JPH0359726B2 - - Google Patents

Info

Publication number
JPH0359726B2
JPH0359726B2 JP60257821A JP25782185A JPH0359726B2 JP H0359726 B2 JPH0359726 B2 JP H0359726B2 JP 60257821 A JP60257821 A JP 60257821A JP 25782185 A JP25782185 A JP 25782185A JP H0359726 B2 JPH0359726 B2 JP H0359726B2
Authority
JP
Japan
Prior art keywords
adsorption
amount
temperature
recovery rate
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60257821A
Other languages
Japanese (ja)
Other versions
JPS62119106A (en
Inventor
Kazuo Tajima
Hiroshi Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP60257821A priority Critical patent/JPS62119106A/en
Priority to US06/929,089 priority patent/US4783433A/en
Priority to EP86115857A priority patent/EP0224150B1/en
Priority to DE8686115857T priority patent/DE3684416D1/en
Priority to CA000523163A priority patent/CA1269089A/en
Publication of JPS62119106A publication Critical patent/JPS62119106A/en
Publication of JPH0359726B2 publication Critical patent/JPH0359726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、イオン交換法(圧力変動式吸着分
離法)を利用して、COを含む混合ガス中のCOを
分離、濃縮又は除去して、工業的に有用なガスを
製造する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention uses an ion exchange method (pressure fluctuation adsorption separation method) to separate, concentrate, or remove CO in a mixed gas containing CO. , relates to a method for producing industrially useful gases.

(先行技術) COを含む混合ガス中のCOを分離、濃縮又は除
去するプロセスの1つにPSA法があることは周
知の通りである。
(Prior Art) It is well known that the PSA method is one of the processes for separating, concentrating, or removing CO in a mixed gas containing CO.

本発明者らは、先に「COの吸着剤」(特願昭59
−138772)、「COの分離方法」(特願昭59−
138771)において「シリカ/アルミナ比が10以下
のゼオライトに、Ni、Mn、Rh、Cu()、Agの
1つ又は2つ以上の混合物を担持させてなる吸着
剤」を用いて、COを含有する混合ガスから50℃
以上150℃以下で、COを分離する方法を提案し
た。更に本発明者らは、高純度に分離精製するた
めに、「COの分離方法」(特願昭60−72697)にお
いて150℃を超え、250℃以下という通常の吸着温
度(常温付近)以上の高温で、PSAを実施する
ことにより、1段の処理で、COを選択的に分離、
濃縮又は除去出来る吸着剤および方法を先に提案
した。
The present inventors previously developed a "CO adsorbent" (patent application filed in 1983).
-138772), "Method for separating CO" (Patent application 1987-
138771), using ``an adsorbent made of zeolite with a silica/alumina ratio of 10 or less supporting one or a mixture of two or more of Ni, Mn, Rh, Cu(), and Ag'' containing CO. 50℃ from mixed gas
We proposed a method to separate CO at temperatures below 150℃. Furthermore, in order to separate and purify to a high degree of purity, the present inventors developed a method for separating and purifying CO that exceeds the normal adsorption temperature (near room temperature) of over 150°C and below 250°C in the "Method for separating CO" (Patent Application No. 72,697/1982). By performing PSA at high temperature, CO can be selectively separated in one step.
Adsorbents and methods that can be concentrated or removed have previously been proposed.

そしてこれら発明は、上記提案の吸着剤が常温
付近ではCO2の平衡吸着量がCOのそれの数倍あ
るにも拘わらず吸着温度約50℃で、COとCO2
平衡吸着量がほぼ同量になり、それ以上の温度に
上昇せしめることによつて、COの吸着量がCO2
のそれを大きく上まわるという事実に基づくもの
であつた。即ち、COの吸着量の温度上昇に対す
る平衡吸着量の低下割合は極めて緩やかなのに対
して、CO2のそれは、温度上昇に伴なつて急激に
低下するという吸着特性を利用して、CO吸着量
>CO2吸着量なる温度領域で、PSAを操作するこ
とにより、COを含む混合ガスから、COを1段の
処理で分離、濃縮出来るプロセスを発明するに至
つたものである。
In addition, these inventions show that although the equilibrium adsorption amount of CO 2 is several times that of CO at room temperature, the equilibrium adsorption amount of CO and CO 2 is almost the same at an adsorption temperature of about 50°C. By raising the temperature above that amount, the amount of CO adsorbed increases to
This was based on the fact that it significantly exceeded that of In other words, the rate of decrease in the equilibrium adsorption amount of CO adsorption with respect to temperature rise is extremely gradual, whereas that of CO 2 takes advantage of the adsorption property that it rapidly decreases as temperature rises to increase CO adsorption > By operating PSA in the temperature range corresponding to the amount of CO 2 adsorption, we have invented a process that allows CO to be separated and concentrated from a mixed gas containing CO in one step.

しかるに本発明者らは、その后も更に先の提案
に基づく吸着剤を用いて、通常の吸着工程→パー
ジ工程→脱着工程→昇圧工程を繰り返すことの出
来る4塔式PSA試験装置により、主として、製
鉄所内の通常の転炉ガスを想定して鋭意研究した
結果、先の提案による吸着剤では、製品CO純度
90〜95%、CO回収率70%以上を得るために必要
な操作温度は、100℃以上、好ましくは、135℃以
上要する。同様に、純度98%以上、回収率70%以
上を得るためには、165℃以上、好ましくは20℃
以上を、要することが明らかとなつた。
However, the present inventors mainly used a four-column PSA test device that can repeat the normal adsorption process → purge process → desorption process → pressure increase process using an adsorbent based on the earlier proposal. As a result of intensive research assuming normal converter gas in steel plants, we found that the adsorbent proposed earlier could reduce product CO purity.
The operating temperature required to obtain a CO recovery rate of 90 to 95% and 70% or more is 100°C or higher, preferably 135°C or higher. Similarly, in order to obtain a purity of 98% or higher and a recovery rate of 70% or higher, the temperature must be 165°C or higher, preferably 20°C.
It became clear that the above was necessary.

しかしながら、COの選択的吸着能を向上させ
るために、操作温度を逐次上げていくことは、 (1) CO吸着量自体も徐々に減少して、単位処理
ガス量当りの所要吸着剤量が増大していくこ
と、 (2) 吸着塔および/または処理ガスを加熱するた
めにエネルギーが増大していくこと、 (3) PSA装置の切換弁等の材質を、耐熱性を考
慮して選択する必要が生ずること などの問題点も派生してくることになる。
However, in order to improve the selective adsorption capacity of CO, successively increasing the operating temperature means that (1) the amount of CO adsorbed itself gradually decreases, and the amount of adsorbent required per unit amount of gas processed increases; (2) The energy required to heat the adsorption tower and/or the process gas will increase; (3) The materials for the switching valves, etc. of the PSA equipment will need to be selected with heat resistance in mind. Problems such as the occurrence of problems will also arise.

このような観点から、本発明者らは、より常温
に近い温度でCOの吸着量がCO2のそれを上まわ
る吸着剤を研究し、PSA操作温度をより常温に
近い温度で、COの選択的分離濃縮を可能ならし
めることによつて、本発明を完成させるに至つた
ものである。
From this point of view, the present inventors researched adsorbents whose CO adsorption amount exceeds that of CO 2 at temperatures closer to room temperature, and determined the selection of CO at a temperature closer to room temperature. The present invention has been completed by making selective separation and concentration possible.

(発明が解決しようとする技術的課題) 本発明が目的とするところは、先に提案した
「CO分離方法」を改良して、より温和な条件で、
高純度のCOを高回収率で分離精製することので
きる1段処理方法を提供することである。
(Technical problem to be solved by the invention) The purpose of the present invention is to improve the previously proposed "CO separation method" and to
An object of the present invention is to provide a one-stage treatment method capable of separating and purifying highly pure CO with a high recovery rate.

(技術的課題を解決する手段) 本発明は、シリカ/アルミナ比10以下のゼオラ
イトにNi、Mn、Rh、Cu()、Agから選択され
た1又は2以上の金属をイオン交換法と含浸法と
の両法を併用して担持せしめてCOの選択的吸着
能を発現した吸着剤を製造する工程と、 前記吸着剤を用いてPSA法(圧力変動式吸着
分離法)によつて、40℃以上100℃以下の温度範
囲でCOを優先的に分離精製する工程と、を具備
したCOの分離精製方法である。
(Means for Solving Technical Problems) The present invention provides a method for applying one or more metals selected from Ni, Mn, Rh, Cu(), and Ag to zeolite with a silica/alumina ratio of 10 or less using an ion exchange method and an impregnation method. A step of manufacturing an adsorbent that exhibits selective adsorption ability for CO by supporting both methods in combination; This is a CO separation and purification method comprising a step of preferentially separating and purifying CO in a temperature range of 100° C. or less.

好ましくは、この発明はゼオライトに、第1段
階でイオン交換法により、第2段階で含浸法によ
り金属を担持させて、COの選択的吸着能を発現
した吸着剤を製造する方法である。
Preferably, the present invention is a method for manufacturing an adsorbent that exhibits selective CO adsorption ability by supporting metals on zeolite by an ion exchange method in the first step and by an impregnation method in the second step.

担持金属は、COの選択的吸着能、価格、入手
の容易さなどから考えて、実用的にはCu()を
主体としたものが好ましい。
Practically speaking, it is preferable that the supporting metal mainly consist of Cu(), considering the selective adsorption ability of CO, price, ease of acquisition, etc.

ゼオライト担体は、シリカ/アルミナ比10以下
のゼオライトであれば、A型、X型、Y型モルデ
ナイト型など何でもよいが、シリカ/アルミナ比
が小なる程、第1段階のイオン交換法で担持させ
得る金属量が多くなり、この段階でのCO吸着量
は増加する傾向があるが、反面一般に耐酸強度が
弱くなるとともに親水性が増加して水分吸着量が
大となり、CO2の吸着量も大となる傾向が生ず
る。従つて耐酸強度が弱くなることから、シリ
カ/アルミナ比が小なるもの程、イオン交換法次
いで含浸法により吸着剤を調製するに当つては、
溶液のPHに考慮を払う必要がある。
The zeolite carrier may be any type of zeolite, such as A-type, X-type, or Y-type mordenite, as long as the zeolite has a silica/alumina ratio of 10 or less, but the smaller the silica/alumina ratio, the more the zeolite is supported by the first step ion exchange method. As the amount of metal obtained increases, the amount of CO adsorbed at this stage tends to increase, but on the other hand, acid resistance generally weakens and hydrophilicity increases, resulting in a large amount of water adsorption, and the amount of CO 2 adsorbed also increases. There is a tendency that Therefore, since the acid resistance strength becomes weaker, the smaller the silica/alumina ratio, the more difficult it is to prepare the adsorbent using the ion exchange method and then the impregnation method.
Consideration must be given to the PH of the solution.

またCu()などの担持法としては、イオン交
換法、次いで行う含浸法のいずれについても化学
的に安定なCu()として担持させた後CO、H2
などにより還元してもよいし、Cu()として直
接担持させてもよい。
In addition, as a method for supporting Cu(), etc., both the ion exchange method and the subsequent impregnation method are used to support the chemically stable Cu(), followed by CO, H 2
It may be reduced by a method such as Cu, or it may be directly supported as Cu().

各金属の化学種としてはハロゲン化物、硝酸
塩、硫酸塩、酢酸塩など、とくにその形態を問う
ものではないが、取扱いの容易さ、価格、更には
COの吸着量を増加させ、CO2の吸着量を低減さ
せるに重要な第2段階の含浸法においては塩化物
が好ましい。また耐酸強度の小さなA型、X型等
については、酢酸塩が好ましい。また各ゼオライ
トを予めプロトン型に変換した後、イオン交換法
で金属担持させると、CO2吸着量の低減に多少の
効果が見られる。
The chemical species of each metal may be in any form, such as halides, nitrates, sulfates, acetates, etc., but the ease of handling, price, and
Chloride is preferred in the second stage impregnation method, which is important for increasing the amount of CO adsorption and reducing the amount of CO 2 adsorption. Furthermore, for type A, type X, etc., which have low acid resistance, acetate is preferable. Moreover, if each zeolite is converted into a proton type in advance and then metal supported by an ion exchange method, some effect on reducing the amount of CO 2 adsorption can be seen.

本発明では、40℃以上100℃以下の温度範囲で
PSA法により吸脱着操作を行うが、その温度範
囲を限定したのは次の理由による。
In the present invention, in a temperature range of 40°C or more and 100°C or less
Adsorption and desorption operations are performed using the PSA method, but the temperature range is limited for the following reasons.

当該吸着剤を用いて前記の4搭式PSA試験装
置により、主として、製鉄所内の通常の転炉ガス
を想定して鋭意研究した結果、製品CO純度90〜
95%、CO回収率70%以上を得るために必要な操
作温度は40℃以上であり、同様に純度98%以上、
回収率70%以上を得るためには60℃以上100℃以
下で充分なことが分つた。
As a result of extensive research using the above-mentioned four-board PSA test equipment using the adsorbent, mainly assuming normal converter gas in steel plants, the product CO purity was 90~90.
95%, the operating temperature required to obtain a CO recovery rate of 70% or higher is 40°C or higher, as well as a purity of 98% or higher.
It was found that a temperature of 60°C to 100°C was sufficient to obtain a recovery rate of 70% or more.

当該吸着剤を用いて、100℃を超える操作温度
でPSAを実施しても分離精製能からすれば全く
問題はない。それどころか、COの分離精製能は
更に向上する。しかしながら100℃を超える操作
温度とすると、CO吸着量自体も徐々に減少して、
単位処理ガス量当りの所要吸着剤量が増大してい
く。また吸着塔および/または処理ガスを加熱す
るための何らかのエネルギーが必要とされ、また
これが増大していく。これらの理由により、経済
性が低下するため100℃を超える温度とすること
は適当ではない。
Even if PSA is performed using the adsorbent at an operating temperature exceeding 100°C, there is no problem in terms of separation and purification performance. On the contrary, the ability to separate and purify CO is further improved. However, when the operating temperature exceeds 100℃, the amount of CO adsorption itself gradually decreases.
The amount of adsorbent required per unit amount of gas to be processed increases. Also, some energy is required to heat the adsorption tower and/or the process gas, and this is increasing. For these reasons, it is not appropriate to set the temperature to over 100° C. because it reduces economic efficiency.

一方、当該吸着剤を用いれば、40℃未満の温度
でも、分離精製することが出来るはずであるが、
実用的には好ましい温度ではない。即ち、吸着特
性には問題ないが、PSA操作で順次繰り返えさ
れるパージ工程と、脱着工程の特性が不良とな
り、純度、回収率の関係が極めて悪くなるからで
ある。
On the other hand, if this adsorbent is used, separation and purification should be possible even at temperatures below 40°C.
This is not a practically desirable temperature. That is, although there is no problem with the adsorption characteristics, the characteristics of the purge step and desorption step, which are successively repeated in the PSA operation, become poor, and the relationship between purity and recovery rate becomes extremely poor.

(発明の作用、効果) 本発明により、ゼオライトに金属を担持させた
吸着剤は、イオン交換法又は、含浸法のいずれか
一方で調製せる吸着剤に比べ、COの吸着量が向
上すると共に、CO2の吸着量は低減する。このた
め常温(20℃)でCOの吸着量がCO2のそれを上
回り、この傾向は温度を上げていくにつれて顕著
になり、COの選択的吸着能が向上する。この傾
向は、先に発明者らが提案した吸着剤の場合と同
様に、COの吸着量の温度上昇に対する平衡吸着
量の低下割合が、CO2のそれに比べて極めて緩や
かであるという吸着特性によるものである。
(Operations and Effects of the Invention) According to the present invention, an adsorbent in which a metal is supported on zeolite has an improved amount of CO adsorption compared to an adsorbent prepared using either an ion exchange method or an impregnation method. The amount of CO 2 adsorption is reduced. Therefore, the adsorption amount of CO exceeds that of CO 2 at room temperature (20°C), and this tendency becomes more pronounced as the temperature is raised, improving the selective adsorption ability of CO. This tendency is due to the adsorption property that, as in the case of the adsorbent proposed by the inventors, the rate of decrease in the equilibrium adsorption amount of CO2 as the temperature rises is extremely slow compared to that of CO2 . It is something.

更に本発明で規定した40℃以上100℃以下の温
度領域は、PSA装置入口の昇圧機で、原ガスを
1Kg/cm2Gまで上昇すれば、断熱圧縮熱による温
度上昇および、吸着熱で容易に得られるものであ
り、本発明者らが先に提案した「COの分離方法」
(特願昭60−72696)、即ち原ガスを0.5Kg/cm3G以
上7Kg/cm3G以下の範囲で断熱圧縮することによ
つて生ずるガス温度上昇を利用して、原ガスを吸
着温度に設定してCOを分離する方法と組合せる
ことにより、外部加熱装置を設置する必要がなく
なり、極めて経済的なプロセスと成り得る。
Furthermore, the temperature range of 40°C to 100°C specified in the present invention can be easily achieved by increasing the temperature due to adiabatic compression heat and adsorption heat by raising the raw gas to 1 kg/cm 2 G using a booster at the inlet of the PSA device. This is the method for separating CO that was previously proposed by the inventors.
(Japanese Patent Application No. 60-72696), that is, by utilizing the gas temperature rise caused by adiabatic compression of the raw gas in the range of 0.5 kg/cm 3 G to 7 kg/cm 3 G, the raw gas is heated to the adsorption temperature. By combining this with a method to separate CO by setting the temperature to 100%, there is no need to install an external heating device, making it an extremely economical process.

本発明により、先に提案した方法に比べ、
PSA操作温度が格段に低下したので、吸着塔お
よび/または処理ガスを加熱するためのエネルギ
ーが不要となり、運転費が極めて低減される。等
の効果を得ることが出来る。
According to the present invention, compared to the previously proposed method,
Since the PSA operating temperature is significantly reduced, no energy is required to heat the adsorption column and/or the process gas, significantly reducing operating costs. Effects such as this can be obtained.

以下、参考例および実施例を示す。 Reference examples and examples are shown below.

参考例 1 2インチ×800mmの長さのSUS304製吸着塔を
4塔備えたPSA試験装置を用いて吸着操作温度
に対する回収ガスのCO純度と回収率との関係を
求めた。なお、各塔は、温度調節器付のマントル
ヒータを備えており、塔内温度を設定温度±10℃
以内に保持出来るようになつている。
Reference Example 1 Using a PSA testing device equipped with four adsorption towers made of SUS304 with a length of 2 inches x 800 mm, the relationship between the CO purity of the recovered gas and the recovery rate with respect to the adsorption operation temperature was determined. Each tower is equipped with a mantle heater with a temperature controller, and the temperature inside the tower can be adjusted to the set temperature ±10°C.
It is now possible to maintain it within

一方、CuCl2の1N溶液を作成し、100ml丸底フ
ラスコにNa−Y型ゼオライト(1.5mmφ、5mmL
ペレツト、バインダ20%含む)10gと、1NCuCl2
溶液50mlを加え、丸底フラスコにコンデンサーを
取付けてマントルヒータで100℃で加熱還流を2
時間行なつた。静置后、デカンテーシヨンにより
上澄みを回収し、更に1NCuCl2溶液50mlを加え、
同様に還流を行なつた。還流操作は合計5回行な
い、ゼオライトは純水で十分に水洗し、110℃で
乾燥后、粉砕し、電気炉で550℃2時間焼成して
吸着剤を作成した。尚、回収した上澄み液と液
を混合し、発光分析で放出したNa量を求めてイ
オン交換率を測定した結果、86.5%であり、単位
吸着剤当りの担持Cu量は、887wt%であつた。
On the other hand, prepare a 1N solution of CuCl 2 and add Na-Y type zeolite (1.5mmφ, 5mmL) to a 100ml round bottom flask.
10g of pellets (including 20% binder) and 1NCuCl 2
Add 50 ml of the solution, attach a condenser to the round bottom flask, and heat under reflux at 100°C with a mantle heater for 2 minutes.
I spent time. After standing still, collect the supernatant by decantation, add 50 ml of 1NCuCl 2 solution,
Refluxing was carried out in the same manner. The reflux operation was performed a total of 5 times, and the zeolite was thoroughly washed with pure water, dried at 110°C, crushed, and calcined in an electric furnace at 550°C for 2 hours to prepare an adsorbent. Furthermore, the ion exchange rate was measured by mixing the recovered supernatant liquid and the liquid and determining the amount of Na released by luminescence analysis, and the result was 86.5%, and the amount of Cu supported per unit adsorbent was 887wt%. .

このようにして調製したCu()Y型ゼオライ
トの造粒品(造粒剤20%含む)1/16″ペレツト
を各塔に夫々1000g充填し、250℃、50Torrで約
5時間加熱真空脱着した。さらに、純COガスを
充填した後、約1/min約2時間流通してCu
()Yに還元した。当該4塔式PSA装置は、吸
着質を回収する通常の方法として、吸着工程→パ
ージ工程→脱着工程→昇圧工程を夫々繰り返すこ
とが出来るようになつている。
Each tower was filled with 1000 g of 1/16" pellets of the Cu()Y-type zeolite prepared in this way (containing 20% granulating agent), and vacuum desorption was carried out by heating at 250°C and 50 Torr for about 5 hours. Furthermore, after filling with pure CO gas, the Cu gas is circulated at a rate of about 1/min for about 2 hours.
()Reduced to Y. The four-column PSA device is capable of repeating the adsorption step, purge step, desorption step, and pressure increase step as a normal method for recovering adsorbate.

上記装置を用いて下記組成の転炉ガスを想定し
た混合ガスの分離、精製を試験した。
Using the above apparatus, separation and purification of a mixed gas assuming a converter gas having the following composition was tested.

ガス組成: CO 74.5% CO2 14.0% H2 1.0% N2 10.5% 設定条件は、吸着温度165±10℃、吸着圧力1
Kg/cm2G、脱着圧力50Torrとし、パージガス量
と脱着ガス量との比および原料ガス供給量を変
え、塔内のガス流速をほぼ一定に保ちながら、回
収ガスのCO純度と、CO回収率との関係を求め
た。
Gas composition: CO 74.5% CO 2 14.0% H 2 1.0% N 2 10.5% Setting conditions are adsorption temperature 165±10℃, adsorption pressure 1
Kg/cm 2 G, desorption pressure is 50 Torr, and the ratio of purge gas amount to desorption gas amount and raw material gas supply amount are changed to keep the gas flow rate in the column almost constant, and the CO purity of the recovered gas and CO recovery rate are controlled. I sought a relationship with.

結果の1例を示すと 供給ガス量0.76/min、パージ量/脱着量
0.73のときCO回収率73%で回収ガス組成は、 CO 96.2% CO2 3.0 N2 0.7 H2 0.1 であつた。また製品CO純度とCO回収率との関係
を第1図に破線で示す。
An example of the results: Supply gas amount 0.76/min, purge amount/desorption amount
0.73, the CO recovery rate was 73% and the recovered gas composition was CO 96.2% CO 2 3.0 N 2 0.7 H 2 0.1. Furthermore, the relationship between product CO purity and CO recovery rate is shown by the broken line in Figure 1.

参考例 2 参考例1と同様の装置および条件で吸着温度の
みを210±10℃に設定して、製品純度と回収率と
の関係を求めた。
Reference Example 2 Using the same equipment and conditions as Reference Example 1, only the adsorption temperature was set at 210±10°C, and the relationship between product purity and recovery rate was determined.

結果の1例を示すと 供給ガス量0.70/min、パージ量/脱着量
0.74のときCO回収率は72%であり回収ガス組成
は CO 98.5% CO2 1.0 N2 0.4 H2 0.1 であつた。また製品CO純度と回収率との関係を
第1図に実線で示す。
An example of the results: Supply gas amount 0.70/min, purge amount/desorption amount
At 0.74, the CO recovery rate was 72% and the recovered gas composition was CO 98.5% CO 2 1.0 N 2 0.4 H 2 0.1. Furthermore, the relationship between product CO purity and recovery rate is shown by the solid line in Figure 1.

この結果から吸着温度を上げることにより、同
程度のCO回収率に対して、製品CO純度が向上す
ると共に、CO回収率を約50%まで下げることに
より、99%以上の製品CO純度が得られることが
分かる。
These results show that by increasing the adsorption temperature, the product CO purity improves for a similar CO recovery rate, and by lowering the CO recovery rate to approximately 50%, a product CO purity of over 99% can be obtained. I understand that.

参考例 3 参考例1と同様の装置および条件で吸着温度の
みを、135±10℃に設定して、製品CO純度と回収
率との関係を求めた。
Reference Example 3 Using the same equipment and conditions as Reference Example 1, only the adsorption temperature was set at 135±10°C, and the relationship between product CO purity and recovery rate was determined.

結果の一例を示すと 供給ガス量0.72/min、パージ量/脱着量
0.73のときCO回収率は、72%であり、回収ガス
組成は CO 93.1% CO2 5.2 N2 1.4 H2 0.3 であつた。また製品CO純度と回収率との関係を
第1図に一点破線で示す。
An example of the results: Supply gas amount 0.72/min, purge amount/desorption amount
At 0.73, the CO recovery rate was 72%, and the recovered gas composition was CO 93.1% CO 2 5.2 N 2 1.4 H 2 0.3. The relationship between product CO purity and recovery rate is shown in Figure 1 by a dotted line.

この結果から吸着温度が150℃以下の範囲にな
ると、回収率約70%に対して製品CO純度は95%
以下に低下すると共に製品CO純度を98%程度保
持するためには、回収率が約30%まで低下するこ
とが分かる。
From this result, when the adsorption temperature is below 150℃, the recovery rate is about 70%, but the product CO purity is 95%.
It can be seen that in order to maintain the product CO purity of about 98% while reducing the CO purity to below, the recovery rate will decrease to about 30%.

実施例 1 参考例1に記載した方法でイオン交換したCu
()−Y型ゼオライト(1.5mmφ、5mmLペレツ
ト)を10g秤量し、100mlのナス型フラスコに入
れ、ロータリバキユームエバポレータにセツト
し、95℃以上で真空脱気する。脱気後、真空にし
ながら試料を室温まで冷却する。
Example 1 Cu ion-exchanged by the method described in Reference Example 1
Weigh 10g of ()-Y type zeolite (1.5mmφ, 5mmL pellet), put it in a 100ml eggplant-shaped flask, set it in a rotary vacuum evaporator, and vacuum degas it at 95°C or higher. After degassing, the sample is cooled to room temperature while applying a vacuum.

一方、CuCl2・2H2O8.3gを室温の水に溶解さ
せ20mlとする。これは、ほぼCuCl2の飽和溶液と
なる。ロータリバキユームエバポレータのリーク
コツクにキヤピラリを取付け、ナス型フラスコ内
を真空に保持させながら、上記溶液を2〜3滴ず
つ吸着剤に滴下含浸させる。
On the other hand, 8.3 g of CuCl 2 .2H 2 O was dissolved in water at room temperature to make 20 ml. This results in an approximately saturated solution of CuCl 2 . A capillary is attached to the leak tank of the rotary vacuum evaporator, and while the inside of the eggplant-shaped flask is maintained in vacuum, the adsorbent is impregnated with 2 to 3 drops of the above solution.

吸着剤が一様に漏れた時点で滴下をやめフラス
コ内を常圧に戻す。さらに金網をつけた吸引過
器に含浸させた試料を移し、残りの溶液を試料上
に注ぎ、約30分間吸引過した後、磁性皿上に広
げて一昼夜風乾させる。風乾後の試料を真空乾燥
器内で110℃で3時間真空乾燥させて本発明の吸
着剤を得た。当吸着剤の担持Cu量は、15.96wt%
であつた。
When the adsorbent leaks out evenly, stop dropping and return the inside of the flask to normal pressure. Further, transfer the impregnated sample to a suction device equipped with a wire mesh, pour the remaining solution onto the sample, and after suctioning it for about 30 minutes, spread it on a magnetic plate and air dry it overnight. The air-dried sample was vacuum-dried at 110° C. for 3 hours in a vacuum dryer to obtain an adsorbent of the present invention. The amount of Cu supported on this adsorbent is 15.96wt%
It was hot.

上記手順で得た吸着剤(Cu()−Y+CuCl2
記す)の造粒品(造粒剤20%含む)1/16″ペレ
ツトを、参考例1と同様の装置に、夫々1250g充
てんし、吸着温度を90±10℃に設定して、これ以
外はすべて参考例1と全く同様の手順および条件
で、製品CO純度と回収率との関係を求めた。尚、
一塔の充てん量が参考例1のCu()−Y1000g
に対し、増加したのは、Cu()−Y+CuCl2の方
が、見掛比重が大きいからである。
1250 g of each granulated product (containing 20% granulating agent) of 1/16" pellets (containing 20% granulating agent) of the adsorbent (denoted as Cu()-Y+CuCl 2 ) obtained in the above procedure was filled into the same apparatus as in Reference Example 1. The adsorption temperature was set at 90±10°C, and the relationship between product CO purity and recovery rate was determined using the same procedure and conditions as in Reference Example 1.
The filling amount of one tower is 1000g of Cu()-Y of Reference Example 1
On the other hand, the reason for the increase is that Cu()-Y+CuCl 2 has a larger apparent specific gravity.

結果の1例を示すと、 供給ガス量1.23/min、パージ量/脱着量
0.63のときCO回収率78%で、回収ガス組成は CO 99.9% CO2 Tr N2 0.1% H2 Tr であつた。また、製品CO純度とCO回収率との関
係を第2図に実線で示す。
An example of the results: Supply gas amount 1.23/min, purge amount/desorption amount
When the CO recovery rate was 0.63, the CO recovery rate was 78%, and the recovered gas composition was CO 99.9% CO 2 Tr N 2 0.1% H 2 Tr. Furthermore, the relationship between product CO purity and CO recovery rate is shown by the solid line in Figure 2.

実施例 2 実施例1と全く同様にして、吸着温度のみを70
±10℃に設定して、製品CO純度と回収率との関
係を求めた。
Example 2 Same as Example 1, only the adsorption temperature was changed to 70
The relationship between product CO purity and recovery rate was determined by setting the temperature at ±10°C.

結果の1例を示すと、 供給ガス量1.10/min、パージ量/脱着量
0.64のときCO回収率81%で、回収ガス組成は CO 98.2% CO2 1.7 N2 0.1 H2 Tr であつた。また、製品CO純度と回収率との関係
を第2図に一点破線で示す。
An example of the results: Supply gas amount 1.10/min, purge amount/desorption amount
When the CO recovery rate was 0.64, the CO recovery rate was 81%, and the recovered gas composition was CO 98.2% CO 2 1.7 N 2 0.1 H 2 Tr. In addition, the relationship between product CO purity and recovery rate is shown in Figure 2 by a dotted line.

実施例 3 実施例1と全く同様にして、吸着温度のみを50
±10℃に設定して、製品CO純度と回収率との関
係を求めた。
Example 3 Same as Example 1, only the adsorption temperature was changed to 50
The relationship between product CO purity and recovery rate was determined by setting the temperature at ±10°C.

結果の1例を示すと、 供給ガス量1.03/min、パージ量/脱着量
0.72のときCO回収率69%で、回収ガス組成は CO 95.4% CO2 4.4 N2 0.2 H2 Tr であつた。また製品CO純度と回収率との関係を
図2に破線で示す。
An example of the results: Supply gas amount 1.03/min, purge amount/desorption amount
At 0.72, the CO recovery rate was 69%, and the recovered gas composition was CO 95.4% CO 2 4.4 N 2 0.2 H 2 Tr. Furthermore, the relationship between product CO purity and recovery rate is shown by the broken line in Figure 2.

実施例 4 実施例1と全く同様にして、吸着温度のみを30
±10℃に設定して製品CO純度と回収率との関係
を求めた。
Example 4 In exactly the same manner as in Example 1, only the adsorption temperature was changed to 30
The relationship between product CO purity and recovery rate was determined by setting the temperature at ±10°C.

結果の1例を示すと 供給ガス量1.02/min、パージ量/脱着量
0.71のときCO回収率73%で、回収ガス組成は CO 87.5% CO2 12.1 N2 0.4 H2 Tr であつた。また製品CO純度と回収率との関係を
第2図に二点破線で示す。
An example of the results: Supply gas amount 1.02/min, purge amount/desorption amount
When the CO recovery rate was 0.71, the CO recovery rate was 73%, and the recovered gas composition was CO 87.5% CO 2 12.1 N 2 0.4 H 2 Tr. In addition, the relationship between product CO purity and recovery rate is shown in Figure 2 by a two-dot dashed line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は参考例1〜3の実験におけるCO回収
率と製品CO純度との関係を示す説明図、第2図
は実施例1〜3の実験におけるCO回収率と製品
CO純度との関係を示す説明図である。
Figure 1 is an explanatory diagram showing the relationship between CO recovery rate and product CO purity in the experiments of Reference Examples 1 to 3, and Figure 2 is an explanatory diagram showing the relationship between CO recovery rate and product CO purity in the experiments of Examples 1 to 3.
FIG. 3 is an explanatory diagram showing the relationship with CO purity.

Claims (1)

【特許請求の範囲】 1 シリカ/アルミナ比10以下のゼオライトに
Ni、Mn、Rh、Cu()、Agから選択された1又
は2以上の金属をイオン交換法と含浸法との両法
を併用して担持せしめて、COの選択的吸着能を
発現した吸着剤を製造する工程と、 前記吸着剤を用いてPSA法(圧力変動式吸着
分離法)によつて、40℃以上100℃以下の温度範
囲でCOを優先的に分離精製する工程と、 を具備したCOの分離精製方法。 2 ゼオライトに第1段階でイオン交換法によ
り、第2段階で含浸法により金属を担持させて、
COの選択的吸着能を発現した吸着剤を製造する
特許請求の範囲第1項記載のCOの分離精製方法。
[Claims] 1. Zeolite with a silica/alumina ratio of 10 or less
Adsorption that exhibits selective adsorption ability for CO by supporting one or more metals selected from Ni, Mn, Rh, Cu(), and Ag using both ion exchange and impregnation methods. and a step of preferentially separating and purifying CO in a temperature range of 40°C or higher and 100°C or lower using the adsorbent using the PSA method (pressure fluctuation adsorption separation method). A method for separating and purifying CO. 2. The metal is supported on zeolite by ion exchange method in the first step and by impregnation method in the second step,
The method for separating and purifying CO according to claim 1, wherein an adsorbent exhibiting a selective adsorption ability for CO is produced.
JP60257821A 1985-11-19 1985-11-19 Method for separating and purifying co Granted JPS62119106A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60257821A JPS62119106A (en) 1985-11-19 1985-11-19 Method for separating and purifying co
US06/929,089 US4783433A (en) 1985-11-19 1986-11-10 Selective adsorbent for CO and method of manufacturing the same
EP86115857A EP0224150B1 (en) 1985-11-19 1986-11-14 Selective adsorbent for carbon monoxide and method of manufacturing the same
DE8686115857T DE3684416D1 (en) 1985-11-19 1986-11-14 SELECTIVE ADSORBENT FOR CARBON MONOXYDE AND METHOD FOR PRODUCING THE SAME.
CA000523163A CA1269089A (en) 1985-11-19 1986-11-17 Selective adsorbent for co and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257821A JPS62119106A (en) 1985-11-19 1985-11-19 Method for separating and purifying co

Publications (2)

Publication Number Publication Date
JPS62119106A JPS62119106A (en) 1987-05-30
JPH0359726B2 true JPH0359726B2 (en) 1991-09-11

Family

ID=17311588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257821A Granted JPS62119106A (en) 1985-11-19 1985-11-19 Method for separating and purifying co

Country Status (1)

Country Link
JP (1) JPS62119106A (en)

Also Published As

Publication number Publication date
JPS62119106A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
US4743276A (en) Method of separating carbon monoxide and carbon monoxide adsorbent used in this method
US3996028A (en) Process for purification of argon from oxygen
EP1931465B1 (en) Silver-exchanged zeolites and methods of manufacture therefor
JP2988625B2 (en) Temperature swing adsorption method
EA005123B1 (en) Syngas purification process
CA1269089A (en) Selective adsorbent for co and method of manufacturing the same
JPH08266844A (en) Method for removing carbon dioxide from gas flow
JPS62136222A (en) Method for adsorbing and separating specific gas from gaseous mixture
JPH0938446A (en) Pretreatment of air liquefying and separating equipment and equipment therefor
JP3084248B2 (en) Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas
US3078638A (en) Carbon dioxide removal from vapor mixtures
JP3050147B2 (en) Adsorbent for air separation, production method thereof and air separation method using the same
JPS6246911A (en) Method for concentrating gaseous co
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
US3893827A (en) Selective removal of constituents from fluids
JPH0359726B2 (en)
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
JP3462678B2 (en) Separation method of N14 ammonia and N15 ammonia using copper ion exchanged zeolite
JPS61293548A (en) Carbon monoxide separating and adsorbing agent
JPH0360524B2 (en)
JP2000140549A (en) Removal of carbon dioxide
JPH0620545B2 (en) Co selective adsorbent and method for producing the same
JP4438145B2 (en) Carbon monoxide adsorption separation method
JP2954364B2 (en) Purification method of nitrogen trifluoride gas
JPH0360523B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees