JPH0357920A - Coriolis mass flowmeter - Google Patents

Coriolis mass flowmeter

Info

Publication number
JPH0357920A
JPH0357920A JP19488389A JP19488389A JPH0357920A JP H0357920 A JPH0357920 A JP H0357920A JP 19488389 A JP19488389 A JP 19488389A JP 19488389 A JP19488389 A JP 19488389A JP H0357920 A JPH0357920 A JP H0357920A
Authority
JP
Japan
Prior art keywords
displacement
detection sensor
time difference
circuit
coriolis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19488389A
Other languages
Japanese (ja)
Inventor
Yoshinori Matsunaga
松永 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP19488389A priority Critical patent/JPH0357920A/en
Publication of JPH0357920A publication Critical patent/JPH0357920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure a large time difference thereby to improve the resolution by detecting the displacement of a measuring pipe by Coriolis force the direction of which is different according to the direction of the flow velocity of a fluid running in the measuring pipe. CONSTITUTION:When a measuring fluid is running in a measuring pipe 1 and a vibrator 3 is driven, the measuring pipe 1 is vibrated by the vibrator 3. Since the direction of the Coriolis force is different depending on the direction of the flow velocity, the measuring pipe 1 is shifted. This shift of the measuring pipe 1 is detected by displacement detecting sensors 4,5. The phase difference of the displacements obtained by the sensors 4,5 is proportional to (amplitude of the vibration proportional to the Coriolis force)/(amplitude of the vibration by the vibrator), and accordingly the mass flow rate can be obtained. A displacement detecting sensor 12 detects a point where no displacement is present by the Coriolis force from the signals of the sensors 4,5. After a signal obtained by multiplying a signal of the sensor 12 with a constant slightly smaller than 1 is subtracted, the phase difference of the signal is detected s a time difference. Accordingly, a large time difference can be measured, achieving favorable resolution.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、大きな時間差が測定で出来、良好な分解能が
得られるコリオリ質量流量計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a Coriolis mass flowmeter that can measure large time differences and provides good resolution.

く従来の技術〉 第3図は従来より一般に使用されている従来例の構成説
明図である. 図において、1は配管Aに、両端が取付けられたU字形
の測定管である. 2は管路Aへの測定管1の取付けフランジである。
Prior Art> Figure 3 is an explanatory diagram of the configuration of a conventional example that has been commonly used. In the figure, 1 is a U-shaped measurement tube attached to piping A at both ends. 2 is a flange for attaching the measuring tube 1 to the conduit A.

3はLJ字形をなす測定管1の先端に設けられ、測定管
1をl次モードの共振点で共振させる振動子である. 4.5は測定管1の両開にそれぞれ設けられた変位検出
センサである。
A oscillator 3 is installed at the tip of the LJ-shaped measuring tube 1 and causes the measuring tube 1 to resonate at the resonance point of the l-order mode. 4.5 are displacement detection sensors provided on both sides of the measuring tube 1, respectively.

以上の構成において、測定管1に測定流体が流され、振
動子3が駆動される. 振動子3の振動方向の角速度rωJ.測定流体の流速r
Vj (以下『Jで囲まれた記号はベク1・ル量を表ず
.)とすると、 F c = − 2 m r (1) J X 1V 
Jのコリオリカが■く、コリオリ力に比関した振動の振
幅を測定すれば、質量流量が測定出来る.しかし、一般
には、コリオリ力に比例した振動の振幅は、加振による
振動の振幅より極めて小さく、コリオリカに比例した振
動の振幅を直接検出することが出来ない. 今、第3図のZ視の方向から見ると、振動子3の加振に
より、振動方向をα、βに別けて考えると、流速r ’
J 』の向きによって、第4図(A)、(B)に示す如
く、コリオリカの方向が異なるので、逆相となり、測定
管1が捩れながら振動する.これを変位検出センサ4,
5、例えば磁気センサで変位を検出し、変位検出センサ
4.5の変位の位相差が、(コリオリカに比例した振動
の振幅)/(加振による振動の振幅)に比例するので質
量流量を求める事ができる. 位相差は波形がセロをクロスする時間の差Δtとして測
定出来るので、結果としてコリオリカが測定出来る. ここで、振動による変位Xは X=As i nωt A:静的な変位 一方、コリオリ力による変位X,は、第2高調波のモー
ドであるから、基本波の周波数では共振しておらず 静
的な変位と同じ量が得られる.X1=B,)cosωL B0:静的な変位 従って、変位検出センサ4,5は、コリオリカの影響に
よって変位がずれる. Ya o r 5=X+X1 = (A’ +82)”s i n (ωt±θ)ta
nθ=B/A 一方、文位検出センサ6の変位は、コリオリカの影響を
受けないので、 Ya =Xo =Ao s i nωtとなる. Y4とY5との位相差はB<<Aより下式となる. Δθ−2 1 θ l=(2B)/A 振動数がωであるので、時間差Δt1は下式で表せられ
る。
In the above configuration, the measurement fluid is flowed through the measurement tube 1, and the vibrator 3 is driven. The angular velocity rωJ of the vibrator 3 in the vibration direction. Flow rate r of measuring fluid
Vj (Hereinafter, the symbol surrounded by J does not represent the vector quantity.), then F c = − 2 m r (1) J X 1V
The mass flow rate can be measured by measuring the amplitude of the vibration relative to the Coriolis force when the Coriolis of J is ■. However, in general, the amplitude of vibrations proportional to Coriolis force is extremely smaller than the amplitude of vibrations caused by excitation, and it is not possible to directly detect the amplitude of vibrations proportional to Coriolis force. Now, when viewed from the Z direction in Fig. 3, the vibration direction is divided into α and β due to the vibration of the vibrator 3, and the flow velocity r'
As shown in FIGS. 4(A) and 4(B), the direction of Coriolis differs depending on the direction of ``J'', so the phase is reversed and the measuring tube 1 vibrates while being twisted. This is the displacement detection sensor 4,
5. For example, detect the displacement with a magnetic sensor, and find the mass flow rate because the phase difference of the displacement of the displacement detection sensor 4.5 is proportional to (amplitude of vibration proportional to Coriolis)/(amplitude of vibration due to excitation) I can do things. Since the phase difference can be measured as the difference Δt in the time when the waveform crosses the zero, Coriolis can be measured as a result. Here, the displacement X due to vibration is The same amount as the displacement is obtained. X1=B,)cosωL B0: Static displacement Therefore, the displacement of the displacement detection sensors 4 and 5 is shifted due to the influence of Coriolis. Ya o r 5=X+X1 = (A'+82)"s in (ωt±θ)ta
nθ=B/A On the other hand, since the displacement of the sentence position detection sensor 6 is not affected by Coriolis, Ya = Xo = Aos inωt. Since B<<A, the phase difference between Y4 and Y5 is as follows. Δθ−2 1 θ l=(2B)/A Since the frequency is ω, the time difference Δt1 can be expressed by the following formula.

Δ1,=Δθ/ω=(2B)/(Aω)第5図は従来よ
り一般に使用されている池の従来例の構成説明図である
. 本従来例では、ノイズを低減し、信号を大きく取るため
に、測定管1を、2管式にしたものである. く発明が解決しようとする課題〉 しかしながら、この様な装置においては、(1)41j
f動周波数が高いと、時間差が小さくなり、安定した測
定が出来ない。
Δ1,=Δθ/ω=(2B)/(Aω) FIG. 5 is an explanatory diagram of the configuration of a conventional example of a pond that has been commonly used. In this conventional example, the measuring tube 1 is of a two-tube type in order to reduce noise and obtain a large signal. Problems to be Solved by the Invention> However, in such a device, (1) 41j
When the f-dynamic frequency is high, the time difference becomes small and stable measurements cannot be made.

(2)振動周波数を低くすると外部の振動に影響を受け
やすい. 本発明は、この問題点を解決するものである。
(2) Lowering the vibration frequency makes it more susceptible to external vibrations. The present invention solves this problem.

本発明の目的は、高い振動周波数を使用し、かつ大きな
時間差が測定で出来、良好な分解能が得られるコリオリ
質量流量計を提供するにある.く課題を解決するための
手段〉 この目的を達成するために、本発明は、測定管と、該測
定管を加振する振動子と、前記測定管の変位を検出する
2個の第1,第2の変位検出センサとを具備するコリオ
リ質量流量計において、前記測定管のコリオリ力による
変位の無い箇所の変位を検出する第3の変位挽出センサ
と、該第3の変位検出センサの検出信号を1よりわずか
小さい定数で乗算する乗算回路と、該乗算回路の出力と
前記第1の変位検出センサとを差動増幅する第1の差動
増幅回路と、前記乗算回路の出力と前記第2の変位検出
センサとを差動増幅する第2の差動増幅回路と、該第2
の差動増幅回路と前記第1の差動増幅回路の出力信号の
位相差から時間差を測定する時間差検出回路とを具備し
たことを特徴とするコリオリ質量流量計を構或したもの
である。
An object of the present invention is to provide a Coriolis mass flowmeter that uses a high vibration frequency, can measure large time differences, and can obtain good resolution. Means for Solving the Problems To achieve this object, the present invention provides a measuring tube, a vibrator that vibrates the measuring tube, and two first and second vibrators that detect displacement of the measuring tube. A Coriolis mass flowmeter comprising a second displacement detection sensor, a third displacement detection sensor that detects displacement of a portion of the measurement tube where there is no displacement due to Coriolis force, and detection by the third displacement detection sensor. a multiplier circuit that multiplies a signal by a constant slightly smaller than 1; a first differential amplifier circuit that differentially amplifies the output of the multiplier circuit and the first displacement detection sensor; a second differential amplifier circuit that differentially amplifies the second displacement detection sensor;
The Coriolis mass flowmeter is characterized in that it comprises a differential amplifier circuit and a time difference detection circuit that measures a time difference from the phase difference between the output signals of the first differential amplifier circuit.

く作 用〉 以上の横成において、測定管に川定流体が流され、振動
子か駆動される。振動子により州定管は振動する。
Function> In the above-mentioned horizontal formation, the river constant fluid is flowed into the measuring tube, and the vibrator is driven. The state tube vibrates due to the vibrator.

振動方向の角速度『ω』、測定管を流れる測定流体の流
遠r y .+とすると、 Fc=−2mrωJ X rVJ のコリオリカが鋤<、流速ryJの向きによって、コリ
オリカの方向が異なるので、測定管は変位する.これを
変位検出センサで変位を検出し、変位検出センサの変位
の位相差か、(コリオリカに比例した振動の振幅)/(
加振による振動の振幅)に比例するので質量′a量を求
める事かできる.位相差は波形がセロをクロスする時間
の差Δtとして測定出来るので、結果としてコリオリカ
が測定出来る。
The angular velocity "ω" in the vibration direction, the flow distance r y of the measurement fluid flowing through the measurement tube. +, then the Coriolis of Fc=-2mrωJ The displacement is detected by a displacement detection sensor, and the phase difference of the displacement of the displacement detection sensor is calculated as (amplitude of vibration proportional to Coriolis)/(
Since it is proportional to the amplitude of vibration caused by excitation, we can calculate the mass ′a. Since the phase difference can be measured as the difference Δt between the times when the waveform crosses the zero, Coriolis can be measured as a result.

この場合、コリオリ力による変位を検知している変位検
出センサの信号から、コリオリ力による変位の無い点を
検知している変位検出センサの信号に1よりわずか小さ
い定数を乗じた信号を引いた後、信号の位相差を時間差
として検出するようにした。
In this case, after subtracting the signal obtained by multiplying the signal of the displacement detection sensor that detects a point where there is no displacement due to Coriolis force by a constant slightly smaller than 1 from the signal of the displacement detection sensor that detects displacement due to Coriolis force, , the phase difference between signals is detected as a time difference.

以下、実施例に裁づき詳細に説明する。Hereinafter, a detailed explanation will be given based on examples.

く実施例〉 第1図は本発明の一実施例の要部横成説明図である. 図において、第3図と同一記号の椙成は同一機能を表わ
す。
Embodiment> Figure 1 is an explanatory diagram of the main parts of an embodiment of the present invention. In the figure, the same symbols as in FIG. 3 represent the same functions.

以下、第3図と相違部分のみ説明する。Hereinafter, only the differences from FIG. 3 will be explained.

l1はU字状のJ!リ定管1の底部付近を結合する結合
板である。
l1 is a U-shaped J! This is a connecting plate that connects the bottom portion of the fixing tube 1.

12は測定管lのコリオリ力による変位の燕い箇所の変
位を検出する第3の変位検出センサである.この場合は
、結合板11の中央に収り付けられている。
Reference numeral 12 denotes a third displacement detection sensor that detects the displacement of the measuring tube l at the point where the displacement due to the Coriolis force is suppressed. In this case, it is housed in the center of the coupling plate 11.

13は測定管1を管路Aに接続するブロックである. 第2図に、変換器の一実施例を示す. 21は変位検出センサ4の出力を増幅する増幅回路であ
る。
13 is a block that connects measurement tube 1 to conduit A. Figure 2 shows an example of a converter. 21 is an amplifier circuit that amplifies the output of the displacement detection sensor 4.

22は変位検出センサ5の出力を増幅する増幅回路であ
る, 23は変位検出センサ6の出力を増幅する増幅回路であ
る。
22 is an amplifier circuit that amplifies the output of the displacement detection sensor 5; 23 is an amplifier circuit that amplifies the output of the displacement detection sensor 6.

24は増幅回路23の出力を1よりわずか小さい定数で
乗算する乗算回路である.この場合は、定数は0.9で
ある。
24 is a multiplication circuit that multiplies the output of the amplifier circuit 23 by a constant slightly smaller than 1. In this case, the constant is 0.9.

25は増幅回路21と乗算回路24の出力とを差動増幅
する第lの差動増幅回路である.26は増幅四R22と
乗算回路24の出力とを差動増幅する第2の差動増幅回
路である。
25 is a l-th differential amplifier circuit that differentially amplifies the outputs of the amplifier circuit 21 and the multiplier circuit 24. 26 is a second differential amplifier circuit that differentially amplifies the output of the amplification circuit R22 and the output of the multiplication circuit 24.

27は第1の差動増幅回路25と第2の差動増幅回路2
6との出力信号の位相差から時間差を測定する時間差検
出回路である。
27 is a first differential amplifier circuit 25 and a second differential amplifier circuit 2
This is a time difference detection circuit that measures the time difference from the phase difference of the output signal with 6.

28は時間差検出回路27の出力を所要の出力に変換す
る出力変換回路である。この場合は、4〜20mAか出
力される. 以上の構成において、測定管1に測定流体が流され、振
動子3が駆動される.振動子3により測定管1は振動す
る, 振動方向の角速度『ω』、測定管1を流れる測定流体の
流速jy』とすると、 Fc=−2m rω』X rV』 のコリオリカが働く、流速rVJの向きによって、コリ
オリカの方向が異なるので、測定管1は変位する。これ
を変位検出センサ4,うで変位を検出し、変位検出セン
サ4.5の変位の位相差か、(コリオリ力に比例した振
動の振幅)/(加振による振動の振幅)に比例するので
質量流量を求める事ができる. 位相差は波形がゼロをクロスする時間の差Δtとして測
定出来るので、結果としてコリオリカが測定出来る. この場合、コリオリ力による変位を検知している変位検
出センサ4,5の信号から、コリオリ力による変位の無
い点を検知している変位検出センサl2の信号に1より
わずか小さい定数を乗じた信号を引いた後、信号の位相
差を時間差として検出する上うにした。この場合は、定
数として0.9を用いた. 即ち、 Y4 or 5  X ・ 0.9 +  (0.  1A)  2 +82  ))I/2
sin(ωt±θ2 ) tan θ2=1−1/A 従って、時間差Δt2は下式で表せられ、従来例の10
倍の時間差が得られる。
28 is an output conversion circuit that converts the output of the time difference detection circuit 27 into a required output. In this case, 4 to 20 mA is output. In the above configuration, the measurement fluid is flowed through the measurement tube 1, and the vibrator 3 is driven. The measurement tube 1 is vibrated by the vibrator 3. If the angular velocity in the vibration direction is ``ω'' and the flow rate of the measurement fluid flowing through the measurement tube 1 is ``jy,'' then the Coriolis effect of Fc = -2m rω''X rV'' acts, and the flow rate rVJ is Since the direction of Coriolis differs depending on the orientation, the measuring tube 1 is displaced. The displacement is detected by the displacement detection sensor 4 and the arm, and the phase difference between the displacement of the displacement detection sensor 4.5 is proportional to (amplitude of vibration proportional to Coriolis force)/(amplitude of vibration due to excitation). The mass flow rate can be determined. Since the phase difference can be measured as the difference Δt in the time at which the waveform crosses zero, Coriolis can be measured as a result. In this case, a signal is obtained by multiplying the signal of displacement detection sensor l2, which detects a point where there is no displacement due to Coriolis force, by a constant slightly smaller than 1, from the signals of displacement detection sensors 4 and 5 that detect displacement due to Coriolis force. After subtracting , the phase difference between the signals was detected as a time difference. In this case, 0.9 was used as the constant. That is, Y4 or 5 X ・0.9 + (0.1A) 2 +82 )) I/2
sin(ωt±θ2) tan θ2=1-1/A Therefore, the time difference Δt2 is expressed by the following formula, and the conventional example 10
You can get double the time difference.

Δt2−Δθ/ω (2B>/(0.IAω) =10Δt, この結果、同一流量に対して、従来例より大きな時間差
か得られるので、良好な分解能が得られる. なお、前述の実施例においては、測定I1′1はU字管
のものについて説明したが、これに限ることはなく、例
えば、平行管でもよく、要するに、コリオリカか′検知
できるものであれば良い.また、シングルチューブでな
くダブルチューブでも良い. また、変位検出センサ3,4.12は、電磁方式、スト
レインゲージタイ1、光とックア・yグタイグでもよい
Δt2−Δθ/ω (2B>/(0.IAω) = 10Δt, As a result, for the same flow rate, a larger time difference than in the conventional example can be obtained, so good resolution can be obtained. Although the measurement I1'1 was explained using a U-shaped tube, it is not limited to this, for example, a parallel tube may be used, as long as Coriolis can be detected. A double tube may be used.Also, the displacement detection sensors 3, 4, and 12 may be of an electromagnetic type, a strain gauge tie 1, or an optical type.

また、定数はO く発明の効果〉 以上説明したように、本発明は、測定管と、該測定管を
加振する振動子と、前記測定管の変位を検出する2個の
第1.第2の変位検出センサとを具備するコリオリ質量
流量計において、前記測定管のコリオリ力による変位の
無い箇所の変位を検出する第3の変位検出センサと、該
第3の変位検出センサの検出信号を1よりわずか小さい
定数で乗算する乗算回路と、該乗算回路の出力と前記第
1の変位検出センサとを差動増幅する第1の差動増幅回
路と、前記乗算回路の出力と前記第2の変位検出センサ
とを差動増幅する第2の差動増幅回路と、該第2の差動
増幅回路と前記第1の差動増幅回路の出力信号の位相差
から時間差を測定する時間差検出回路とを具備したこと
を特徴とするコリオリ質量流量計を楢成した.この結果
、同一流量に対して、従来例より大きな時間差が得られ
るので、良好な分解能が得られ9に限らないのは勿論で
ある. る4 従って、本発明によれば、大きな時間差が測定で出来、
良好な分解能が得られるコリオリ質量流量計を実現する
ことが出来る.
Furthermore, the constant is O. Effects of the Invention> As explained above, the present invention includes a measuring tube, a vibrator that vibrates the measuring tube, and two first vibrators that detect the displacement of the measuring tube. A Coriolis mass flowmeter comprising a second displacement detection sensor, a third displacement detection sensor that detects displacement of a portion of the measurement tube where there is no displacement due to Coriolis force, and a detection signal of the third displacement detection sensor. a first differential amplifier circuit that differentially amplifies the output of the multiplication circuit and the first displacement detection sensor; a second differential amplifier circuit that differentially amplifies the displacement detection sensor; and a time difference detection circuit that measures a time difference from the phase difference between the output signals of the second differential amplifier circuit and the first differential amplifier circuit. We have developed a Coriolis mass flowmeter characterized by the following: As a result, for the same flow rate, a larger time difference than in the conventional example can be obtained, so good resolution can be obtained, and of course it is not limited to 9. 4 Therefore, according to the present invention, a large time difference can be measured,
A Coriolis mass flowmeter with good resolution can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部構成説明図、第2図は
第1図の変換器の一実施例の要部構成説明図、第3図は
従来より一般に使用されている従来例の構成説明図、第
4図は第3図の動作説明図、第5図は従来より一般に使
用されている他の従来例の構成説明図である. 2・・・取付けフランジ、1・・・測定管、3・・・振
動子、4,5・・・変位検出センサ、11・・・結合板
、12・・・変位検出センサ、13・・・ブロック、2
1 2223・・・増幅回路、24・・・乗算回路、2
5・・・第1の差動増幅回路、26・・・第2の差動増
幅回路、27・・・時間差検出回路、28・・・出力変
IIA囲路.第 ! 図 :’.  z  図 第 3 図 第 4 図 (A) /’VJ”J (B) 第 5 図
FIG. 1 is an explanatory diagram of the main part of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the main part of an embodiment of the converter shown in FIG. FIG. 4 is an explanatory diagram of the configuration of an example, FIG. 4 is an explanatory diagram of the operation of FIG. 3, and FIG. 5 is an explanatory diagram of the configuration of another conventional example that has been commonly used. 2... Mounting flange, 1... Measuring tube, 3... Vibrator, 4, 5... Displacement detection sensor, 11... Coupling plate, 12... Displacement detection sensor, 13... block, 2
1 2223...Amplification circuit, 24...Multiplication circuit, 2
5... First differential amplifier circuit, 26... Second differential amplifier circuit, 27... Time difference detection circuit, 28... Output variable IIA circuit. No.! figure:'. z Figure 3 Figure 4 (A) /'VJ”J (B) Figure 5

Claims (1)

【特許請求の範囲】 測定管と、 該測定管を加振する振動子と、 前記測定管の変位を検出する2個の第1、第2の変位検
出センサとを具備するコリオリ質量流量計において、 前記測定管のコリオリ力による変位の無い箇所の変位を
検出する第3の変位検出センサと、該第3の変位検出セ
ンサの検出信号を1よりわずか小さい定数で乗算する乗
算回路と、 該乗算回路の出力と前記第1の変位検出センサとを差動
増幅する第1の差動増幅回路と、 前記乗算回路の出力と前記第2の変位検出センサとを差
動増幅する第2の差動増幅回路と、該第2の差動増幅回
路と前記第1の差動増幅回路の出力信号の位相差から時
間差を測定する時間差検出回路 とを具備したことを特徴とするコリオリ質量流量計。
[Scope of Claims] A Coriolis mass flowmeter comprising: a measuring tube; a vibrator that vibrates the measuring tube; and two first and second displacement detection sensors that detect displacement of the measuring tube. , a third displacement detection sensor that detects displacement of a portion of the measuring tube that is not displaced by Coriolis force; a multiplication circuit that multiplies the detection signal of the third displacement detection sensor by a constant slightly smaller than 1; a first differential amplifier circuit that differentially amplifies the output of the circuit and the first displacement detection sensor; and a second differential amplifier that differentially amplifies the output of the multiplier circuit and the second displacement detection sensor. A Coriolis mass flowmeter comprising: an amplifier circuit; and a time difference detection circuit that measures a time difference from a phase difference between output signals of the second differential amplifier circuit and the first differential amplifier circuit.
JP19488389A 1989-07-27 1989-07-27 Coriolis mass flowmeter Pending JPH0357920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19488389A JPH0357920A (en) 1989-07-27 1989-07-27 Coriolis mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19488389A JPH0357920A (en) 1989-07-27 1989-07-27 Coriolis mass flowmeter

Publications (1)

Publication Number Publication Date
JPH0357920A true JPH0357920A (en) 1991-03-13

Family

ID=16331908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19488389A Pending JPH0357920A (en) 1989-07-27 1989-07-27 Coriolis mass flowmeter

Country Status (1)

Country Link
JP (1) JPH0357920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069144A (en) * 2007-09-10 2009-04-02 Berkin Bv Device and method for measuring coriolis-type mass flow having at least three sensor measuring sections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069144A (en) * 2007-09-10 2009-04-02 Berkin Bv Device and method for measuring coriolis-type mass flow having at least three sensor measuring sections

Similar Documents

Publication Publication Date Title
US5357811A (en) Single tube coriolis flow meter with floating intermediate section
CA2113800A1 (en) Coriolis Effect Mass Flow Meter
WO2004099733A1 (en) Coriolis flowmeter
US6705172B1 (en) Method and device for detecting and compensating zero point influences on coriolis mass flowmeters
US20150323362A1 (en) Mass flowmeter
JP3327325B2 (en) Coriolis mass flowmeter
JPH0341319A (en) Coriolis mass flowmeter
JPH0357920A (en) Coriolis mass flowmeter
CN100478652C (en) Coriolis flow rate meter with flow tube of double loop structure
JPS58160813A (en) Vortex flow meter
JPS58153121A (en) Mass flowmeter
JP2712684B2 (en) Coriolis mass flowmeter
JPH10104040A (en) Mass flowmeter converter
JPH0348729A (en) Coriolis mass flowmeter
JPS5855816A (en) Vortex flowmeter
JPH067324Y2 (en) Mass flow meter
JPH02206722A (en) Coriolis mass flowmeter
RU2324150C2 (en) Test unit and diagnosis method for coriolis flow meter
JP3757559B2 (en) Coriolis mass flow meter
JPS63233328A (en) Mass flowmeter
JPH0783721A (en) Vibration type measuring apparatus
JP2002054959A (en) Differential pressure type flow rate meter
JPH0712612A (en) Coliolis type massflowmeter
JPH0499918A (en) Mass flowmeter
JP2723306B2 (en) Mass flow meter