JPH0359348A - Freezer device - Google Patents

Freezer device

Info

Publication number
JPH0359348A
JPH0359348A JP19146289A JP19146289A JPH0359348A JP H0359348 A JPH0359348 A JP H0359348A JP 19146289 A JP19146289 A JP 19146289A JP 19146289 A JP19146289 A JP 19146289A JP H0359348 A JPH0359348 A JP H0359348A
Authority
JP
Japan
Prior art keywords
expansion valve
refrigeration
compressor
frequency
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19146289A
Other languages
Japanese (ja)
Other versions
JP2922925B2 (en
Inventor
Tetsuharu Yamashita
山下 徹治
Kyoshiro Murakami
村上 恭志郎
Tomio Yoshikawa
富夫 吉川
Shizuo Zushi
頭士 鎮夫
Hiroshi Yasuda
弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1191462A priority Critical patent/JP2922925B2/en
Publication of JPH0359348A publication Critical patent/JPH0359348A/en
Application granted granted Critical
Publication of JP2922925B2 publication Critical patent/JP2922925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent a liquid operation and an over-heated operation from being carried out even in case of a variation of a condition of an operating environment by a method wherein an operation of a compressor is controlled with a frequency corresponding to a load, a characteristic of a degree of opening of an expansion valve is changed under an operating condition out of a target discharged gas super-heating amount so as to attain a target discharged gas super-heating amount. CONSTITUTION:An operating frequency of a compressor is controlled by a PI (a proportional integrating) control with an inlet water temperature and an outlet water temperature of an evaporator or PID (a proportional, integrating and differential) control thereof. As a freezing cycle is operated, a control device 5 may detect a state of freezing cycle in response to information got from a discharged gas temperature sensor 7 and a condensation temperature sensor 8. That is, a discharged gas super-heating amount is calculated in reference to a difference between a discharged refrigerant gas temperature and a condensing temperature. If the calculated amount does not coincide with the set value, the control device 5 may send an output signal to an expansion valve 3 and controls a degree of opening of the expansion valve 8 in such a way as the discharged gas super-heating amount in the freezing cycle becomes a set value. In this way, an operation of the freezing cycle is made stable and a series of controls are always carried out during the freezing cycle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は駆動周波数により運転速度が可変の電動圧縮機
を含む冷凍サイクルを備える冷凍装置に関し、特に、冷
凍装置における容量制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system equipped with a refrigeration cycle including an electric compressor whose operating speed is variable depending on the driving frequency, and particularly relates to a capacity control method in a refrigeration system.

〔従来の技術〕[Conventional technology]

近年、空気調和装置等には、インバータにより運転速度
を可変の電動圧縮機と電動式膨張弁とを備えた冷凍装置
が用いられる傾向にある。このt!傾装置は、圧縮機の
運転速度および/又は膨張弁の弁開度を制御することに
より冷凍サイクルを流れる冷媒量を変更するもので、従
来の冷凍装置に比して冷凍能力をより細かく制−可能で
ある。
In recent years, there has been a trend in air conditioners and the like to use refrigeration systems that include an electric compressor whose operating speed can be varied by an inverter and an electric expansion valve. This t! The tilting device changes the amount of refrigerant flowing through the refrigeration cycle by controlling the operating speed of the compressor and/or the opening degree of the expansion valve, and allows for more fine control of the refrigeration capacity compared to conventional refrigeration equipment. It is possible.

この種の冷凍装置は、・列えば特開昭fi2−5286
7号公報に示されている。
This type of refrigeration equipment is listed in Japanese Patent Application Laid-Open No. 2-5286.
This is shown in Publication No. 7.

実開昭59−25f359号は、作動に際して電動膨張
弁を一旦所定り弁開度に設定し、その後に圧縮機の運転
周波数に応じて膨張弁の弁開度を調整する冷凍装置を提
案している。@開閉61−285849号には、最小運
転周波数を除く圧縮機の運転範囲では運転周波数を変え
、また最小運転周波数では電動膨張弁の弁開度を交互し
て、冷凍能力を変える冷凍装置が示されている。特開昭
62−52867号に示された装置は、圧asの運転周
波数に応じて可変容量膨張弁の弁−度を変更して、圧m
機の吸込圧力を1fflj IglするもDである。
Utility Model Publication No. 59-25F359 proposes a refrigeration system in which an electric expansion valve is first set to a predetermined valve opening during operation, and then the opening of the expansion valve is adjusted according to the operating frequency of the compressor. There is. @Open/Close No. 61-285849 describes a refrigeration system that changes the operating frequency in the operating range of the compressor excluding the minimum operating frequency, and alternates the valve opening of the electric expansion valve at the minimum operating frequency to change the refrigerating capacity. has been done. The device disclosed in Japanese Patent Application Laid-Open No. 62-52867 changes the valve degree of a variable capacity expansion valve according to the operating frequency of the pressure as, thereby increasing the pressure m.
The suction pressure of the machine is 1fflj Igl, which is also D.

上記の装装置は、それぞれ冷凍サイクルの制御性り向上
や冷凍能力り変(可能巾の拡大に寄与するものではある
が、例えば空調装置などに用いてより快適な空気調和を
行うためには、冷凍装置の運転範囲をより拡大して冷凍
能力の変匿可能巾を大きくし、かつ安定した連続運転を
可能にすることが逼ましい。
Each of the above-mentioned equipment contributes to improving the controllability of the refrigeration cycle and changing the refrigeration capacity (expanding the range of possibilities), but in order to achieve more comfortable air conditioning by using it in an air conditioner, for example, It is desirable to further expand the operating range of the refrigeration system to increase the variable range of refrigeration capacity and to enable stable continuous operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術の電#d脹弁制御にかいては、膨張弁開度
を定位置に設定後、圧a機の運転、周波数に応じて開度
な増減するため、ノ彫張弁開度と上記運転周波数とがl
対lで対応し運転されることになる。一方冷凍サイクル
内を流れる冷媒流量Qは電動膨張弁の流路面積を31電
動膨脹弁前後差圧なΔpとした時 Qaav’Δpの関
係となるため、冷凍サイクル内の高圧側、低圧側の条件
が一定であればQaaとなり、前記運転周波数(キ冷媒
流盪)と前記1#張弁開度は1対1で制御可能である。
In the conventional electric expansion valve control described above, after the expansion valve opening is set at a fixed position, the opening increases or decreases depending on the operation and frequency of the pressure machine. The above operating frequency is l
It will be operated in response to the situation. On the other hand, the refrigerant flow rate Q flowing in the refrigeration cycle has the relationship Qaav'Δp, where the flow path area of the electric expansion valve is Δp, which is the differential pressure across the electric expansion valve. Therefore, the conditions for the high pressure side and low pressure side in the refrigeration cycle are as follows. If is constant, Qaa is obtained, and the operating frequency (coolant flow) and the 1# valve opening can be controlled on a one-to-one basis.

しかし、運転環境条件が変化し、前記電動膨・逼弁@後
差圧が大きくなった場合には、もとの−度では冷媒流量
が過大となり、冷凍サイクルはリキッド運転となる。ま
た差圧が小さくなった場合には冷媒流量が過小となって
冷凍サイクルが過熱運転となり、いずれも圧縮機O寿命
にとって有害となる。
However, when the operating environment conditions change and the differential pressure after the electric expansion/stop valve becomes large, the refrigerant flow rate becomes excessive at the original -degree, and the refrigeration cycle becomes liquid operation. Further, when the differential pressure becomes small, the refrigerant flow rate becomes too small and the refrigeration cycle becomes overheated, both of which are harmful to the life of the compressor.

本発明は、このような運転環境条件の変化に対してもリ
キッド運転、過熱運転とならない制御が可能で、負荷に
応じた冷凍能力を発揮する冷凍装置を提供することを目
的とする。
An object of the present invention is to provide a refrigeration system that can perform control to prevent liquid operation or overheating operation even in response to changes in operating environmental conditions, and exhibits a refrigerating capacity according to the load.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、駆動周波数により運転速度が
可変0![動圧縮機を含む冷凍サイクルにより構成され
た冷凍装置において、 前記冷凍サイクルを制御するためD制御装置であって、
前記圧縮機の運転周波数範囲にわたってあらかじめ設定
されているある範囲の目標の吐出ガススーパーヒート量
に基づき、負荷に応じり[波数で前記圧**を運転制御
し、前記目標の吐出ガススーパーヒート量を外れた運転
状態となったときには、膨張弁開R特性を変えて目4の
吐出ガススーパーヒート量となるように制御する制御装
置を設けた。
In order to achieve the above purpose, the operating speed is variable depending on the drive frequency! [In a refrigeration system configured with a refrigeration cycle including a dynamic compressor, a D control device for controlling the refrigeration cycle,
Based on the target discharge gas superheat amount in a certain range preset over the operating frequency range of the compressor, the pressure** is operationally controlled by the wave number according to the load, and the target discharge gas superheat amount is A control device is provided which changes the expansion valve opening R characteristic and controls the discharged gas superheat amount as shown in item 4 when the operating state is out of range.

〔作用〕[Effect]

圧縮機・υ運転周波数と電動(成子式)膨張弁開度は、
あらかじめ設定された1対10n係をもって動作する。
Compressor/υ operating frequency and electric (Seiko type) expansion valve opening are as follows:
It operates with a preset 1:10n relationship.

その結果得られた吐出ガススーパーヒート量ハ、常時錬
成されて釦り、もし適正範囲を外れた運転状態となった
場合には適正範囲へ戻すように膨張弁開度をあらかじめ
設定された別の膨脹弁開度特性へ移行させて運転される
。こDため常に適正な吐出ガススーパーヒート量が得ら
れ安定し、を運転が継aされる。
The amount of superheated discharged gas obtained as a result is constantly refined and pressed, and if the operating state goes out of the proper range, the expansion valve opening degree is set in advance to return it to the proper range. It is operated by shifting to the expansion valve opening characteristic. Therefore, an appropriate amount of discharged gas superheat is always obtained and stable, and the operation can be continued.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第5図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図を参照すると、不発明の実施例による冷凍装置は
電動式圧縮機1、凝縮器2、膨張弁3、蒸S!i器4を
含んでいる。これらの儀器は管路■(を介して接続され
、冷媒を循環させるだめの冷凍サイクルを構成している
。この冷凍装置はさらに、その運転を制御するために設
けられた割1ill装置5を有する。また、蒸発a4D
冷水冷水側に水温センf−6が圧!Illの吐出側に吐
出ガス温度センナ7が、さらに、l71m器2の冷媒出
口側に凝縮温度センf−8がそれぞれ設けられ、制御装
置5に接続されている。
Referring to FIG. 1, the refrigeration system according to the uninvented embodiment includes an electric compressor 1, a condenser 2, an expansion valve 3, and a steam S! Contains i unit 4. These instruments are connected via a pipe line (2), and constitute a refrigeration cycle in which refrigerant is circulated. .Also, evaporation a4D
Water temperature sensor f-6 has pressure on the cold water side! A discharge gas temperature sensor 7 is provided on the discharge side of the Ill, and a condensation temperature sensor f-8 is provided on the refrigerant outlet side of the I71m device 2, which are connected to the control device 5.

圧縮機lにはインバータ回M(図示なし)が組み込まれ
ていて、駆動電力の周波数を変東することで運転速度を
変え、圧縮機の吐出容量が変わるようになっている。制
御装置5が、圧縮機1の運転を制御するために同圧mt
aに接続されている。
An inverter M (not shown) is incorporated in the compressor 1, and by changing the frequency of the driving power, the operating speed is changed and the discharge capacity of the compressor is changed. The control device 5 uses the same pressure mt to control the operation of the compressor 1.
connected to a.

膨張弁8には運転周波数に応じてあらかじめ設定された
膨張弁開度の指示を制御装置5からの出力信号により与
えられ、これにより#張弁8を駆動する。参照符号10
は凝縮器2の冷却水出入口を11は蒸発器4の冷水(負
荷)出入口を示している。制御装置5を除く上記構成要
素は従来のもので良く、筐た、冷凍作動自体も従来の装
置と同様であり、本文ではこれ以上の詳細な説明を省略
する。
The expansion valve 8 is given an instruction for the opening degree of the expansion valve, which is set in advance according to the operating frequency, by an output signal from the control device 5, and the expansion valve 8 is thereby driven. Reference number 10
11 indicates a cooling water inlet/outlet of the condenser 2, and 11 indicates a chilled water (load) inlet/outlet of the evaporator 4. The above-mentioned components except for the control device 5 may be conventional ones, and the casing and refrigeration operation itself are the same as those of the conventional device, and further detailed explanation will be omitted in the main text.

制御装置15は、データを受信する入力部と、これ等の
入力データに基づいて演算する演算部と、この演算結果
を出力する出力部とを備えている。
The control device 15 includes an input section that receives data, a calculation section that performs calculations based on these input data, and an output section that outputs the calculation results.

入力部には、水温センf−6、吐出ガス温度センサ7シ
よび凝縮温度センサ8からの情磯と、その時の運転周波
数とが取り込まれる。また、演算部は、あらかじめ用意
された圧m機の運転周波数範囲と吐出ガススーパーヒー
トfi7)設定値とを記憶してjPす、入力部からのデ
ータに基づいて冷凍サイクルにおける実際の吐出ガスス
ーパーヒート量を演算して設定値と比較する。その比較
演算結果の信号は、出力部より圧縮機1や膨張弁8へ出
力される。
The input section receives information from the water temperature sensor f-6, the discharge gas temperature sensor 7, and the condensation temperature sensor 8, as well as the operating frequency at that time. In addition, the calculation unit stores the operating frequency range of the pressure machine and the discharge gas superheat fi7) set value prepared in advance, and calculates the actual discharge gas superheat in the refrigeration cycle based on the data from the input unit. Calculate the amount of heat and compare it with the set value. A signal resulting from the comparison calculation is output from the output section to the compressor 1 and the expansion valve 8.

続いて、上記構成の冷凍装置の作動を説明する。冷凍装
置が始動されると、負荷を代表する水温センtoからの
冷水の温度情報が、制御装置5に取り込まれる。制御装
置5はこの情報に基づいて演算し、圧縮−1をその時の
負荷に応じた所要の周波数で運転させる。
Next, the operation of the refrigeration system having the above configuration will be explained. When the refrigeration system is started, temperature information of cold water from a water temperature center representative of the load is taken into the control device 5. The control device 5 performs calculations based on this information and operates the compression-1 at a required frequency according to the load at that time.

この圧縮機運転周波数は、蒸発器の入口水温又は出口水
温検知によるPL(比例、積分)制御、もしくはPID
 (比例、積分、微分)制御により行われる。
This compressor operating frequency is determined by PL (proportional, integral) control based on detection of the evaporator inlet water temperature or outlet water temperature, or by PID control.
(proportional, integral, differential) control.

この結果、冷媒の圧縮、凝縮、#!張、そしC蒸発のサ
イクルが始まる。冷凍サイクルが稼働すると、制御装置
5は、吐出ガス温度セン?7および凝縮温度セ/す8か
ら得られた情報により、冷凍サイクルの状態を検出する
。すなわち、冷媒の吐出ガス温度と凝縮温度の差から吐
出ガススーパーヒート量を演算し、この演算量が設定値
になっているかどうかDfエプクを行う。演itが設定
値に一致していないと、Ifil11卸装置5は膨張弁
8に出力信号を送り、冷凍サイクルの吐出ガススーパー
ヒート量が設定値になるように、#張弁8の弁開度を制
御する。こO様にして、冷凍サイクルD運転が安定し、
こD一連の制御はあるテンプリング間隔をかいて冷凍サ
イクルの運転中つねに行われる。
This results in refrigerant compression, condensation, and #! Then the cycle of C evaporation begins. When the refrigeration cycle operates, the control device 5 controls the discharge gas temperature sensor. The state of the refrigeration cycle is detected based on the information obtained from 7 and the condensing temperature section 8. That is, the amount of discharged gas superheat is calculated from the difference between the discharged gas temperature and the condensation temperature of the refrigerant, and the Df calculation is performed to determine whether this calculated amount is a set value. If the input value does not match the set value, the Ifil 11 wholesaler 5 sends an output signal to the expansion valve 8, and changes the valve opening of the expansion valve 8 so that the discharged gas superheat amount of the refrigeration cycle becomes the set value. control. Thanks to Mr. O, the operation of refrigeration cycle D became stable.
This series of controls is always performed at certain template intervals during operation of the refrigeration cycle.

前記水温センサ6は第1図に釦いて冷水(負荷)入口側
に取り付けられているが、冷水(負荷)出口側に取り付
けてもよい。
Although the water temperature sensor 6 is attached to the cold water (load) inlet side in FIG. 1, it may be attached to the cold water (load) outlet side.

前記制御装置5は前述の制御を継続すると同時に、吐出
ガス温度センナ7及び凝縮温度センサ8により冷凍サイ
クルの状態を検知し、吐出ガス温度と凝縮温度との差、
すなわち吐出ガススーパーヒート量があらかじめ設定さ
れた上限値、下限値に対しどの範囲にあるかテ、ツクを
行う。
While continuing the above-described control, the control device 5 detects the state of the refrigeration cycle using the discharge gas temperature sensor 7 and the condensation temperature sensor 8, and detects the difference between the discharge gas temperature and the condensation temperature.
That is, it is checked in which range the discharged gas superheat amount is within a preset upper limit value and lower limit value.

第2図は、吐出ガススーパーヒート量の1tllJ御を
説明する制御フロー図である。ブロック1Bは運転状態
にかいて吐出ガススーパーヒート量があらかじめ設定さ
れた適正範囲にある場合の制御フローを示し、ブロック
18は、吐出ガススーパーヒート量が設定された下限値
を下廻った場合の制御フローを示す。すなわち、制御フ
ローについて説明すると、運転開始1′:、4後、冷凍
サイクルの立上り安定のための始動制御15を行い、負
荷に応じた運転周波数を算出16する。この時、同時に
、吐出ガススーパーヒート量が設定範囲の下限値以上確
保されているかどうかを判定17する。一般的にはもと
もと適正値になるよう設定しであるため#張弁標準モー
ド18により運転が継続されている。この動作は前述の
ように、あるテンプリング間隔をかいて常に行われ、イ
ンバータ出力周波数検出16〜I#脹弁標準モード18
のループを形成する。
FIG. 2 is a control flow diagram illustrating 1tllJ control of the discharged gas superheat amount. Block 1B shows the control flow when the amount of discharged gas superheat is within a preset appropriate range based on the operating state, and block 18 shows the control flow when the amount of discharged gas superheat falls below the preset lower limit value. Show flow. That is, to explain the control flow, after the start of operation 1':, 4, start control 15 is performed to stabilize the start-up of the refrigeration cycle, and an operating frequency according to the load is calculated 16. At this time, at the same time, it is determined 17 whether the discharged gas superheat amount is secured to be equal to or greater than the lower limit of the set range. In general, the valve is originally set to an appropriate value, so operation is continued in the #valve standard mode 18. As mentioned above, this operation is always performed at a certain template interval, and is performed from inverter output frequency detection 16 to I# expansion valve standard mode 18.
form a loop.

次に運転積項条件が変化し、判定17にかいて吐出ガス
スーパーヒート量が設定範囲の下限値を下廻った場合、
aI脹弁、圧縮機の制御は、ブロック18111O制f
470−に移り、膨張弁絞りモード19へ移行する。膨
張弁絞りモード19に釦いては、標準モード18よりも
膨張弁開度を絞り、冷媒流量を減らして吐出ガススーパ
ーヒート量を増加させるように制御する。これにより、
インバータ出力周波数検出16あるいは20で算出した
運転周波数に対応する膨張弁開度は砿準モード18と絞
りモード19の2′a類を有することになる。
Next, when the operating product term conditions change and the discharged gas superheat amount falls below the lower limit of the set range in judgment 17,
aI expansion valve, compressor control is block 18111O control f
470-, and the mode shifts to expansion valve throttling mode 19. When the expansion valve throttling mode 19 is pressed, the expansion valve opening degree is reduced more than in the standard mode 18, the refrigerant flow rate is reduced, and the amount of discharged gas superheat is increased. This results in
The expansion valve opening degree corresponding to the operating frequency calculated by the inverter output frequency detection 16 or 20 has the round mode 18 and the aperture mode 19 of 2'a.

膨張弁絞りモード19での運転は、吐出ガススーパーヒ
ート量上限値21を越えるまで、絞りモード19〜設定
範囲上限値21のループを形成する。このような副脚を
制御装置5に設定しである。
The operation in the expansion valve throttle mode 19 forms a loop from the throttle mode 19 to the set range upper limit 21 until the discharged gas superheat amount exceeds the upper limit 21. Such secondary legs are set in the control device 5.

dalAは、d 2−〇 +mj dl17 C”−を
グラフ上に表わしたものである。横軸は運転周波数Nを
示し、N min 、 N Maxはそれぞれ最低周波
数、最高周波数を示す。縦軸は膨張弁開度P1吐出ガス
スーパーヒートTdSH、冷却能力Qを示す。
dalA represents d 2-〇 + mj dl17 C''- on a graph. The horizontal axis shows the operating frequency N, and N min and N Max show the minimum frequency and maximum frequency, respectively. The vertical axis shows the expansion Shows valve opening degree P1, discharged gas superheat TdSH, and cooling capacity Q.

PsTは標準モード膨張弁制御線で、第2図のブロック
12で11111呻される範囲であり、Pmは絞りモー
ド膨張弁制御線で、ブロック18で1ItlJllされ
る範囲を示している。、また、冷却能力Qも前記膨張弁
制御モードに対応した能力線QST、Qmを示している
。また、Td!HmaXは吐出ガススーパーヒート量上
限線Tasuminは下限線を示し七いる。
PsT is the standard mode expansion valve control line, which is the range of 11111 in block 12 of FIG. 2, and Pm is the throttle mode expansion valve control line, which is the range of 1ItlJll in block 18. , Further, the cooling capacity Q also shows capacity lines QST and Qm corresponding to the expansion valve control mode. Also, Td! HmaX is the upper limit line of the discharged gas superheat amount and Tasumin is the lower limit line.

次に運転状態の変化例を説明する。圧縮機1が運転周波
aN1で運転された時、膨張弁開度は標準モード膨張弁
制御線p8Tとの交点28における膨張弁開度P1、吐
出ガススーパーヒート量は点24で示す8 H8T 、
冷却能力は標準モードにおける能力線QTSとυ交点2
5に相当するQtである。この運転状態では吐出ガスス
ーパーヒート渣は上下限値の間にあり正常である。次に
環境条件が変化し、冷凍サイクルの運転圧力の高低圧の
差圧が大きくなると前述のように膨張弁開度がPlと変
化せず同一であっても、膨張弁を通過する冷媒流量は差
圧に比例して大きくなり、吐出ガススーハーヒート蓋は
小さくなる。吐出ガススーパーヒート量が小さくなり過
ぎて下限線TdsHmknより小さい点26で示すSH
mo値となると、制御装置5にあらかじめ設定された吐
出ガススーパーヒート量の最低線Td SHmi n以
下であるため、制御装f5がこれを検知して膨張弁開度
を大きくするように膨張弁8に対し信号を出力し、膨張
弁を絞りモード制御に移行させる。これにより制御線P
mとの交点28に相当する開度Pgとなる。
Next, an example of a change in the operating state will be explained. When the compressor 1 is operated at the operating frequency aN1, the expansion valve opening is P1 at the intersection 28 with the standard mode expansion valve control line p8T, and the discharged gas superheat amount is 8H8T as shown at the point 24.
The cooling capacity is the intersection point 2 of the capacity line QTS and υ in standard mode.
Qt corresponding to 5. In this operating state, the discharged gas superheat residue is between the upper and lower limits and is normal. Next, when the environmental conditions change and the differential pressure between the high and low operating pressures of the refrigeration cycle increases, as mentioned above, even if the expansion valve opening remains the same as Pl, the refrigerant flow rate passing through the expansion valve will decrease. It increases in proportion to the differential pressure, and the discharged gas superheat lid becomes smaller. SH indicated by point 26 where the discharged gas superheat amount becomes too small and is smaller than the lower limit line TdsHmkn.
When the mo value is reached, it is less than the minimum line Td SHmin of the amount of discharged gas superheat preset in the control device 5, so the control device f5 detects this and sets the expansion valve 8 to increase the opening degree of the expansion valve. outputs a signal to shift the expansion valve to throttling mode control. As a result, the control line P
The opening degree Pg corresponds to the intersection point 28 with m.

これにより吐出ガススーパーヒート量は点29で示す上
下限値0間の8Nm’へ移行し、適正な吐出ガススーパ
ーヒート量となって安定運転が継続される。そして、こ
の時の冷却能力は能力線Qmに乗った能力となり点80
に相当する能力Q2となり、点25のQlより小さくな
る。もし、この能力でンよ負荷とバランスしない場合に
は、この結果として水温の上昇として表われ、第1図で
示す水温センサ6に反映され、その信号を制御装置5が
受けて運転周波数増加の信号が圧縮機1に対し出力され
る。圧縮機1の運転周波数がN2に変更され能力線Qm
線上の交点31に相当する能力Q1で運転される。この
能力Q1は前記標準モードでD能力、線QSTでのQl
と同一である。また環境条件が変化し、吐出ガススーパ
ーヒート量が増大し、吐出ガススーパーヒート上限線’
l’ d8Hmaxを越えると、膨張弁開度は絞す、j
1張弁制制御Pm線上から標準膨張弁制御線PSTm上
に移行して本来Q制御状態に戻り吐出ガススーパーヒー
ト量を小さくする方向に制御される。
As a result, the discharged gas superheat amount shifts to 8 Nm' between the upper and lower limit values of 0 shown at point 29, and stable operation is continued with an appropriate discharged gas superheat amount. The cooling capacity at this time is the capacity on the capacity line Qm, which is the point 80.
The ability Q2 corresponds to , which is smaller than Ql at point 25. If this capacity does not balance the load, this will result in an increase in water temperature, which will be reflected on the water temperature sensor 6 shown in Figure 1, and the control device 5 will receive the signal to increase the operating frequency. A signal is output to compressor 1. The operating frequency of compressor 1 is changed to N2 and the performance line Qm
It is operated at a capacity Q1 corresponding to the intersection point 31 on the line. This ability Q1 is the D ability in the standard mode, and Ql in the line QST.
is the same as In addition, as environmental conditions change, the amount of discharge gas superheat increases, and the discharge gas superheat upper limit
l' When d8Hmax is exceeded, the expansion valve opening is reduced, j
It shifts from the one-tension valve control line Pm to the standard expansion valve control line PSTm, returns to the original Q control state, and is controlled in the direction of reducing the amount of discharged gas superheat.

尚、pminは標準モードでの膨張弁開度の最小開度で
あり、P’minは絞りモードで7)最小開度を示す。
Note that pmin is the minimum opening of the expansion valve in the standard mode, and P'min is the minimum opening of the expansion valve in the throttle mode.

第4図及び第5図は第8図の制御を拡張し、膨張弁開度
の、11!iIにより、能力vI4整範囲の拡大と、運
転範囲の拡大を図るための説明図である。
FIGS. 4 and 5 expand the control shown in FIG. 8, and expand the expansion valve opening to 11! It is an explanatory diagram for expanding the capacity vI4 adjustment range and expanding the driving range by iI.

第Φ図、第5図共に、横軸は圧縮W41の運転周UaN
を示し、Nm1nは最低周波数、N maxは最高周波
数を示す。第4図の縦軸は膨張弁開度P。
In both Fig. Φ and Fig. 5, the horizontal axis is the operating frequency UaN of compression W41.
, Nm1n is the lowest frequency, and Nmax is the highest frequency. The vertical axis in FIG. 4 is the expansion valve opening degree P.

吐出ガススーパーヒート量Td SH% 訃よび冷却能
力Qを示す。また図中の破線は、膨張弁開度を各々0周
波数に釦いて冷却能力Qが最大となるよう制御した時7
)変化カーブを示し、こ0時の冷却能力最大変化カーブ
50の変化幅は幅86で示される。また、図中の実線は
冷却能力の最小値4oが最大値417)約1/2以下に
なるよう膨張弁開度を低周波数域で絞り気味に?1tl
J Ijll した時の変化カーブを示し、こ0時の冷
却能力変化カーブ6oの変化幅は幅37、最小能力は幅
88、最大能力は幅39で示でれるも また、破線で示す変化カーブ51.52が冷却能力最大
カーブ50に対応した吐出ガススーパーヒート量、膨l
it!弁開度を示す変化カーブを示(−で分り、実線で
示す変化カーブ58.54は冷却能力変化カーブ60に
対応している。すなわち、ある運転周波数で・運転され
たときの膨張弁開度Pが変化カーブ52で別間された場
合の吐出ガススーバーヒー)iTdSHは変化カーブ5
1で変化し、冷却能力Qは変化カーブ50のように変化
する。
Discharged gas superheat amount Td SH% Indicates cooling capacity and cooling capacity Q. In addition, the broken lines in the figure indicate when the expansion valve opening is controlled to 0 frequency and the cooling capacity Q is maximized.
) The change width of the cooling capacity maximum change curve 50 at 0 is indicated by the width 86. Also, the solid line in the figure indicates that the expansion valve opening is slightly reduced in the low frequency range so that the minimum value 4o of the cooling capacity becomes approximately 1/2 or less of the maximum value 417). 1tl
The change width of the cooling capacity change curve 6o when J Ijll is 0 is shown by the width 37, the minimum capacity is shown by the width 88, and the maximum capacity is shown by the width 39. .52 is the discharge gas superheat amount corresponding to the maximum cooling capacity curve 50, expansion l
It! The change curves 58 and 54 shown by solid lines correspond to the cooling capacity change curve 60. In other words, the expansion valve opening degree when operated at a certain operating frequency is shown. Discharge gas superheat) iTdSH when P is separated by change curve 52 is change curve 5
1, and the cooling capacity Q changes like a change curve 50.

また、実線で示す制御の場合も同様に制御されるよう制
御装置つ設定を行っている。この制御を採用することに
より、運転周波数の最小値を下げることなく、能力変化
幅を大きくすることが可能となる。
Also, in the case of the control shown by the solid line, the control device is set so that it is controlled in the same way. By employing this control, it is possible to increase the range of capacity change without lowering the minimum value of the operating frequency.

また、圧himの能力最小値を最大値の1/2以下に設
定して釦〈ことにより、同一の装置を複数台設置した場
合には運転台数が増減する際に、運転台数をラププさせ
ることができ、こD結果、冷庫能カフ)増加や減少時に
全台数り頻索な0N−OFF’jmけることができると
ともに冷却能力の連続性が得られる。
In addition, by setting the minimum capacity value of the pressure him to 1/2 or less of the maximum value and pressing the button, if multiple units of the same device are installed, the number of units in operation can be changed when the number of units in operation increases or decreases. As a result, when the refrigerator capacity increases or decreases, all the units can be turned off frequently, and continuity of cooling capacity can be obtained.

一般にこの′a7)冷凍装置の冷却能力の最小値を落と
すためには運転周波数を低くする制御が採用さ:lLる
が、これに伴なう冷凍サイクルの運転圧力条件り限界値
が聞漏となる場合がある。第5図はこの関係の説明図で
ある。横軸は運転周波数N1樅輔はそれぞれ吸入圧力P
s、  吐出圧力Pd、圧力比Pd/Psを示す。縦軸
の諸量にはそれぞれ冷凍装置運転圧力の限界値があり、
吸入圧力Psmaxは上限線70、吐出圧力pdmin
は下限線80、圧力比pd/ps minを下限線90
にて示す。また図中に示す破線は、第4図に示したもの
と同様に冷却能力最大となるよう膨張弁開度を制御した
時の圧力変化カーブで、圧力比Pd/Ps変化カーブ9
1、吐出圧力Pd変化カーブ81、吸入圧力Ps変化カ
ーブ71を示す。実線は冷却能力最小値が最大値の約1
/2以下になるよう低周波域で絞り気味に制御した時の
変化カーブで、圧力比Pd/Ps変化カーブ92、吐出
圧力Pd変化カーブ82、吸入圧力Ps変化カーブ72
を示す。そして、点98は圧力比変化カーブ91と圧力
比下@線90との交点、点88は吐出圧力変化カーブ8
1と吐出圧力下限線80との交点、点7Bは吸入圧力変
化カーブ71と吸入圧力上限線70との交点を示してい
る。
In general, control to lower the operating frequency is adopted to reduce the minimum value of the cooling capacity of the refrigeration system. It may happen. FIG. 5 is an explanatory diagram of this relationship. The horizontal axis is the operating frequency N1, and each axis is the suction pressure P.
s, discharge pressure Pd, and pressure ratio Pd/Ps. Each of the quantities on the vertical axis has a limit value for the operating pressure of the refrigeration system.
Suction pressure Psmax is upper limit line 70, discharge pressure pdmin
is the lower limit line 80, and the pressure ratio pd/ps min is the lower limit line 90.
Shown in Also, the broken line shown in the figure is the pressure change curve when the expansion valve opening is controlled to maximize the cooling capacity, similar to the one shown in Fig. 4, and the pressure ratio Pd/Ps change curve 9.
1 shows a discharge pressure Pd change curve 81 and a suction pressure Ps change curve 71. The solid line indicates that the minimum value of cooling capacity is approximately 1 of the maximum value.
These are the change curves when the low frequency range is controlled slightly to be less than /2, and are the pressure ratio Pd/Ps change curve 92, the discharge pressure Pd change curve 82, and the suction pressure Ps change curve 72.
shows. The point 98 is the intersection of the pressure ratio change curve 91 and the pressure ratio lower @ line 90, and the point 88 is the discharge pressure change curve 8.
1 and the discharge pressure lower limit line 80, and point 7B indicates the intersection between the suction pressure change curve 71 and the suction pressure upper limit line 70.

この図から明らかなように各点98.88.78はいず
れも運転周波数Nm1nより多い周波数域にあり、一番
多い周波数を示す点は吐出圧力Pdの条件の点88で、
このときの運転周波数はN1である。したがって、これ
らの諸条件を満たし使用できる運転周波数の範囲は破線
制御線上では制限幅り最も狭vhN s −Nmax 
2)間、実線制御線上ではNm1n −Nmaxとなる
。こDように2種類の制御線を設定することにより、冷
却能力変化幅の拡大を図ることができる。
As is clear from this figure, points 98, 88, and 78 are all in a frequency range higher than the operating frequency Nm1n, and the point showing the highest frequency is point 88 under the discharge pressure Pd condition.
The operating frequency at this time is N1. Therefore, the operating frequency range that satisfies these conditions and can be used is the narrowest limit width vhN s - Nmax on the broken control line.
2), Nm1n - Nmax on the solid control line. By setting two types of control lines in this way, it is possible to expand the cooling capacity variation range.

〔発明の効果〕 本発明は、以上説明したように構成されているDで、以
下に記載されるような効果を有する。
[Effects of the Invention] The present invention has D configured as described above, and has the following effects.

運転周波数により膨張弁開度をある設定値に調節するた
め精密な能力調整が可能になるとともに環境条件の変化
に対しても安定した運転が可能となる。また、膨張弁開
度の設定値を低周波数域で絞り気味にすることにより、
能力変化幅と周波数変化幅の拡大が可能となる。
Since the expansion valve opening degree is adjusted to a certain set value depending on the operating frequency, precise capacity adjustment is possible, and stable operation is possible even in the face of changes in environmental conditions. In addition, by slightly restricting the expansion valve opening setting in the low frequency range,
It becomes possible to expand the capacity change width and frequency change width.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における冷凍サイクル系統図
、g2図は第1図に示す冷凍サイクルの制御を説明する
制御70−図、第8図は第1図に示す冷凍サイクルO状
態図、第4図及び第5図は別の実施例における冷凍サイ
クルD状態図であるl・・・圧a機  2・・・凝縮器
  8・・・電動(電子)膨張弁  4・・・蒸発器 
 5・・・制御装置  6・・・水温セン−y−7・・
・吐出ガス温度セン?  8・・・凝縮温度センナ  
10・・・冷却水出入口  ll・・・冷水(負荷)出
入口  pm・・・絞りモード膨張弁制’till線 
 PST・・・標準モード#逼弁制御線。 圧6鴫木( ;棒材0シ 電り電子)III帳升 竿2図 菓3函 N、liM N2〜.、v4工 蓮奪Ill液数N
FIG. 1 is a refrigeration cycle system diagram according to an embodiment of the present invention, FIG. g2 is a control 70-diagram explaining the control of the refrigeration cycle shown in FIG. 1, and FIG. , FIG. 4 and FIG. 5 are state diagrams of the refrigeration cycle D in another embodiment. l...Pressure machine 2... Condenser 8... Electric (electronic) expansion valve 4... Evaporator
5...Control device 6...Water temperature sensor-y-7...
・Discharge gas temperature sensor? 8... Condensing temperature senna
10... Cooling water inlet/outlet ll... Chilled water (load) inlet/outlet pm... Throttle mode expansion valve control 'till line
PST...Standard mode #valve control line. Pressure 6 Shizuki ( ; bar material 0 shi electric electronic ) III Chosho 2 Zuka 3 boxes N, liM N2~. , v4 engineering lotus Ill liquid number N

Claims (1)

【特許請求の範囲】 1、駆動周波数により運転速度が可変の電動圧縮機を含
む冷凍サイクルと、前記冷凍サイクルを制御するための
制御装置を備え、この制御装置は、前記圧縮機の運転周
波数範囲にわたってあらかじめ設定されているある範囲
の目標の吐出ガススーパーヒート量に基づき、負荷に応
じた周波数で前記圧縮機を運転制御し、前記目標の吐出
ガススーパーヒート量を外れた運転状態となったときに
は、膨脹弁開度特性を変えて目標の吐出ガススーパーヒ
ート量となるように、前記圧縮機を運転制御することを
特徴とする冷凍装置。 2、請求項1による冷凍装置において、前記運転周波数
範囲の最小周波数における最小冷凍能力が最大周波数に
おける最大冷凍能力の1/2以下に設定されることを特
徴とする冷凍装置。 3、請求項1による冷凍装置において、膨脹弁開度特性
は標準モード特性と、絞りモード特性を設定しているこ
とを特徴とする冷凍装置。 4、請求項1による冷凍装置において、前記冷凍サイク
ルは可変容量膨張弁を含み、前記制御装置は前記冷凍サ
イクルにおける吐出冷媒ガスのスーパーヒート量を検出
し、前記設定目標の吐出ガススーパーヒート量と比較し
て、前記冷凍サイクルの吐出冷媒ガスのスーパーヒート
量が前記設定目標に一致するように前記膨張弁の弁開度
を調節することを特徴とする冷凍装置。 5、請求項1による冷凍装置において、低速域の膨張弁
開度をその運転周波数における最大能力を発揮する開度
よりも絞るように設定する。 6、請求項4による冷凍装置において、前記運転周波数
範囲の最小周波数における最小冷凍能力が最大周波数に
おける最大冷凍能力の1/2以下に設定される。 7、請求項1による冷凍装置において、圧縮機の運転周
波数決定を、蒸発器の入口水温又は出口水温検知による
PI(比例・積分)もしくはPID(比例・積分・微分
)制御により行うように設定した。 8、電動圧縮機、凝縮器、可変容量膨張装置、及び蒸発
器を接続して形成された冷凍サイクルで、前記圧縮機は
駆動周波数により運転速度が可変である冷凍サイクルと
; 前記冷凍サイクルを制御するための制御装置であって、
負荷に応じて前記圧縮機を所定の周波数で運転すると共
に、前記冷凍サイクルにおける吐出冷媒ガスのスーパー
ヒート量を検出し、前記圧縮機の運転周波数範囲にわた
ってあらかじめ設定されている目標の吐出ガススーパー
ヒート量と比較し、前記冷凍サイクルの吐出冷媒ガスの
スーパーヒート量が前記設定目標範囲内に一致するよう
に前記膨張装置の容量を調整する制動装置と;前記目標
の吐出ガススーパーヒート量を外れた運転状態となった
ときには、膨脹弁開度特性を変えて設定目標範囲内の吐
出ガススーパーヒート量となるように制御することを特
徴とする冷凍装置9、請求項8による冷凍装置において
、前記運転周波数範囲の最小周波数における最小冷凍能
力が最大周波数における最大冷凍能力の1/2以下に設
定されることを特徴とする冷凍装置。 10、請求項8による冷凍装置において、膨脹弁開度等
性は標準モード特性と、絞りモード特性を設定している
ことを特徴とする冷凍装置。 11、請求項8による冷凍装置において、圧縮機の運転
周波数決定を、蒸発器の入口水温又は出口水温検知によ
るPI(比例・積分)もしくはPID(比例・積分・微
分)制御により行うように設定したことを特徴とする冷
凍装置。
[Claims] 1. A refrigeration cycle including an electric compressor whose operating speed is variable depending on the drive frequency, and a control device for controlling the refrigeration cycle, the control device controlling the operating frequency range of the compressor. The operation of the compressor is controlled at a frequency according to the load based on a target discharge gas superheat amount in a certain range that is preset in advance, and when the compressor is in an operating state outside of the target discharge gas superheat amount. . A refrigeration system, characterized in that the operation of the compressor is controlled so as to achieve a target discharge gas superheat amount by changing the expansion valve opening characteristic. 2. The refrigeration system according to claim 1, wherein the minimum refrigeration capacity at the minimum frequency of the operating frequency range is set to 1/2 or less of the maximum refrigeration capacity at the maximum frequency. 3. The refrigeration system according to claim 1, wherein the expansion valve opening characteristic is set to a standard mode characteristic and a throttle mode characteristic. 4. In the refrigeration system according to claim 1, the refrigeration cycle includes a variable capacity expansion valve, and the control device detects the amount of superheat of the discharged refrigerant gas in the refrigeration cycle, and compares the amount of superheated gas discharged with the set target amount of superheated gas. In comparison, the refrigeration system is characterized in that the opening degree of the expansion valve is adjusted so that the amount of superheat of the refrigerant gas discharged from the refrigeration cycle matches the set target. 5. In the refrigeration system according to claim 1, the opening degree of the expansion valve in the low speed range is set to be smaller than the opening degree at which the maximum capacity is exhibited at the operating frequency. 6. In the refrigeration system according to claim 4, the minimum refrigeration capacity at the minimum frequency of the operating frequency range is set to 1/2 or less of the maximum refrigeration capacity at the maximum frequency. 7. In the refrigeration system according to claim 1, the operating frequency of the compressor is set to be determined by PI (proportional/integral) or PID (proportional/integral/derivative) control based on detection of the inlet water temperature or outlet water temperature of the evaporator. . 8. A refrigeration cycle formed by connecting an electric compressor, a condenser, a variable capacity expansion device, and an evaporator, the compressor having an operating speed variable depending on the driving frequency; and controlling the refrigeration cycle. A control device for
The compressor is operated at a predetermined frequency according to the load, and the amount of superheat of the discharged refrigerant gas in the refrigeration cycle is detected, and the target discharged gas superheat is set in advance over the operating frequency range of the compressor. a braking device that adjusts the capacity of the expansion device so that the superheat amount of the refrigerant gas discharged from the refrigeration cycle falls within the set target range; 9. The refrigeration system according to claim 8, wherein when the operating state is reached, the expansion valve opening characteristic is changed to control the amount of discharged gas superheat within a set target range. A refrigeration system characterized in that the minimum refrigeration capacity at the minimum frequency of the frequency range is set to 1/2 or less of the maximum refrigeration capacity at the maximum frequency. 10. The refrigeration system according to claim 8, wherein the expansion valve opening degree and the like are set to standard mode characteristics and throttle mode characteristics. 11. In the refrigeration system according to claim 8, the operating frequency of the compressor is set to be determined by PI (proportional/integral) or PID (proportional/integral/derivative) control based on detection of the inlet water temperature or outlet water temperature of the evaporator. A refrigeration device characterized by:
JP1191462A 1989-07-26 1989-07-26 Refrigeration equipment Expired - Fee Related JP2922925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191462A JP2922925B2 (en) 1989-07-26 1989-07-26 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191462A JP2922925B2 (en) 1989-07-26 1989-07-26 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH0359348A true JPH0359348A (en) 1991-03-14
JP2922925B2 JP2922925B2 (en) 1999-07-26

Family

ID=16275049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191462A Expired - Fee Related JP2922925B2 (en) 1989-07-26 1989-07-26 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2922925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106922A (en) * 1991-10-18 1993-04-27 Hitachi Ltd Control system for refrigerating equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106608A (en) * 2001-09-26 2003-04-09 Mitsubishi Heavy Ind Ltd Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694448U (en) * 1979-12-21 1981-07-27
JPS6325457A (en) * 1986-07-17 1988-02-02 三洋電機株式会社 Refrigerator
JPS6332257A (en) * 1986-07-23 1988-02-10 ダイキン工業株式会社 Controller for air conditioner
JPS63108162A (en) * 1986-10-24 1988-05-13 株式会社日立製作所 Method of controlling expansion valve for air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694448U (en) * 1979-12-21 1981-07-27
JPS6325457A (en) * 1986-07-17 1988-02-02 三洋電機株式会社 Refrigerator
JPS6332257A (en) * 1986-07-23 1988-02-10 ダイキン工業株式会社 Controller for air conditioner
JPS63108162A (en) * 1986-10-24 1988-05-13 株式会社日立製作所 Method of controlling expansion valve for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106922A (en) * 1991-10-18 1993-04-27 Hitachi Ltd Control system for refrigerating equipment

Also Published As

Publication number Publication date
JP2922925B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
EP0604417B1 (en) Control of high-side pressure in transcritical vapor compression cycle
US5809794A (en) Feed forward control of expansion valve
EP0697087B1 (en) Refrigerant flow rate control based on liquid level in the phase separator of a dual evaporator two-stage refrigeration system
US8096141B2 (en) Superheat control by pressure ratio
JPH11193967A (en) Refrigerating cycle
US4966010A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US4910968A (en) Refrigerating apparatus
US5007245A (en) Vapor cycle system with multiple evaporator load control and superheat control
KR920008442A (en) Air conditioner
KR20080081002A (en) Flash tank refrigerant control
CN104685303A (en) A method for matching refrigeration load to compressor capacity
JP2001280669A (en) Refrigerating cycle device
JP6234507B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JPH05172429A (en) Air conditioner
JP2014119187A (en) Refrigerator and refrigeration cycle device
JP2708053B2 (en) Refrigerator temperature controller
JPH0359348A (en) Freezer device
JPH11281221A (en) Cooler of open show case
JP3188989B2 (en) Air conditioner
JPS62196555A (en) Refrigerator
JPH0534578B2 (en)
JPH10185343A (en) Refrigerating equipment
JP4690574B2 (en) Control method and control device for expansion valve in refrigerator
JPH0828975A (en) Turbo refrigerator
JPH02115585A (en) Capacity controller for compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees