JPH03595B2 - - Google Patents

Info

Publication number
JPH03595B2
JPH03595B2 JP57173944A JP17394482A JPH03595B2 JP H03595 B2 JPH03595 B2 JP H03595B2 JP 57173944 A JP57173944 A JP 57173944A JP 17394482 A JP17394482 A JP 17394482A JP H03595 B2 JPH03595 B2 JP H03595B2
Authority
JP
Japan
Prior art keywords
liquid sodium
temperature
temperature liquid
inner cylinder
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57173944A
Other languages
Japanese (ja)
Other versions
JPS5963593A (en
Inventor
Keizo Okada
Kenji Fujitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57173944A priority Critical patent/JPS5963593A/en
Publication of JPS5963593A publication Critical patent/JPS5963593A/en
Publication of JPH03595B2 publication Critical patent/JPH03595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Secondary Cells (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】 高速増殖炉の炉内反応の緊急停止時には、急激
に原子炉内の液体ナトリウムの温度が低下し、且
つ炉内に流入する液体ナトリウムの流量は定格時
の100%から9.5%に減少する。炉内へ流入する液
体ナトリウムは炉内に残存する液体ナトリウムよ
り遥かに低温であり、流量が減少するので噴流に
よる炉内液体ナトリウムへの貫通力がなくなり、
流入低温液体ナトリウムは残存高温液体ナトリウ
ムと十分に混合されず、高温液体ナトリウムと低
温液体ナトリウムとが夫々層をなす。而して高温
液体ナトリウムは低温液体ナトリウムより比重が
小さいため、高温液体ナトリウムの層が低温液体
ナトリウムの層の上に浮くという成層化現象が発
生する。この際上部に高温液体ナトリウム、下部
に低温液体ナトリウムが層をなしているので原子
炉圧力容器の軸方向に大きな温度差が生じ、炉体
材料に大きな温度勾配が発生する。この温度勾配
が構造不連続部や、応力集中が考えられる個所に
発生すると、原子炉容器の構造式立上問題にな
る。
[Detailed description of the invention] During an emergency shutdown of the reactor reaction in a fast breeder reactor, the temperature of liquid sodium inside the reactor drops rapidly, and the flow rate of liquid sodium flowing into the reactor decreases from 100% of the rated value. This decreases to 9.5%. The liquid sodium flowing into the furnace is much lower in temperature than the liquid sodium remaining in the furnace, and as the flow rate decreases, the jet no longer has the ability to penetrate the liquid sodium inside the furnace.
The inflow low temperature liquid sodium is not sufficiently mixed with the remaining high temperature liquid sodium, and the high temperature liquid sodium and the low temperature liquid sodium form separate layers. Since high-temperature liquid sodium has a lower specific gravity than low-temperature liquid sodium, a stratification phenomenon occurs in which a layer of high-temperature liquid sodium floats on a layer of low-temperature liquid sodium. At this time, since there is a layer of high-temperature liquid sodium in the upper part and low-temperature liquid sodium in the lower part, a large temperature difference occurs in the axial direction of the reactor pressure vessel, and a large temperature gradient occurs in the reactor body material. If this temperature gradient occurs at structural discontinuities or at locations where stress concentration is likely, it will cause problems in the structural formula start-up of the reactor vessel.

第1図は原子炉容器の概要を示し、胴1には液
体ナトリウム入口ノズル2、液体ナトリウム出口
ノズル3及び小口径ノズル4が取付けられ、更に
胴1の内部には液体ナトリウムを上方へ導くため
の内筒5が配設されている。内筒5の上端近傍に
はYピース部1′と称する胴1の構造不連続部が
ある。
Figure 1 shows an outline of the reactor vessel.A liquid sodium inlet nozzle 2, a liquid sodium outlet nozzle 3, and a small-diameter nozzle 4 are attached to the shell 1. Furthermore, inside the shell 1, a liquid sodium inlet nozzle 2, a liquid sodium outlet nozzle 3, and a small diameter nozzle 4 are installed to guide liquid sodium upward. An inner cylinder 5 is provided. Near the upper end of the inner cylinder 5 there is a structural discontinuity of the cylinder 1 called the Y-piece part 1'.

而して原子炉容器内で上記成層化現象が発生す
ると、入口ノズル2から器内に入つた低温液体ナ
トリウムは、器内に残存する高温液体ナトリウム
と混合しないで夫々が層をなし、徐々に低温液体
ナトリウムと高温液体ナトリウムとの成層界面
(境界面)が円筒5の上端を越えた後は、低温液
体ナトリウムは胴1と内筒5との間の環状部に流
入するため、成層界面の上昇速度は急減する。
When the above-mentioned stratification phenomenon occurs in the reactor vessel, the low-temperature liquid sodium that entered the vessel from the inlet nozzle 2 does not mix with the high-temperature liquid sodium remaining in the vessel, but forms layers, and gradually After the stratified interface (boundary surface) between low-temperature liquid sodium and high-temperature liquid sodium exceeds the upper end of the cylinder 5, the low-temperature liquid sodium flows into the annular part between the shell 1 and the inner cylinder 5, so that the stratified interface The rate of rise sharply decreases.

このため成層界面は内筒5の上端近傍で長時間
停滞し、Yピース部1′とそれに近い小口径ノズ
ル4に軸方向の温度差が長時間生じるので、きび
しい応力が生じ、原子炉容器の構造成立上問題に
なる。第2図はこの状態を示すもので、低温液体
ナトリウムLの層と高温液体ナトリウムHの層と
の両者の間に拡散及び熱伝導によつて混合してで
きた中間温度の比較的薄い中間層Mを挟んで、低
温液体ナトリウムLの液面が上昇するが、内筒5
の上端を越えると上昇速度が急減し、成層界面が
内筒5の上端近傍で長時間停滞すると、従来のも
のは内筒5の上端の高さがYピース部1′の高さ
とほぼ同じであるので、Yピース部1′及びそれ
に近接した小口径ノズル4が温度差の大きい成層
界面に長時間接近し、前記各部に応力に関して厳
しい条件を与える温度分布を生じる。
For this reason, the stratified interface remains stagnant for a long time near the upper end of the inner cylinder 5, and a temperature difference in the axial direction occurs for a long time between the Y-piece portion 1' and the small-diameter nozzle 4 near it, resulting in severe stress and This poses a problem in terms of structure establishment. Figure 2 shows this state, where a relatively thin intermediate layer of intermediate temperature is formed between a layer of low-temperature liquid sodium L and a layer of high-temperature liquid sodium H, which are mixed by diffusion and heat conduction. The liquid level of low-temperature liquid sodium L rises across M, but the inner cylinder 5
When the upper end is exceeded, the rising speed suddenly decreases, and the stratified interface remains for a long time near the upper end of the inner cylinder 5. In the conventional case, the height of the upper end of the inner cylinder 5 is almost the same as the height of the Y-piece part 1'. Therefore, the Y-piece portion 1' and the small-diameter nozzle 4 adjacent thereto are in close proximity to the laminated interface with a large temperature difference for a long time, creating a temperature distribution that imposes severe stress conditions on each of the portions.

本発明はこのような問題点を解決するために提
案されたもので、原子炉容器の胴内に配設された
内筒における液体ナトリウムの溢流する上端部
を、前記胴におけるYピース部等の構造不連続部
より上方に位置せしめ、前記内筒上端から溢流し
た低温液体ナトリウムが高温液体ナトリウムと混
合して中間温度となつた後、前記胴の構造不連続
部に達しうるように構成されたことを特徴とする
高速増殖炉の原子炉容器に係るものである。
The present invention was proposed in order to solve such problems, and the upper end of the inner cylinder disposed in the shell of the reactor vessel, through which liquid sodium overflows, is connected to the Y-piece part of the shell, etc. located above the structural discontinuity of the cylinder, and configured such that the low-temperature liquid sodium overflowing from the upper end of the inner cylinder can reach the structural discontinuity of the shell after mixing with high-temperature liquid sodium and reaching an intermediate temperature. The present invention relates to a reactor vessel for a fast breeder reactor characterized by:

本発明においては前記したように、原子炉容器
の胴内に配設された内筒を、その上端部が前記胴
におけるYピース部等の構造不連続部より上方に
位置するように十分に高くして、内筒上端から溢
流した低温液体ナトリウムが高温液体ナトリウム
と混合して中間温度となつた後に、初めて前記胴
の構造不連続部に達しうるようにし、かくして低
温液体ナトリウムが高温液体ナトリウムと混合し
た後に、低温液体ナトリウムと高温液体ナトリウ
ムとの境界面である成層界面を、胴の構造不連続
部近傍に停滞させないようにし、同部に応力に関
して厳しい条件を与えるような温度分布を生起す
ることのないようにして原子炉容器の構造上の安
全を図るものである。
In the present invention, as described above, the inner cylinder disposed in the shell of the reactor vessel is set at a sufficiently high height so that the upper end thereof is located above a structural discontinuity such as a Y-piece part in the shell. The low temperature liquid sodium overflowing from the upper end of the inner cylinder mixes with the high temperature liquid sodium and reaches an intermediate temperature before reaching the structural discontinuity of the body, and thus the low temperature liquid sodium becomes the high temperature liquid sodium. After mixing with the liquid sodium, the stratified interface, which is the interface between the low-temperature liquid sodium and the high-temperature liquid sodium, is prevented from stagnation near the structural discontinuity of the shell, and a temperature distribution is created that imposes severe stress conditions on the part. This is to ensure the structural safety of the reactor vessel.

以下本発明を図示の実施例について説明する。 The present invention will be described below with reference to the illustrated embodiments.

第3図において、11は原子炉容器の胴で、液
体ナトリウム入口ノズル12、液体ナトリウム出
口ノズル13、及び小口径ノズル14が取付けら
れ、更に胴11の内部には液体ナトリウムを上方
へ導くための内筒15が配設され、同内筒15に
はフローホール16と称される多数の小径孔が穿
設されている。
In FIG. 3, reference numeral 11 denotes the shell of the reactor vessel, to which a liquid sodium inlet nozzle 12, a liquid sodium outlet nozzle 13, and a small-diameter nozzle 14 are attached. An inner cylinder 15 is provided, and a large number of small diameter holes called flow holes 16 are bored in the inner cylinder 15.

前記内筒15は十分に高く構成され、その上端
部が胴11におけるYピース部11′と称する構
造不連続部より上方に位置するように配設されて
いる。
The inner cylinder 15 has a sufficiently high structure and is arranged such that its upper end is located above a structural discontinuity in the body 11 called the Y-piece part 11'.

原子炉容器内に成層化現象が発生すると、入口
ノズル12から入つた低温液体ナトリウムLは器
内に残存する高温液体ナトリウムHと混合しない
で夫々が層をなし、低温液体ナトリウムLの液面
が上昇する。而して低温液体ナトリウムLの液面
が内筒5の上端に達すると、低温液体ナトリウム
Lの一部は、器内で低温及び高温両液体ナトリウ
ムH,Lが拡散で混合して中間温度となつた比較
的薄い中間層Mとともに胴11と内筒15との間
に環状部に流入して、低温ナトリウムLの液面の
上昇速度を急減する。
When a stratification phenomenon occurs in the reactor vessel, the low temperature liquid sodium L entering from the inlet nozzle 12 does not mix with the high temperature liquid sodium H remaining in the vessel and forms layers, causing the liquid level of the low temperature liquid sodium L to rise. Rise. When the liquid level of the low-temperature liquid sodium L reaches the upper end of the inner cylinder 5, a part of the low-temperature liquid sodium L mixes with the low-temperature and high-temperature liquid sodium H and L in the vessel by diffusion, and reaches an intermediate temperature. It flows into the annular portion between the shell 11 and the inner cylinder 15 together with the relatively thin middle layer M, which has softened, and rapidly reduces the rising speed of the liquid level of the low-temperature sodium L.

第4図はこの状態を示し、その後中間層Mは低
温液体ナトリウムLの液面の上昇に伴なつて内筒
5の上端より押上げられ、前記内筒5と胴1との
間の環状部には低温液体ナトリウムLだけが流入
する。
FIG. 4 shows this state, after which the intermediate layer M is pushed up from the upper end of the inner cylinder 5 as the liquid level of the low-temperature liquid sodium L rises, and the annular portion between the inner cylinder 5 and the shell 1 is pushed up. Only low temperature liquid sodium L flows into.

第5図はこの状態を示すもので、低温液体ナト
リウムLが内筒の上端を越えて液面の上昇温度が
急減し、低温液体ナトリウムLと高温液体ナトリ
ウムHとの境界面が停滞したとき、Yピース部1
1′及び小口径ノズル部14には温度差の激しい
成層界面に接触することがなく、応力に関して厳
しい条件を与えるような温度分布を生じることが
なく、原子炉容器の強度を保全するものである。
Figure 5 shows this state. When the low temperature liquid sodium L exceeds the upper end of the inner cylinder, the rising temperature of the liquid level suddenly decreases, and the interface between the low temperature liquid sodium L and the high temperature liquid sodium H becomes stagnant. Y piece part 1
1' and the small-diameter nozzle part 14 do not come into contact with the stratified interface where there is a large temperature difference, so there is no temperature distribution that would create severe stress conditions, and the strength of the reactor vessel is maintained. .

なお第6図及び第7図は水による模擬実験結果
を示すもので、第6図のA及び第7図のBは夫々
従来の構造並に本発明の構造による原子炉容器内
の高さ方向における液体ナトリウムの温度分布曲
線を示すもので、この結果本発明による効果が大
であることが実証された。
Note that FIGS. 6 and 7 show the results of a simulation experiment using water, and A in FIG. 6 and B in FIG. This figure shows the temperature distribution curve of liquid sodium at

以上本発明を実施例について説明したが、本発
明は勿論このような実施例にだけ局限されるもの
ではなく、本発明の精神を逸脱しない範囲内で
種々の設計の改変を施しうるものである。
Although the present invention has been described above with reference to embodiments, the present invention is, of course, not limited to such embodiments, and can be modified in various ways without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高速増殖炉の原子炉容器の縦断
面図、第2図はその炉内反応緊急停止時の状態を
示す縦断面図、第3図は本発明に係る高速増殖炉
の原子炉容器の一実施例を示す縦断面図、第4図
及び第5図は夫々その炉内反応緊急停止時の状態
を示す縦断面図、第6図及び第7図は夫々従来並
に本発明の原子炉容器内における液体ナトリウム
の炉内軸方向の温度分布状態の実験結果を示す図
表である。 11……胴、11′……Yピース部、12……
入口ノズル、13……出口ノズル、14……小口
径ノズル、15……内筒。
FIG. 1 is a longitudinal sectional view of the reactor vessel of a conventional fast breeder reactor, FIG. 2 is a longitudinal sectional view showing the state at the time of emergency shutdown of the reactor reaction, and FIG. 3 is a longitudinal sectional view of the reactor vessel of a conventional fast breeder reactor. FIGS. 4 and 5 are longitudinal sectional views showing one embodiment of the reactor vessel, and FIGS. 4 and 5 are longitudinal sectional views showing the state at the time of emergency shutdown of the reactor reaction, respectively. FIGS. 6 and 7 are the conventional and the present invention, respectively. 2 is a chart showing the experimental results of the temperature distribution state of liquid sodium in the reactor vessel in the axial direction of the reactor. 11... Trunk, 11'... Y piece part, 12...
Inlet nozzle, 13... Outlet nozzle, 14... Small diameter nozzle, 15... Inner cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉容器の胴内に配設された内筒における
液体ナトリウムの溢流する上端部を前記胴におけ
るYピース部等の構造不連続部より上方に位置せ
しめ、前記内筒上端から溢流した低温液体ナトリ
ウムが高温液体ナトリウムと混合して中間温度と
なつた後、前記胴の構造不連続部に達しうるよう
に構成されたことを特徴とする高速増殖炉の原子
炉容器。
1. The upper end of the inner cylinder disposed in the reactor vessel, through which liquid sodium overflows, is positioned above the structural discontinuity such as the Y-piece part in the shell, and the liquid sodium overflows from the upper end of the inner cylinder. A nuclear reactor vessel for a fast breeder reactor, characterized in that the reactor vessel for a fast breeder reactor is configured such that the low temperature liquid sodium can reach the structural discontinuity of the shell after being mixed with the high temperature liquid sodium to reach an intermediate temperature.
JP57173944A 1982-10-05 1982-10-05 Fast breeder container Granted JPS5963593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173944A JPS5963593A (en) 1982-10-05 1982-10-05 Fast breeder container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173944A JPS5963593A (en) 1982-10-05 1982-10-05 Fast breeder container

Publications (2)

Publication Number Publication Date
JPS5963593A JPS5963593A (en) 1984-04-11
JPH03595B2 true JPH03595B2 (en) 1991-01-08

Family

ID=15969955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173944A Granted JPS5963593A (en) 1982-10-05 1982-10-05 Fast breeder container

Country Status (1)

Country Link
JP (1) JPS5963593A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073184B2 (en) 2006-11-17 2011-12-06 Pioneer Corporation Speaker device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520451B2 (en) * 1972-03-30 1980-06-03
JPS567098A (en) * 1979-06-29 1981-01-24 Tokyo Shibaura Electric Co Nuclear reactor cooling device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747754Y2 (en) * 1978-07-28 1982-10-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520451B2 (en) * 1972-03-30 1980-06-03
JPS567098A (en) * 1979-06-29 1981-01-24 Tokyo Shibaura Electric Co Nuclear reactor cooling device

Also Published As

Publication number Publication date
JPS5963593A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
JPH03595B2 (en)
JP2009257929A (en) Molten corium holding device, and reactor containment vessel
EP2088602A1 (en) Manufacturing method for accumulator water injection tank and flow damper
JPH03590B2 (en)
JPS6166088A (en) Temperature stratification type heat storage tank
JPH10293189A (en) Reactor wall cooling protection structure of fast reactor
JPS5836079Y2 (en) Reactor
JPS594679B2 (en) liquid metal cooled fast reactor
JPH0330878Y2 (en)
JPS5850497A (en) Fast breeder
JPS61129199U (en)
JPS6073098A (en) Foam pump
JPS61196192A (en) Fuel aggregate
JP2686147B2 (en) Reactor
JPH0338558B2 (en)
JPS59109788A (en) Heat exchanger for fast breeder
JPH0658411B2 (en) A method for imparting load following capability to a natural circulation boiling water reactor.
JPH062512B2 (en) tank
JP2000111684A (en) Heating object fluid mixing promoting structure in reactor vessel
JPS6011518Y2 (en) core components
JPS56141407A (en) High-temperature liquid pipe
JPS5934847Y2 (en) Hot water tank for solar water heater
JPH02279937A (en) Feed-intake device of water of thermal stratification type heat storage tank
JPH0777592A (en) Compositional element of core of fast reactor
JPH07159570A (en) Fuel assembly