surface of zirconia (thickness 200 J-) stabilized with 8 mol% ittria, and baked in air at 1200 to 1350°C for 1 hour to form a cathode. The composition of the obtained cathode was (La.,.

5ro−+)。、9Mn0+で表わされる。カソードの
厚みは200−であった。電極面積は1cJとした。
5ro-+). , 9Mn0+. The thickness of the cathode was 200-. The electrode area was 1 cJ.

次にN1粉とZrO2粉を重量比で工0/1に混合し、
プラズマ溶射によりジルコニアのカソードと反対側面に
付着させアノードとした。アノード厚さは70j−であ
った。電極面積は1 cnfとした。
Next, N1 powder and ZrO2 powder were mixed at a weight ratio of 0/1,
It was attached to the opposite side of the zirconia cathode by plasma spraying to form an anode. The anode thickness was 70j-. The electrode area was 1 cnf.

カソードに酸素ガス、アノードに水素ガスを吹きつける
ことにより単セルを形成させ出力を測定した。開放電圧
(OCV) ltl、30V、0.5V時の電流値は0
.2Aであり、単位面積あたりの出力は0.1W / 
cutであった。
A single cell was formed by blowing oxygen gas to the cathode and hydrogen gas to the anode, and the output was measured. Open circuit voltage (OCV) ltl, 30V, current value at 0.5V is 0
.. 2A, and the output per unit area is 0.1W/
It was a cut.

240時間経過後においても、0.1 W / cut
の出力値が得られた。
Even after 240 hours, 0.1 W/cut
The output value was obtained.

比較例 原料組成を変えてカソード材料の組成を(Lao、 9
(8) Sro、 +)MnO3とする以外は実施例1と全く同
様の操作を行なった。
Comparative Example The composition of the cathode material was changed by changing the raw material composition (Lao, 9
(8) The same operation as in Example 1 was performed except that Sro, +)MnO3 was used.

初期の開放電圧(OCV)は1.30V、出力は0.1
W/crIであったが、240時間経過後においては出
力が0.05W/c111に低下した。
Initial open circuit voltage (OCV) is 1.30V, output is 0.1
W/crI, but the output decreased to 0.05W/c111 after 240 hours.

カソードのX線回折においては、La2Zr207が認
められた。
In X-ray diffraction of the cathode, La2Zr207 was observed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、安定化ジルコニア固体電解質型燃料電
池においてカソード材料の(La 、Sr)MnO+又
ハ(シa、5r)CoO3とジルコニアとの反応が抑制
されるので、不所望なLa2Zr207の生成が抑制さ
れ、長期間にわたって所望の電池特性を得ることができ
る。
According to the present invention, in a stabilized zirconia solid electrolyte fuel cell, the reaction between the cathode material (La, Sr)MnO+ or Ha(Sia, 5r)CoO3 and zirconia is suppressed, so that the undesired formation of La2Zr207 is suppressed. is suppressed, and desired battery characteristics can be obtained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は(Lad−ySry )+−JnOsと8
%Y2O3/ZrO2の反応によるLa2Zr207の
生成量を示す図、第4〜5図は固体電解質型燃料電池の
模式構造図とその一部拡大図である。 (9) 1・・・固体電解質、   2・・・カソード、3・・
・アノード、    4・・・酸素。
Figures 1 to 3 show (Lad-ySry)+-JnOs and 8
%Y2O3/ZrO2 reaction, and Figures 4 and 5 are a schematic structural diagram of a solid oxide fuel cell and a partially enlarged diagram thereof. (9) 1... solid electrolyte, 2... cathode, 3...
・Anode, 4...Oxygen.

Claims (1)

【特許請求の範囲】 1、安定化ジルコニアを固体電解質とし、式(La_1
_−_ySr_y)_1_−_xMO_3〔式中、0≦
y≦0.2、0<x≦0.2、MはMn又はCoである
〕で表わされる化合物をカソードとすることを特徴とす
る固体電解質型燃料電池。
[Claims] 1. Stabilized zirconia is used as a solid electrolyte, and the formula (La_1
____ySr_y)_1_-_xMO_3 [wherein, 0≦
y≦0.2, 0<x≦0.2, M is Mn or Co] as a cathode.
JP1192720A 1989-07-27 1989-07-27 Solid electrolyte-type fuel cell Pending JPH0359953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192720A JPH0359953A (en) 1989-07-27 1989-07-27 Solid electrolyte-type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192720A JPH0359953A (en) 1989-07-27 1989-07-27 Solid electrolyte-type fuel cell

Publications (1)

Publication Number Publication Date
JPH0359953A true JPH0359953A (en) 1991-03-14

Family

ID=16295944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192720A Pending JPH0359953A (en) 1989-07-27 1989-07-27 Solid electrolyte-type fuel cell

Country Status (1)

Country Link
JP (1) JPH0359953A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342703A (en) * 1991-07-19 1994-08-30 Ngk Insulators, Ltd. Solid electrolyte type fuel cell and method for producing the same
JPH06287060A (en) * 1992-05-11 1994-10-11 Shinagawa Refract Co Ltd Electrically conductive ceramic composite heat-resistant material composition
EP0633619A1 (en) * 1992-01-13 1995-01-11 Ngk Insulators, Ltd. Air electrode bodies for solid oxide fuel cells, a process for the production thereof, and a production of solid oxide fuel cells
WO1999054946A1 (en) * 1998-04-21 1999-10-28 Toto Ltd. Solid electrolyte fuel cell and method of producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342703A (en) * 1991-07-19 1994-08-30 Ngk Insulators, Ltd. Solid electrolyte type fuel cell and method for producing the same
EP0633619A1 (en) * 1992-01-13 1995-01-11 Ngk Insulators, Ltd. Air electrode bodies for solid oxide fuel cells, a process for the production thereof, and a production of solid oxide fuel cells
US5453330A (en) * 1992-01-13 1995-09-26 Ngk Insulators, Ltd. Air electrode bodies for solid oxide fuel cells, a process for the production thereof, and a production of solid oxide fuel cells
JPH06287060A (en) * 1992-05-11 1994-10-11 Shinagawa Refract Co Ltd Electrically conductive ceramic composite heat-resistant material composition
JP2541726B2 (en) * 1992-05-11 1996-10-09 品川白煉瓦株式会社 Ceramic composite conductive heat resistant material composition
WO1999054946A1 (en) * 1998-04-21 1999-10-28 Toto Ltd. Solid electrolyte fuel cell and method of producing the same
US6692855B1 (en) 1998-04-21 2004-02-17 Toto Ltd. Solid electrolyte type fuel cell and method of producing the same

Similar Documents

Publication Publication Date Title
Ishihara et al. Oxide ion conductivity in La0. 8Sr0. 2Ga0. 8Mg0. 2− X Ni X O3 perovskite oxide and application for the electrolyte of solid oxide fuel cells
JP2000302550A (en) Mixed ion conductor and device using the same
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
EP3537524B1 (en) Composite particle powder, electrode material for solid oxide cell, and electrode for solid oxide cell made thereof
Imanishi et al. LSM‐YSZ Cathode with Infiltrated Cobalt Oxide and Cerium Oxide Nanoparticles
JP2012528438A (en) Cathode
JP4524791B2 (en) Solid oxide fuel cell
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
Maffei et al. Performance of planar single cell lanthanum gallate based solid oxide fuel cells
JPH08119732A (en) Production of solid electrolyte
AU2008210043B2 (en) A composite material suitable for use as an electrode material in a SOC
CN107646151A (en) Oxide particle, the negative electrode comprising it and include its fuel cell
JPH0359953A (en) Solid electrolyte-type fuel cell
JP3121993B2 (en) Method for producing conductive ceramics
Guo et al. Anode-supported LaGaO3-based electrolyte SOFCs with Y2O3-doped Bi2O3 and La-doped CeO2 buffer layers
KR102105056B1 (en) triple doped Stabilized Bismuth Oxide based electrolyte and the manufacturing method thereof
Kim et al. Ln (Sr, Ca) 3 (Fe, Co) 3O10 intergrowth oxide cathodes for solid oxide fuel cells
JP2592070B2 (en) Electrode formation method
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP3342571B2 (en) Solid oxide fuel cell
JP2003007309A (en) Electrode material, solid electrolyte fuel cell and gas sensor
JP2771090B2 (en) Solid oxide fuel cell
JPH05266892A (en) Manuifacture of electrode material for solid electrolyte fuel cell
JPH0785875A (en) Solid electrolytic fuel cell
Ishihara et al. Application of the new oxide ionic conductor, LaGaO3, to the solid electrolyte of fuel cells