JPS6073098A - Foam pump - Google Patents

Foam pump

Info

Publication number
JPS6073098A
JPS6073098A JP18172383A JP18172383A JPS6073098A JP S6073098 A JPS6073098 A JP S6073098A JP 18172383 A JP18172383 A JP 18172383A JP 18172383 A JP18172383 A JP 18172383A JP S6073098 A JPS6073098 A JP S6073098A
Authority
JP
Japan
Prior art keywords
liquid
gas
tube
reactor vessel
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18172383A
Other languages
Japanese (ja)
Inventor
Susumu Ninomiya
進 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18172383A priority Critical patent/JPS6073098A/en
Publication of JPS6073098A publication Critical patent/JPS6073098A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/18Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium being mixed with, or generated from the liquid to be pumped

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To obtain lift more than 10 times of the depth of water by inserting one end of gas injection tube from the lower end of suction tube into the interior while providing an orifice at the flow-in portion at the lower end of suction tube thereby adjusting the amount of gas to be blown into the gas injection tube. CONSTITUTION:Upon injection of gas through a gas injection tube 1, foam 6 or liquid 10 in a suction tube 2 will lift and discharged through an outlet 9. Consequently, the pressure in said tube 2 will drop as much to intrude liquid through an orifice hole 8 at the lower end thus to rise the liquid level 5' in said tube 2. Upon rising over the gas ejection port 3, liquid of piston shape is formed in said tube 2 by the injected gas then rise and discharged. This phenomena is repeated to suck the liquid. When selecting the diameter and number of orifice hole 8, the amount of flowing liquid can be regulated thereby the pressure head in said tube 2 can be reduced by increasing the gas flow resulting in achievement of lift higher than 10 times of the depth of water.

Description

【発明の詳細な説明】 1ブを明の技術分野1 本発明は液体汲み−1−け用気泡ボンフに係り、特に1
+1えば液体すトすr′ツムを冷lJ材とじて使用覆る
高)中増殖炉のガスダム方式熱遮蔽装置にりr゛適した
気7段ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field 1 The present invention relates to a bubble bottle for pumping liquid, and more particularly to a bubble bottle for pumping liquid.
For example, the present invention relates to a seven-stage pneumatic pump suitable for use in a gas dam type heat shielding device for a high-to-medium breeder reactor, in which liquid stump is used as a cold lJ material.

[ブを明の技術的背鎮とその問題工、■コ一般に、高速
増殖炉は液体ナトリウム等の液体金属を冷lil]祠と
しC使用してJ5す、原子炉容器内にその冷却4Aを充
jf1.シ、イの自由液面」二とルーツスラブとの上部
空間1こ不活性カスからなるカバーガスを充填しで形成
されている。
[The technological backbone of the Ming Dynasty and its problems, in general, fast breeder reactors use liquid metal such as liquid sodium as a cooling shrine, and the cooling 4A is placed inside the reactor vessel. Full jf1. The free liquid level (2) and the upper space (1) of the roots slab are filled with a cover gas consisting of inert residue.

一方、この液体金属hr +らなる冷却月lJ熱伝達能
力が極め0人きいため、この冷却材IJ接し′Cいる原
子力1容器の壁部の温度(よこの冷却材の温度変化に対
して極めて早く追従覆る。しかしながら、原子炉容器の
うら冷ムfl 4Aの液面より上方の部分の壁部の温度
は、冷却材の温度変化には追従しない1、このため、原
子炉の運転開始a5よひ1q止の場合のように1θl、
11初の淘I良が変化りるど、原子炉容器のうち冷却材
の液面下の部分と液面」二の部分との間に大きな温度差
が生じてしまう。これに伴つ(、この冷ム11拐のd夕
曲近例の原子炉容器壁には大きな温度勾配か化して過大
な熱応力が発生し、1量f炉容器の1「仝性を40なう
可11ヒf(かあった。
On the other hand, since the heat transfer capacity of this liquid metal hr+ is extremely low, the temperature of the wall of the nuclear power vessel in contact with this coolant IJ is extremely low compared to the temperature change of the coolant outside. However, the temperature of the wall above the liquid level of the reactor vessel's back cooling system fl 4A does not follow the temperature change of the coolant. 1θl, as in the case of H1q stop,
When the temperature changes for the first time in 2011, a large temperature difference occurs between the part of the reactor vessel below the coolant liquid level and the part below the liquid level. Along with this, there is a large temperature gradient on the wall of the reactor vessel in recent years, causing excessive thermal stress to occur. Nauuka 11hif (Kaita.

そこで原子炉容器内壁の液面近傍に、全周にrlつ−C
カス空間であるガスタムを形成りる内壁ライナを設【ブ
ーC1高ン品な冷却材ど原子炉容器内壁どの直接接触を
防止して、液面近傍の冷却材の調度変化が直接「;ミ子
炉容器に伝わるのを防止づることか提案されている。
Therefore, near the liquid level on the inner wall of the reactor vessel, there is a -C around the entire circumference.
The inner wall liner that forms the gas tank, which is the waste space, is installed to prevent direct contact between high-quality coolant and the inner wall of the reactor vessel. It has been proposed to prevent this from being transmitted to the furnace vessel.

しかし、この方式ひは土部カス空間の1止子炉容器内壁
C′凝縮した冷ノJI祠や、何らかの原因C゛冷却材が
1皇子炉容器と内壁ライナとの間のカスダム内に流入し
C涌った場合には、伝熱を妨げる効果が減少しCしよう
。イのため従来は、このカスダム内に溜った冷2.11
材(!電磁ポンプにより汲出ずことが提案されCいた。
However, in this method, the cold JI shrine condensed on the inner wall C' of the 1st stop reactor vessel in the Dobe scum space, or the coolant flowing into the cassdam between the 1st Oji reactor vessel and the inner wall liner due to some reason. If the temperature increases, the effect of hindering heat transfer will decrease. Conventionally, the cold 2.11 that accumulated in this cassdam
It was proposed that the material be pumped out using an electromagnetic pump.

しかしながら、この原子炉容器内は’7+; 4.15
00℃以上の冷却拐C゛覆われてJ5す、しかb原子炉
のか命が数十年と長り、′この間常に確実に作動づるN
磁ポンプを製りることは困難Cあ つ )こ 。
However, inside this reactor vessel '7+; 4.15
The lifespan of the J5 nuclear reactor is long, lasting several decades, and the reactor will always operate reliably during this period.
It is difficult to manufacture a magnetic pump.

第1図は11〔来の気泡ポンプを示したもので、第1図
により従来例を説明する。リーなわら、気泡ポンプは液
面下にカスを吹き込むガス注入管1と、気泡と、液体と
の二相流を上質させる汲み出し筑2にり構成され−Cい
る。またポンプとしての汲み出し性能を向上さけるため
にできるだり多量でかつ小さな気泡を発生さ口る様に、
ガス噴出口3を多穴ノズルにしたり、多孔質焼結金属を
使用している例が知られている。さらに汲み出し管2’
F部にできるだけ多くの気泡を導びくために、スカート
4を設(すた例もある。またなるべく多量の液体を汲み
出づために汲み出し管2の内径を数Cl1l〕〕日ら故
10 cmと大きく、従つ−C,汲み出し管2内の気泡
す大小様々な大きさのものか混在している。また液面5
1一部から出1]9まC′の汲み上げ揚程は、汲み出し
管2内二相ににるヘッドと液面5下の水圧ヘットどのバ
ランスにより決まり、従来型の気泡ポンプC゛は、汲み
上げ揚程の最高限度は水深の2〜3 ff4程度Cあっ
た。
FIG. 1 shows a conventional bubble pump, and the conventional example will be explained with reference to FIG. The bubble pump is composed of a gas injection tube 1 that blows waste under the liquid surface, and a pumping tube 2 that improves the two-phase flow of bubbles and liquid. In addition, in order to improve the pumping performance of the pump, it is possible to generate a large amount of small air bubbles.
Examples are known in which the gas outlet 3 is a multi-hole nozzle or a porous sintered metal is used. Furthermore, pumping pipe 2'
In order to guide as many air bubbles as possible to the F part, a skirt 4 is installed (in some cases, it is installed. Also, in order to pump out as much liquid as possible, the inner diameter of the pumping pipe 2 is set to several Cl1l), so it is 10 cm. There are bubbles of various sizes in the pumping pipe 2, or a mixture of bubbles in the pumping pipe 2.
The pumping head of C' is determined by the balance between the two-phase head in the pumping pipe 2 and the water pressure head below the liquid level 5.The conventional bubble pump C' has a pumping head of The maximum limit was about 2 to 3 ff4C of water depth.

[発明の目的] 本発明はこれらの点に鑑みCなされたらのであり、ガス
タム内に溜った冷H1祠の水深が浅い場合でも、また深
い場合でし確実に大部分の冷ujHAを汲み出し−C1
冷f、II材の液面近傍の原子炉容器内面と冷Nj44
とをガス空間により確実に隔餡することができ、冷IJ
J材から原子炉容器への伝熱量を低減させて原子炉容器
の熱応力を減少さゼ、原子炉容器の健全性を確保し、更
に溝道が簡単であり長期に亘る動作が01能であり、信
頼性の高い高速増殖炉の熱遮蔽装置を提供することを目
的とづる。
[Object of the Invention] The present invention has been made in view of these points, and it is possible to reliably pump out most of the cold H1 water accumulated in Gastam, whether the water depth is shallow or deep.
The inner surface of the reactor vessel near the liquid level of cold f, II material and cold Nj44
and can be reliably separated by the gas space, and cold IJ
It reduces the amount of heat transferred from the J material to the reactor vessel, reduces the thermal stress of the reactor vessel, ensures the integrity of the reactor vessel, and also has easy grooves and long-term operation. The purpose is to provide a highly reliable heat shielding device for fast breeder reactors.

「発明の概要」 ずなわら本発明に係る汲み出し気泡ポンプは、゛液面上
でカスを吹き出すノズルが汲み出し管内に挿入され、汲
み出し管に液体が流入する部分にAリフイス抵抗を設り
、Aリフイス前後の差圧が大きくなつくも流入する欣体
足が抑制できる様な構造を右しCいる。そして吹き込む
カス量を適当に−lントロールすることにより、汲み出
し管内のカス量と液体司の構成比(小イド率)を自由に
変え、その構成比の中に占める液体割合を小さく覆るこ
とにより、汲み出し管内の全圧(ヘット)を下げ、外側
から加わる水1+Jよるヘットか小さく ’cKつても
、汲み出し管内のカスと1体の混合物がそのヘッド圧に
より上臂し、小さな水深でも液体の汲み上げを可能とし
た気泡ポンプである。この気泡ポンプを原子炉容器の内
壁面の内方全周に亘って内壁ライナを設けで、内部の冷
却材の自由KM 1lii−1−/Jlらその自由液面
下の部分と前記内壁面どの間にガス空間となるカスダム
を形成し、このカスダム内に溜った冷却材の汲み出し用
に設置ツーC形成しカスダム内に冷却材が滞溜Jるのを
防止し、原子炉容器を冷2.11材から隔離づ−ること
かできる。
``Summary of the Invention'' The pumping bubble pump according to the present invention has the following features: ``A nozzle that blows out waste on the liquid surface is inserted into the pumping pipe, and an A-refice resistance is provided at the part where the liquid flows into the pumping pipe. The structure is such that even if the pressure difference between the front and back of the refit is large, the inflow can be suppressed. By appropriately controlling the amount of waste blown in, the composition ratio (small id ratio) between the amount of waste and liquid in the pumping pipe can be freely changed, and the proportion of liquid in that composition ratio can be kept small. The total pressure (Het) inside the pumping pipe is lowered, and even if the head is small due to the water 1+J applied from the outside, the mixture of scum and one substance in the pumping pipe is pushed upward by the head pressure, making it possible to pump liquid even at small water depths. It is a bubble pump. This bubble pump is provided with an inner wall liner over the entire inner circumference of the inner wall surface of the reactor vessel, and between the free liquid level of the internal coolant KM 1lii-1-/Jl and the part below the free liquid level and the inner wall surface. A cassdam is formed as a gas space, and an installation tool C is formed to pump out the coolant accumulated in this cassdam to prevent the coolant from accumulating in the cassdam. It is possible to isolate it from

[発明の実施例] 本発明はあらゆる液体を汲み上げる気泡ポンプに適用さ
れるものである。また冷却材が自由液面をもって充填さ
れている如何なる原子炉容器にも適用されるものひあり
、特に冷却材温度が500°C以上で゛運転されること
の多いルーゾ型Aゝ)タンク型の高速増殖炉の原子炉容
器に適しCいる。
[Embodiments of the Invention] The present invention is applicable to a bubble pump that pumps up any liquid. It can also be applied to any reactor vessel in which coolant is filled with a free liquid level, especially the Rouso type A) tank type, which is often operated at a coolant temperature of 500°C or higher. Suitable for reactor vessels of fast breeder reactors.

以下、第2図A3J:び第3図を参照lノながら本弁明
に係る気泡ポンプの一実施例について説明する。
Hereinafter, an embodiment of the bubble pump according to the present invention will be described with reference to FIGS. 2A3J and 3.

図においCカス注入管1のカス噴出1」33か汲み出し
管2内に挿入され、汲み出し管2F端にはAリフイス根
7が設【ノられている。
In the figure, the waste spout 1'' 33 of the C waste injection pipe 1 is inserted into the pumping pipe 2, and an A refitting root 7 is provided at the end of the pumping pipe 2F.

また浅い水深でも高い揚程を得られる様にJるために、
汲み出し管2の内径をI Cm以下にし、内部の気泡か
図に示りようなピノ、i〜ン型状になるJ、うにし、前
記Aリノイス板7には、単数又は複数のAリフイス穴と
3が形成されている。なiJ3 、第3図は第2図のA
−Δ線矢視方向IJ/i面を示づ拡大図である。
In addition, in order to obtain a high lift even at shallow water depths,
The inner diameter of the pumping pipe 2 is set to be less than I cm, and the internal air bubbles are formed into a pinot shape as shown in the figure. and 3 are formed. iJ3, Figure 3 is A in Figure 2.
It is an enlarged view showing the IJ/i plane in the -Δ line arrow direction.

次に、本実施例による液体を汲み出り一作用を説明する
。カス注入管1からカスを注入すると、汲み上げ管2内
の気泡6や液体10が上昇し、jl−冒二19から放出
される。液体10が放出されると汲み」ニげ管2内の圧
力がその分たり低下し、下端のオリフィス穴8から液体
が侵入し、汲み上げ管2内の液面5−が−L Wlりる
。この管内液面5′がカス噴出口3より上fr”lると
、注入ガスによりピストン状の液イホが汲み上げ宣2内
に形成され、この液体が上背・放出され、この現象がく
り返され、液体を汲み出づ。このオリフィス穴8の穴径
ど数を適当に調整することにより流入液体mを調節でき
、ガス流用を人ぎくJることにより汲み上げ管2内の圧
力ヘッドを小さくでき、水深の10倍以上の揚程を得る
こともiiJ能となる。
Next, an operation of pumping out liquid according to this embodiment will be explained. When waste is injected from the waste injection pipe 1, the bubbles 6 and liquid 10 in the pumping pipe 2 rise and are discharged from the waste pipe 19. When the liquid 10 is discharged, the pressure inside the pumping tube 2 decreases accordingly, the liquid enters from the orifice hole 8 at the lower end, and the liquid level 5- inside the pumping tube 2 rises by -LWl. When the liquid level 5' in the tube is above the waste spout 3, a piston-shaped liquid is pumped up by the injected gas and formed in the tube 2, and this liquid is ejected from the upper back, and this phenomenon is repeated. By appropriately adjusting the diameter and number of the orifice holes 8, the inflowing liquid m can be adjusted, and the pressure head inside the pumping pipe 2 can be reduced by controlling the gas flow. , it is also possible to obtain a head that is 10 times greater than the water depth.

次に上記本発明に係る気泡ポンプを原子炉容器、特にタ
ンク型高速増殖炉の刀スダム方式熱遮蔽装置に適用しI
c場合の例を説明する。
Next, the bubble pump according to the present invention is applied to a nuclear reactor vessel, particularly a tank-type fast breeder reactor.
An example of case c will be explained.

まず、一般的なタンク型の高速増殖炉を第4図により、
説明する。
First, a general tank-type fast breeder reactor is shown in Figure 4.
explain.

上部間1」12を有り−る炉容器11内には、冷却材で
ある液体金属ナトリウム13が充填され一’CJ5す、
多数本の燃利果合体1/I、14の整列配置l?7きれ
た炉心15が前記炉容器11の中央部に位1yるように
9トリウム13内に浸漬配置され(いる。
A furnace vessel 11 having an upper space 1'12 is filled with liquid metal sodium 13 as a coolant.
Multiple combustion products combined 1/I, 14 aligned arrangement l? The reactor core 15, which has been completely blown out, is immersed in the thorium 13 so as to be located in the center of the reactor vessel 11.

前記炉容器11内は炉心15の外周に接続された仕切壁
16により上下方向に仕切られ(’J3す、この仕切壁
16に設りられたポンプ17の駆動により、ナトリウム
13が炉心15の下りがら上方へ流れるように炉容器1
1内を循環覆るようになっている。
The inside of the reactor vessel 11 is vertically partitioned by a partition wall 16 connected to the outer periphery of the reactor core 15. By driving a pump 17 installed on this partition wall 16, sodium 13 is pumped down the reactor core 15. Furnace vessel 1
It circulates around the inside of 1.

前記炉容器11の上部間口12はルーフスラブ18によ
り閉塞されており、このルーフスラブ18の中心部には
前記炉心15の直上位置に臨む炉下部機構19が垂設さ
れている。また、このルーフスラブ18には二次す1ヘ
リウム供給機構20が取(;t +jられU J3す、
この二次す1〜ヘリウム供給構20の子方の前記仕切壁
16には中間熱交換器21が取イ]lノられCいる。
The upper opening 12 of the reactor vessel 11 is closed by a roof slab 18, and a lower reactor mechanism 19 facing directly above the reactor core 15 is vertically installed in the center of the roof slab 18. In addition, a secondary helium supply mechanism 20 is installed in this roof slab 18 (;t +j U J3,
An intermediate heat exchanger 21 is installed in the partition wall 16 on the side of the secondary chamber 1 to the helium supply structure 20.

前述した構成にJ、れば、炉心15C約500〜600
℃に加熱されたす1ヘリウム13は、仕切壁16の上側
の高温す1〜リウムブールから中間熱交換器21に尋人
されで、ここで二次ナトリウム供給II 4f620か
らの一〕−次す!〜ツリウム熱交換して冷却され約30
0〜100°Cとなる。その後このす1−リウム13は
仕切壁16の下側の低調ナトリウム24へ流下し、ポン
プ17で加圧された上で炉心15に再循環される。
If J is in the above-mentioned configuration, the core 15C is about 500-600
The helium 13 heated to 0.degree. ~ Cooled by thulium heat exchange and approx.
The temperature ranges from 0 to 100°C. Thereafter, this sodium 1-lium 13 flows down to the low-strength sodium 24 below the partition wall 16, is pressurized by the pump 17, and then recirculated to the reactor core 15.

このような炉容器11の熱遮蔽装置としてカスダム壁2
3が設けられているが、ナトリウムの凝縮等によりガス
タム内にす1−リウムが溜る。そこぐ第5図に承り様に
+fl記気泡ポンプを設置すると、仕切壁16とガスダ
ム壁23により形成されるガスタム内に溜ったすI・リ
ウムが少なく、水深が浅い場合で6確実に汲み出すこと
が可能となる。
A cassdam wall 2 is used as a heat shielding device for such a furnace vessel 11.
3 is provided, but 1-lium accumulates in the gas tum due to condensation of sodium. If a bubble pump is installed as shown in Figure 5, the amount of soot and lium accumulated in the gas dam formed by the partition wall 16 and the gas dam wall 23 will be small and the water will be pumped out reliably even when the water depth is shallow. becomes possible.

また木Jfi明にa3いCは何らかの原因′C汲み出し
管2内に多量のナトリウムが侵入した場合は、通常の注
入ガス流用では汲み出し管2内の圧力が水深によるヘッ
ドよりも高くなるので、ガスが上端のオリフィス穴8よ
りもれるが、このAリフイス穴8が小さいために多量の
ガスを注入することによりガス圧を上げ、汲み上げ管2
内のノー1−リウムを一気に抽出することが可能となる
In addition, if a large amount of sodium enters the pumping pipe 2, the pressure inside the pumping pipe 2 will be higher than the head due to the water depth when using normal injection gas, so the gas leaks from the orifice hole 8 at the upper end, but since this A refice hole 8 is small, the gas pressure is increased by injecting a large amount of gas, and the pumping pipe 2
It becomes possible to extract the Norium inside at once.

これによりカスタム内は常にナトリウムが腎ることなく
熱遮蔽作用が完全に果され原子炉容器の安全が保たれる
As a result, there is no sodium inside the custom, and the heat shielding effect is completely achieved, maintaining the safety of the reactor vessel.

[発明の効果] 本発明によればガス注入管の上部から吹き込むガス供を
調節することにJ:り汲み出し管を流れる二相流の水/
ガス比(ボイド率)を大きく変えることが可能となり、
水深の10倍以上の揚程を得ることができる。また、何
らかの原因で汲み出し管内の水量が上昇しヘッドが水深
J:りも大きくなった場合、従来はガスを多聞に流し−
Cも下端から洩れるたりてあったのに対して本発明では
Aリフイスを設cノ(いるため洩れるガス昂が制約され
、これによつC万スメj−にJ、り汲み出し管内の液1
イ\を押し−10汲み出りことが容易[こなる。
[Effects of the Invention] According to the present invention, it is possible to adjust the gas supplied from the upper part of the gas injection pipe.
It becomes possible to greatly change the gas ratio (void ratio),
It is possible to obtain a lifting head that is more than 10 times the water depth. In addition, if the amount of water in the pumping pipe rises for some reason and the head becomes deeper than the water, conventionally the gas is slowly drained.
In contrast, in the present invention, an A refill is provided, which restricts the amount of gas leaking, and this allows the liquid 1 in the pumping pipe to leak from the lower end.
It is easy to pump out -10 by pressing \.

さら(ご水ブ’t ItlJに係る気泡ポンプを高速増
JEi炉の熱臨iik装置にjn用した揚台には刀スダ
ム内にdvlつたす1〜リウムが少なくても確実1こ汲
み出り−ことがCさ、冷却側の液面近傍のj京了炉容器
内面と高温な冷Nl何のす1ヘリウムをガス空間により
確実に隔離1?I−ることがCさる1、−ぞの1CIy
)冷ム1j祠から原子炉容器への伝熱量を低減さけ−C
原子炉容器の熱魔りをi賊少させ涼rス1ビFず2::
のR全性を11fイ>B シ、史に構造が簡単rbかし
、長期間に亘る03作か可能であり、信頼111か高い
イ1どの効果がある。
In addition, on the lifting platform where the bubble pump related to the water pump was used in the heat critical equipment of the high-speed increase JEi reactor, even if there is less than 1 to 1 dvl in the sword dam, it is sure to pump out 1. The fact is that the inner surface of the reactor vessel near the liquid level on the cooling side and the high-temperature cold Nl and helium can be reliably isolated by the gas space. 1CIy
) Reduce the amount of heat transferred from the cold 1j shrine to the reactor vessel-C
Reduce the heat of the reactor vessel by cooling the reactor vessel.
The totality of R is 11 f A > B B, but the structure is simple, it is possible to work for a long period of time, and the reliability is 111 or high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(よi、11.来の気泡ポンプを小力111伍而
図、第2図IJ、本発明に係る気泡ポンプの一実/Il
!r例を承り縦断面図、第3図は第2図のA−A線矢視
方向を拡大しC示ず40″X断面図、第4図は一般の^
速増殖炉を承り(■敗図、第!:5図は本発明に係る気
泡ポンプを適用した高速ii!19y1炉のガスダム(
黄道の要部のみを示す縦断面図である。 1・・・・・・・・・・・・ガス注入管2・・・・・・
・・・・・・汲み出し管3・・・・・・・・・・・・ガ
ス噴出口4・・・・・・・・・・・・スカー1−5)・
・・・・・・・・・・・液面 5′・・・・・・・・・管内液面 6・・・・・・・・・・・・気泡 7・・・・・・・・・・・・Aリフイス板8・・・・・
・・・・・・Aリフイス穴9・・・・・・・・・・・・
fJj l]10・・・・・・・・・・・・液体 代理人弁理士 須 山 仏 − 第1図 ↓ 第2図 ↓ 第4図 第5図
Figure 1 (Yoi, 11. A small force 111 of the previous bubble pump, Figure 2 IJ, Part of the bubble pump according to the present invention/Il
! 3 is an enlarged 40''X sectional view of the A-A line arrow direction of FIG. 2, and FIG. 4 is a general ^
A fast breeder reactor (Fig.
FIG. 2 is a longitudinal cross-sectional view showing only the main part of the ecliptic. 1・・・・・・・・・・・・Gas injection pipe 2・・・・・・
...... Pumping pipe 3 ...... Gas outlet 4 ...... Scar 1-5)
......Liquid level 5'...Liquid level in the tube 6...Bubble 7... ...A re-chair board 8...
・・・・・・A rewiring hole 9・・・・・・・・・・・・
fJj l]10・・・・・・・・・・・・Liquid agent patent attorney Suyama Buddha - Figure 1↓ Figure 2↓ Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 〈])液面下にガスを吹き込み気泡を発生ざUるカス注
入管と、前記気泡の十5:を力を利用しイの内側を液イ
ホど前記注入カスとの)昆合状態でに背させる汲み出し
管j;り構成される気泡ポンプにa5いて、前h1(汲
みil (、管の下端/〕曹ろ内部まで前記ガス注入管
の一端が挿入され、かつ前r=t27Dみ出し管の下端
の液体が流入しCくる部分に単数また1′L複数個の穴
をもつ/CΔリノイスを設置すたことを特徴どηる気泡
ポンプ。
〈〈〈〈〈〈〈〈]〈〈〈〈〈〈〈〈〈〈〈〈〈] One end of the gas injection tube is inserted into the bubble pump, which is made up of a pumping pipe j; A bubble pump characterized in that a /CΔlinois having a single hole or a plurality of 1'L holes is installed at the lower end where liquid flows in.
JP18172383A 1983-09-29 1983-09-29 Foam pump Pending JPS6073098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18172383A JPS6073098A (en) 1983-09-29 1983-09-29 Foam pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18172383A JPS6073098A (en) 1983-09-29 1983-09-29 Foam pump

Publications (1)

Publication Number Publication Date
JPS6073098A true JPS6073098A (en) 1985-04-25

Family

ID=16105747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18172383A Pending JPS6073098A (en) 1983-09-29 1983-09-29 Foam pump

Country Status (1)

Country Link
JP (1) JPS6073098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832771A1 (en) * 2001-11-28 2003-05-30 Eurexim Securiflame Creation of a slow flow of rising fluid to fuel colored flames, uses a narrow vertical tube to deliver fluid and injects bubbles into base of tube to carry fluid up, with rate of injection of bubbles controlling rate of delivery of fluid
FR2833051A1 (en) * 2001-11-28 2003-06-06 Eurexim Securiflame Creation of a slow flow of rising fluid to fuel colored flames, uses a narrow vertical tube to deliver fluid and injects bubbles into base of tube to carry fluid up, with rate of injection of bubbles controlling rate of delivery of fluid
CN105730843A (en) * 2016-03-14 2016-07-06 中国核电工程有限公司 Sediment discharge device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461304A (en) * 1977-10-26 1979-05-17 Toshiba Corp Air bubble pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461304A (en) * 1977-10-26 1979-05-17 Toshiba Corp Air bubble pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832771A1 (en) * 2001-11-28 2003-05-30 Eurexim Securiflame Creation of a slow flow of rising fluid to fuel colored flames, uses a narrow vertical tube to deliver fluid and injects bubbles into base of tube to carry fluid up, with rate of injection of bubbles controlling rate of delivery of fluid
WO2003046387A1 (en) * 2001-11-28 2003-06-05 Eurexim-Securiflame Method and device for producing a flame, in particular for a coloured flame lamp
FR2833051A1 (en) * 2001-11-28 2003-06-06 Eurexim Securiflame Creation of a slow flow of rising fluid to fuel colored flames, uses a narrow vertical tube to deliver fluid and injects bubbles into base of tube to carry fluid up, with rate of injection of bubbles controlling rate of delivery of fluid
CN105730843A (en) * 2016-03-14 2016-07-06 中国核电工程有限公司 Sediment discharge device
CN105730843B (en) * 2016-03-14 2019-07-16 中国核电工程有限公司 A kind of slag-draining device

Similar Documents

Publication Publication Date Title
CN109147969B (en) Nuclear reactor molten material core retention passive cooling system
KR100966854B1 (en) Fully passive decay heat removal system for sodium cooled fast reactor with a partially-immersed decay heat exchanger
US5102617A (en) Passive cooling means for water cooled nuclear reactor plants
JP2846897B2 (en) Pressurized water intrinsic safety reactor
EP0234566B1 (en) Emergency nuclearreactor core cooling structure
JPH0727055B2 (en) Passive heat removal system for reactor vessels
EP0950248A1 (en) Nuclear reactor with improved natural coolant circulation
JPH06242279A (en) Reactor containment equipment
JPH085772A (en) Reactor containment
JPS6073098A (en) Foam pump
CN109448873A (en) A kind of modified safety injection tank
CN204178729U (en) A kind of long-term passive containment thermal conduction system
JPH06265674A (en) Reactor container cooling system and parts used for the cooling system
GB1147290A (en) Fast burst nuclear reactor
JP2001228280A (en) Reactor
US3994777A (en) Nuclear reactor overflow line
JPS5986847A (en) Hot-water boiler
JPH05172979A (en) Pressure suppression device for reactor container
CN110504039A (en) A kind of passive residual heat removal hot trap device for inhibiting marine environment to influence
KR20140000411A (en) Method of using phase change material coolants, and nuclear corium cooling system using the same
JPH0572375A (en) Boiling water and natural circulation reactor
JPH02181696A (en) Natural heat radiation type storage container
JPH05323084A (en) Reactor containment
Mishima et al. Effect of pressure on critical heat flux for water in an internally heated annulus
JPH07128482A (en) Cooling equipment for reactor containment