JPH0356535A - Production of oxazoline polymer/silica composite molded article - Google Patents

Production of oxazoline polymer/silica composite molded article

Info

Publication number
JPH0356535A
JPH0356535A JP19044689A JP19044689A JPH0356535A JP H0356535 A JPH0356535 A JP H0356535A JP 19044689 A JP19044689 A JP 19044689A JP 19044689 A JP19044689 A JP 19044689A JP H0356535 A JPH0356535 A JP H0356535A
Authority
JP
Japan
Prior art keywords
oxazoline polymer
silica
polymer
oxazoline
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19044689A
Other languages
Japanese (ja)
Other versions
JP2680434B2 (en
Inventor
Takeo Saegusa
武夫 三枝
Yoshiki Nakajo
善樹 中條
Shigeo Kure
久禮 成雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19044689A priority Critical patent/JP2680434B2/en
Publication of JPH0356535A publication Critical patent/JPH0356535A/en
Application granted granted Critical
Publication of JP2680434B2 publication Critical patent/JP2680434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject uniform and transparent composite molded article without troubles at a low cost by gelatinizing an oxazoline polymer containing hydrolyzable and polymerizable silyl group and a hydrolyzable and polymerizable silane and forming the components before or after the gelatinization. CONSTITUTION:An oxazoline polymer containing hydrolyzable and polymerizable group (preferably trialkoxysilyl group) and a hydrolyzable and polymerizable silane (preferably tetraalkoxy-silane) are gelatinized by co-hydrolytic polymerization reaction. Before or after the gelatinization, the components are formed in a proper form such as fiber, film or sphere to obtain the objective composite molded article having easily controllable pore diameter and its distribution. The above forming process is preferably coating.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、オキサゾリンポリマー/シリカ複合成形体の
製造方法に関し、さらに詳しくは、繊維状,膜状の如き
各種形態のシリカ成形体を円滑有利に製造することがで
きる特定のゾルーゲル法を用いた新規な方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing an oxazoline polymer/silica composite molded product, and more specifically, it relates to a method for producing a silica molded product in various forms such as fibrous and film shapes. This invention relates to a novel method using a specific sol-gel method, which can be produced in the following manner.

[従来の技術] 従来より、多孔質シリカの製造方法としては種々の方法
が提案されている。その一つは、シリカ粉体を仮焼し熱
分解せしめて粒子または粒子間に気孔を形成させた後、
焼結する方法である。この方法では、孔径の揃った多孔
質シリカを製造することが困難であり、また繊維状,膜
状の如き各種用途に応じた形態に成形することが難しい
。他の方法として、アルコキシシランを原料としたゾル
ーゲル法が多孔質シリカの製造方法として提案されてい
る.このゾルーゲル法による場合には、得られる多孔質
シリカの細孔径は通常極めて小さく、またこの細孔径を
大きくしようとすると、細孔径分布が広くなるという難
点が認められる。
[Prior Art] Conventionally, various methods have been proposed as methods for producing porous silica. One method is to calcinate and thermally decompose silica powder to form particles or pores between the particles.
This is a method of sintering. With this method, it is difficult to produce porous silica with uniform pore diameters, and it is also difficult to form it into forms suitable for various uses, such as fibrous or membrane forms. As another method, a sol-gel method using alkoxysilane as a raw material has been proposed as a method for producing porous silica. When this sol-gel method is used, the pore size of the porous silica obtained is usually extremely small, and if the pore size is increased, the pore size distribution becomes wider.

[発明が解決しようとする課題] 本発明の目的は、上記従来技術の難点を解消し、細孔径
及びその分布のコントロールが容易にできるとともに、
各種用途に応じた適宜の形態にすることができる多孔質
シリカの製造技術を新規に提供することにある. (課題を解決するための手段】 本発明者の研究によれば、ゾルーゲル法の場合には、例
えば有機ボリマーを用いて上記の目的が達成されるが、
用いる有機ボリマーによっては特に均一分散性不良に基
く次のような難点が残ってしまう。例えば、有機ボリマ
ー溶液中でアルコキシシランの加水分解重合反応を行な
い、反応溶液系をゲル化せしめた後、生成した多孔質ゲ
ル中の有機ボリマーを除去し、その後に焼成するなどの
方法により、細孔径及びその分布を容易にコントロール
し得るのであるが、ゲル化工程で相分離を伴うため、均
一分散性が損なわれるとともに、適宜形態への賦形性に
も難点が残る。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of the above-mentioned conventional techniques, to easily control the pore diameter and its distribution, and to
The purpose of this project is to provide a new manufacturing technology for porous silica that can be formed into appropriate forms for various uses. (Means for Solving the Problems) According to the research of the present inventors, in the case of the sol-gel method, the above object is achieved using, for example, an organic polymer;
Depending on the organic polymer used, the following drawbacks may remain due to poor uniform dispersibility. For example, after performing a hydrolytic polymerization reaction of alkoxysilane in an organic polymer solution and gelling the reaction solution system, the organic polymer in the generated porous gel is removed, and then baking is performed. Although the pore size and its distribution can be easily controlled, the gelation process involves phase separation, which impairs uniform dispersibility and leaves problems in shaping into an appropriate shape.

上記の如き問題点の認識に基いて更に研究を重ねた結果
、次のような興味深い知見を得るに至ったものである.
すなわち、ポリオキサゾリン末端へトリエトキシシリル
基などを導入することにより、これとアルコキシシラン
との共加水分解重合が可能となり、生成ゲルはシリカと
ポリオキサゾリンとが化学結合によって強固に連結され
ているので、ゲル化工程での相分離が解消される。また
、ポリオキサゾリン自体はシランあるいはシリカと極め
て親和性が良いので、ゲル化の前でも後でも両者が均一
に分散されており、これらいずれの段階においても適宜
形態への賦形性が優れている。従って、上記特定のポリ
オキサゾリンとアルコキシシランを用いたゾルーゲル法
によれば、各種用途に応じた適宜形態のボリマー/シリ
カ複合成形体が均一分散状態を保持して円滑有利に製造
され得る。而して、本発明により製造される成形体を高
温で熱処理すれば、ゲル体中のポリオキサゾリン部分が
消失することによって、各種形態で且つ細孔径及びその
分布がコントロールされた多孔質シリカを得ることがで
きる。
As a result of further research based on the recognition of the above problems, we have obtained the following interesting findings.
In other words, by introducing a triethoxysilyl group or the like to the end of polyoxazoline, co-hydrolysis polymerization of this and alkoxysilane becomes possible, and the resulting gel has silica and polyoxazoline firmly connected by chemical bonds. , phase separation in the gelation process is eliminated. In addition, since polyoxazoline itself has extremely good affinity with silane or silica, both are uniformly dispersed both before and after gelation, and it has excellent shaping properties into the appropriate form at any of these stages. . Therefore, according to the sol-gel method using the above-mentioned specific polyoxazoline and alkoxysilane, polymer/silica composite molded bodies of appropriate shapes for various uses can be smoothly and advantageously produced while maintaining a uniformly dispersed state. When the molded body produced according to the present invention is heat-treated at a high temperature, the polyoxazoline portion in the gel body disappears, thereby producing porous silica in various forms with controlled pore diameters and distribution. be able to.

かくして本発明は、上記知見に基いて完或されたもので
あり、加水分解重合性シリル基含有オキサゾリンポリマ
ーと加水分解重合性シランとを共加水分解重合反応させ
てゲル化せしめ、該ゲル化の前乃至後に賦形を行なうこ
とを特徴とするオキサゾリンポリマー/シリカ複合成形
体の製造方法を新規に提供するものである。
Thus, the present invention has been completed based on the above findings, and involves co-hydrolytically polymerizing a hydrolytically polymerizable silyl group-containing oxazoline polymer and a hydrolytically polymerizable silane to form a gel. The present invention provides a novel method for producing an oxazoline polymer/silica composite molded article, which is characterized by performing shaping before or after the process.

本発明によれば、シリカの三次元ネットワーク中にオキ
サゾリンポリマーが化学結合により組み込まれた複合成
形体が円滑有利に製造され得る。
According to the present invention, a composite molded article in which an oxazoline polymer is incorporated into a three-dimensional network of silica through chemical bonding can be smoothly and advantageously produced.

また、本発明によれば、繊維状,膜状の如き各種用途に
応じた形態のボリマー/シリカ複合或形体が自由に製造
され得る.,シかも、本発明の複合成形体は、特定シラ
ンと特定ボリマーとの親和性及び共加水分解重合による
化学結合の両者が相俟って、相分離のない非常に均一な
ものとなり、賦形性が良好なだけでなく、透明性に優れ
たものである.更に、本発明の複合或形体は、これを高
温熱処理することにより、その形態を保持した状態で細
孔径及びその分布がコントロールされた多孔質シリカ体
に容易に変換することができる.本発明において、加水
分解重合性シリル基含有オキサゾリンポリマーとしては
、種々のものが広範囲にわたって例示され得る。まず、
加水分解重合性シリル基としては、通常はトリメトキシ
シリル基,トリエトキシシリル基の如きトリアルコキシ
シリル基が好適なものとして例示されるが、その他のト
リクロロシリル基,ヒドロキシシリル基なども採用され
得る。また、該加水分解重合性シリル基は、オキサゾリ
ンポリマーの片末端に導入されていても良く、両末端に
導入されていても良い。オキサゾリンポリマーへの加水
分解重合性シリル基の導入方法についても特に限定はな
く、例えばオキサゾリンの開環重合における生長末端の
オキサゾリニウム塩の反応性を利用する方法などが挙げ
られる.求核剤としてのアミノブロビルトリエトキシシ
ランを上記の生長末端オキサゾリニウム塩に反応させて
アンモニウム塩の形とし、これを塩基性イオン交換樹脂
で処理することにより、末端にトリエトキシシリル基を
有するポリオキサゾリンを得ることができる.また、末
端に二重結合を有するオキサゾリンポリマーとトリアル
コキシシランとのヒドロシリル化反応などによっても、
末端にトリエトキシシリル基を有するポリオキサゾリン
を得ることができる. 次に、オキサゾリンボリマ一部分についても、その種類
,分子量など種々の変更が可能である。
Furthermore, according to the present invention, polymer/silica composite bodies having various shapes such as fibrous and membrane shapes can be produced according to various uses. However, the composite molded article of the present invention is extremely uniform without phase separation due to the affinity between the specific silane and the specific polymer and the chemical bonding caused by co-hydrolytic polymerization. It not only has good properties but also excellent transparency. Furthermore, by subjecting the composite shaped body of the present invention to high-temperature heat treatment, it can be easily converted into a porous silica body with controlled pore size and distribution while maintaining its morphology. In the present invention, a wide variety of hydrolytically polymerizable silyl group-containing oxazoline polymers can be exemplified. first,
As the hydrolytically polymerizable silyl group, trialkoxysilyl groups such as trimethoxysilyl group and triethoxysilyl group are usually exemplified as preferred, but other trichlorosilyl groups, hydroxysilyl groups, etc. may also be employed. . Further, the hydrolytically polymerizable silyl group may be introduced at one end or both ends of the oxazoline polymer. There are no particular limitations on the method for introducing hydrolytically polymerizable silyl groups into the oxazoline polymer, and examples include methods that utilize the reactivity of the oxazolinium salt at the growing end in ring-opening polymerization of oxazoline. Aminobrobyltriethoxysilane as a nucleophile is reacted with the above propagating terminal oxazolinium salt to form an ammonium salt, which is then treated with a basic ion exchange resin to form a polyester having a triethoxysilyl group at the terminal. Oxazoline can be obtained. In addition, by a hydrosilylation reaction between an oxazoline polymer having a double bond at the end and a trialkoxysilane, etc.
A polyoxazoline with a triethoxysilyl group at the end can be obtained. Next, the oxazoline borimer portion can also be changed in various ways, such as its type and molecular weight.

例えば、種類についてはオキサゾリン,メチルオキサゾ
リン,エチルオキサゾリン,プチルオキサゾリン,オク
チルオキサゾリンなどのボリマーが例示され、分子量に
ついても重合度1〜200程度のものなどが特に限定さ
れることなく例示され得る。これらの分子量,種類、あ
るいは上記片末端か両末端か、さらには後述の特定オキ
サゾリンポリマーの仕込比などによって、目的成形体の
吸水性,親水性,溶媒親和性などを変えることができる
とともに、本発明成形体からの多孔質シリカの細孔径や
細孔分布をコントロールすることもできる。
For example, as for the type, polymers such as oxazoline, methyloxazoline, ethyloxazoline, butyloxazoline, and octyloxazoline are exemplified, and as for the molecular weight, those with a degree of polymerization of about 1 to 200 can be exemplified without particular limitation. The water absorbency, hydrophilicity, solvent affinity, etc. of the target molded article can be changed by changing the molecular weight, type, whether the above-mentioned one or both ends, and the ratio of the specific oxazoline polymer described later. It is also possible to control the pore diameter and pore distribution of the porous silica produced from the inventive molded article.

本発明における加水分解重合性シランについても、特に
限定されることなく、広範囲にわたって種々のものが例
示され得る。例えば、テトラメトキシシラン,テトラエ
トキシシランの如きテトラアルコキシシランなどが好適
なものとして例示され、その他ゾルーゲル法において通
常用いられる各種シラン類あるいは部分的に重合させた
シラン類なども挙げられる。
The hydrolytically polymerizable silane in the present invention is not particularly limited, and a wide variety of silanes can be exemplified. For example, preferred examples include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, as well as various silanes commonly used in the sol-gel method and partially polymerized silanes.

本発明において、特定オキサゾリンポリマーと特定シラ
ンの反応割合(仕込比)は、目的とする成形体の用途,
性能など、あるいはその先の多孔質シリカの用途,性能
などに応じて適宜選定され得る.更に、該反応割合は、
使用する特定オキサゾリンポリマーの種類,分子量など
に応じても、その好適な範囲を適宜変更することが可能
である.例えば、特定オキサゾリンポリマー/特定シラ
ンの重量比で1/0.01〜l7100程度の広い範囲
から選定され得るものであり、通常は1/O.1〜1/
10程度が好ましく採用され得る。
In the present invention, the reaction ratio (feeding ratio) between the specific oxazoline polymer and the specific silane is determined depending on the intended use of the molded product.
It can be selected as appropriate depending on the performance, etc., or the future use and performance of porous silica. Furthermore, the reaction rate is
The preferred range can be changed as appropriate depending on the type, molecular weight, etc. of the specific oxazoline polymer used. For example, the specific oxazoline polymer/specific silane weight ratio can be selected from a wide range of about 1/0.01 to 7,100, and usually 1/O. 1~1/
A value of about 10 can be preferably adopted.

本発明における共加水分解重合反応は、従来のゾルーゲ
ル法におけると同様の操作,条件のもとに適宜実施可能
であり、特に限定される理由はないが、具体的に説明す
れば次の通りである。例えば、特定オキサゾリンポリマ
ーと特定シランをアルコール溶媒に溶かして均一溶液と
し、そこへ塩酸などを滴下して撹拌することにより反応
を行なう。反応は通常溶媒中で行なうのが望ましく、こ
の場合の溶媒としては、メタノール,エタノールの如き
アルコール類、エーテル類などが採用され得る。反応温
度は室温でも良く、O〜50℃程度?範囲から適宜選定
され得る。また、反応時間についても特に限定はなく、
例えば24時間程度でも反応させることができ、反応温
度などに応じて更に長時間や短時間を適宜採用すること
もできる。その他、窒素気流下での反応や0.5〜1気
圧程度の減圧下での反応などが適宜採用可能である。
The cohydrolysis polymerization reaction in the present invention can be carried out as appropriate under the same operations and conditions as in the conventional sol-gel method, and there is no particular reason to limit it, but a specific explanation is as follows. be. For example, a specific oxazoline polymer and a specific silane are dissolved in an alcohol solvent to form a homogeneous solution, and hydrochloric acid or the like is added dropwise to the solution and stirred to carry out the reaction. It is usually desirable to carry out the reaction in a solvent, and in this case, alcohols such as methanol and ethanol, ethers, etc. can be used as the solvent. The reaction temperature may be room temperature, or about 0~50℃? It can be selected as appropriate from the range. There is also no particular limitation on the reaction time;
For example, the reaction can be carried out for about 24 hours, and a longer or shorter time can be adopted as appropriate depending on the reaction temperature. In addition, reaction under a nitrogen stream, reaction under reduced pressure of about 0.5 to 1 atm, etc. can be appropriately employed.

本発明においては、特定オキサゾリンポリマーが特定シ
ランと相溶性良好であり、また上記加水分解重合反応に
よる生成ゲルはシリカとオキサゾリンポリマーとが化学
結合で強固に■連結されて一体ネットワークを形成して
いるので、ゲル化の前でも後で−も相分離は生起せず、
均一透明状態を保持している。而して、本発明において
は、上記ゲル化の前乃至後に繊維状,膜秋なと適宜形態
に賦形されるが、得られる成形体は均一透明のものとし
て得られる.ゲル化反応において溶媒が用いられた場合
には、この溶媒を適宜の段階で除去することができる。
In the present invention, the specific oxazoline polymer has good compatibility with the specific silane, and the gel produced by the above hydrolytic polymerization reaction has silica and oxazoline polymer firmly connected by chemical bonds to form an integral network. Therefore, no phase separation occurs before or after gelation.
Maintains uniform transparency. Therefore, in the present invention, the molded product is shaped into an appropriate shape such as fibrous or membrane-like before or after the above-mentioned gelation, but the molded product obtained is uniformly transparent. If a solvent is used in the gelation reaction, this solvent can be removed at an appropriate stage.

例えば、賦形後に溶媒の除去が可能であり、あるいはゲ
ル化反応過程で溶媒の除去を行なうこともできる。さら
には、ゲル化後に溶媒の除去を行なって、その後に賦形
を行なうこともできる.賦形態様がコーティングなどの
場合には、ゲル化前に基材へのコーティングを行ない、
基材上でゲル化反応せしめてシリカ/ボリマー複合体被
膜を形成するなどが有利である。
For example, the solvent can be removed after shaping, or the solvent can be removed during the gelation reaction process. Furthermore, it is also possible to remove the solvent after gelation and then perform shaping. If the form of imposition is coating, etc., the base material is coated before gelation,
It is advantageous to carry out a gelation reaction on the substrate to form a silica/polymer composite coating.

また、本発明における賦形態様は、広範囲にわたって採
用可能であり、例えば上記コーティングを初めとして繊
維状,球状,管状,膜状,板状,棒状などが挙げられる
。これらの成形体は、その形態を保持したままで多孔質
シリカ体への変換が可能である。勿論、シリカ/ボリマ
ー複合成形体のままでも、該複合成形体の親水性.親和
性,透明性などの各種性能を生かした用途に適用するこ
とができる。賦形方法としても、目的とする成形体の形
態に応じて好適な方法が適宜選択され得るものであり、
溶液を用いた流延法や塗布法,繊維状や管状などへの押
出成形法,膜状や板状などへのプレス成形法,管状や複
雑形状などへの遠心成形法,その他各種形状への注型或
形法などが採用され得る。
In addition, a wide range of shapes can be employed in the present invention, and examples include the above-mentioned coating, as well as fibrous, spherical, tubular, membrane, plate, and rod shapes. These molded bodies can be converted into porous silica bodies while maintaining their shape. Of course, the hydrophilicity of the silica/polymer composite molded product can be improved even if it is left as is. It can be applied to applications that take advantage of various properties such as affinity and transparency. As for the shaping method, a suitable method can be selected as appropriate depending on the form of the intended molded product,
Casting and coating methods using solutions, extrusion molding into fibers and tubes, press molding into membranes and plates, centrifugal molding into tubes and complex shapes, and other various shapes. Casting or molding methods may be employed.

本発明のシリカ/ボリマー複合成形体を多孔質シリカ体
へ変換する場合、通常はオキサゾリンポリマーの分解温
度以上の高温で熱処理すれば良いが、例えば300〜8
00℃程度の温度で3〜24時間程度の加熱処理が採用
される。高温熱処理によって、オキサゾリンボリマ一部
分が消失するとともに、シリカ部分が焼結されて多孔質
シリカ体へ変換される.得られる多孔質シリカ体は、そ
の細孔径及び孔径分布が良好にコントロールされている
.例えば、細孔径は5〜100人程度の広範囲にわたっ
て自由にコントロールすることができ、また孔径分布に
ついても揃ったものとすることができる。
When converting the silica/polymer composite molded article of the present invention into a porous silica body, it is usually sufficient to perform heat treatment at a high temperature higher than the decomposition temperature of the oxazoline polymer, but for example,
Heat treatment is employed at a temperature of about 00° C. for about 3 to 24 hours. By high-temperature heat treatment, part of the oxazoline polymer disappears, and the silica part is sintered and converted into a porous silica body. The resulting porous silica body has well-controlled pore size and pore size distribution. For example, the pore size can be freely controlled over a wide range of about 5 to 100, and the pore size distribution can also be made uniform.

而して、上記のようにして得られる多孔質シリカ体は,
本発明の複合成形体の形態が保持されているので、その
形態を生かした広範囲の用途に適用され得る。例えば、
繊維状体はマット状フィルター,織物状フィルター,触
媒担体,酵素担体などとして、膜状体や管状体は分離フ
ィルター,敢気板,噴気管,散液板・管などとして、球
状体は吸着材,触媒担体,充填材などとして、またコー
ティング体は液体クロマトグラフィー用担体,酵素担体
などとして、それぞれ採用され得るものである。
The porous silica body obtained as described above is
Since the shape of the composite molded article of the present invention is maintained, it can be applied to a wide range of uses that take advantage of that shape. for example,
Fibrous bodies can be used as mat filters, woven filters, catalyst carriers, enzyme carriers, etc. Membrane bodies and tubular bodies can be used as separation filters, air plates, fumarole pipes, liquid dispersion plates/tubes, etc. Spherical bodies can be used as adsorbents , a catalyst carrier, a filler, etc., and the coated body can be employed as a carrier for liquid chromatography, an enzyme carrier, etc.

[実施例] 以下、本発明の実施例についてさらに具体的に説明する
が、かかる説明によって本発明が何ら限定されないもの
であることは勿論である。
[Examples] Examples of the present invention will be described in more detail below, but it goes without saying that the present invention is not limited by such explanations.

〈  オキサゾlンボ1マーの  〉 合成例1〜4. メチルトシレート(cHgar−)を開始剤とした2−
メチル−2−オキサゾリンの開環重合、その重合反応で
生成するリビング的重合生長末端オキサゾリニウム塩と
求核剤としての3−アミノブロビルトリエトキシシラン
との反応(アミン基がオキサゾリニウム末端と反応して
アンモニウム塩の形となる)、及び該アンモニウム塩の
塩基性イオン交換樹脂による処理(→末端にトリエトキ
シシリル基を有するポリオキサゾリンの生成)からなる
工程にしたがって、下記第1表に示すような各種の加水
分解重合性シリル基含有オキサゾリンポリマーを合成し
た。
<Oxazone 1mer> Synthesis Examples 1 to 4. 2- with methyl tosylate (cHgar-) as an initiator
Ring-opening polymerization of methyl-2-oxazoline, reaction of the living polymer propagating terminal oxazolinium salt produced by the polymerization reaction with 3-aminobrobyltriethoxysilane as a nucleophile (the amine group reacts with the oxazolinium terminal). ammonium salt form), and treatment of the ammonium salt with a basic ion exchange resin (→ production of polyoxazoline having a triethoxysilyl group at the end), various types of products as shown in Table 1 below are prepared. A hydrolytically polymerizable silyl group-containing oxazoline polymer was synthesized.

また、上記のメチルトシレートの代わりに、ビスオキサ
ゾリンとメチルトシレートの反応で得られる二官能性開
始剤(T.0・・OT1)を用いる他は、上記と同様の
工程に従って、下記第1表に示すような両末端にトリエ
トキシシリル基を有するオキサゾリンポリマーを合成し
た。
In addition, in place of the above methyl tosylate, the following 1. An oxazoline polymer having triethoxysilyl groups at both ends as shown in the table was synthesized.

第l表 なお、上記第1表において、時間は上記工程における開
環重合反応の時間を、収率は同間環重合反応での収率を
、それぞれ示している。また、Mnは特定オキサゾリン
ポリマーの分子量を示し、coscN中80℃の試料に
ついて ’H−NMRから計算したものである. 〈オキサゾ1ンボリマー シ1力 A の  〉調製例
1〜6. 上記合成例と同様の方法で合成した下記第2表に示す特
定オキサゾリンポリマーを用いて、テトラエトキシシラ
ンとの共加水分解重合反応を行なった.特定オキサゾリ
ンポリマーとテトラエトキシシランを下記第2表に示す
仕込比でエタノールに溶かし、均一溶液としたところへ
塩酸を滴下し、数分間撹拌後に数日間放置することによ
り反応させた。得られたガラス状の固体を乳鉢で粉砕し
クロロホルムによるソックスレー抽出で精製した。得ら
れたボリマー/シリカ複合体について、元素分析から計
算したポリオキサゾリンの導入率(pozo%)及び9
00℃まで加熱した時の熱重量分折TGA (窒素気流
下、10℃/min.)による重量損失( Wt−Lo
ss%)を下記第2表に示した.下記第2表において、
POZO−A, POZO−Bは合成例1〜3に準じた
方法で合成された片末端にトリエトキシシリル基を有す
るポリオキサゾリンであり、pozo−cは合成例4に
準じた方法で合成された両末端にトリエトキシシリル基
を有するポリオキサゾリンである。また、D. P.は
原料の特定オキサゾリンポリマー(原料pozo)の重
合度を示す。さらに、仕込比は、原料POZO/テトラ
エトキシシランの重量比にて示している. 第2表 参考例1〜10. 調製例1〜6に準じた方法で得られる下記第3表に示す
オキサゾリンポリマー/シリカ複合体について、ポリオ
キサゾリン導入の効果をみるために、次に示す方法によ
って吸水倍率の測定を行なった. [吸水倍率の測定方法] 試料としてのオキサゾリンポリマー/シリカ複合体の1
00mgを水中で10時間膨潤させ、次いでガラスフィ
ルターで20mmHgの減圧下に5分間濾過する.この
ように処理された試料から、複合体に膨潤吸収された水
の重量を算出し、その水の重量をもとの乾燥複合体の重
量で割って吸水倍率を求める. 得られる結果(H80含量)及び上記第2表におけると
同様のpozo%を下記第3表に示す。また、第3表に
は、テトラエトキシシランのみから合成したゲル(シリ
カ単体)についても、同様の結果を参考例lOとして示
してある. また、下記第3表において、POZO−A, POZO
−8は合成例1〜3に準じた力法で合成された片末端に
トリエトキシシリル基を有するポリオキサゾリンを示し
ており、pozo−cは合或例4に準じた方法で合成さ
れた両末端にトリエトキシシリル基を有するポリオキサ
ゾリンを示している。また、D. P.は原料の特定オ
キサゾリンボリマ−(原料POZO)の重合度を示すも
のである。
Table 1 In Table 1 above, time indicates the time for the ring-opening polymerization reaction in the above step, and yield indicates the yield in the ring-opening polymerization reaction. Moreover, Mn indicates the molecular weight of the specific oxazoline polymer, and is calculated from 'H-NMR of a sample at 80°C in coscN. Preparation Examples 1 to 6. A cohydrolytic polymerization reaction with tetraethoxysilane was carried out using specific oxazoline polymers shown in Table 2 below, which were synthesized in the same manner as in the above synthesis example. The specific oxazoline polymer and tetraethoxysilane were dissolved in ethanol at the charging ratio shown in Table 2 below, and hydrochloric acid was added dropwise to the homogeneous solution, which was stirred for several minutes and left to react for several days. The resulting glassy solid was ground in a mortar and purified by Soxhlet extraction with chloroform. Regarding the obtained polymer/silica composite, the introduction rate of polyoxazoline (pozo%) calculated from elemental analysis and 9
Weight loss (Wt-Lo) by thermogravimetric analysis TGA (under nitrogen flow, 10°C/min.) when heated to 00°C
ss%) are shown in Table 2 below. In Table 2 below,
POZO-A and POZO-B are polyoxazolines having a triethoxysilyl group at one end synthesized by a method according to Synthesis Examples 1 to 3, and pozo-c was synthesized by a method according to Synthesis Example 4. It is a polyoxazoline with triethoxysilyl groups at both ends. Also, D. P. indicates the degree of polymerization of a specific oxazoline polymer (raw material pozo) as a raw material. Furthermore, the charging ratio is expressed as a weight ratio of raw material POZO/tetraethoxysilane. Table 2 Reference Examples 1 to 10. The water absorption capacity of the oxazoline polymer/silica composites shown in Table 3 below, obtained by a method similar to Preparation Examples 1 to 6, was measured by the method shown below in order to examine the effect of introducing polyoxazoline. [Method for measuring water absorption capacity] Oxazoline polymer/silica composite sample 1
00 mg in water for 10 hours and then filtered through a glass filter under reduced pressure of 20 mmHg for 5 minutes. From the sample treated in this way, calculate the weight of water that swells and absorbs into the composite, and then divide the weight of water by the weight of the original dry composite to determine the water absorption capacity. The results obtained (H80 content) and pozo% similar to those in Table 2 above are shown in Table 3 below. Table 3 also shows similar results for a gel synthesized only from tetraethoxysilane (silica alone) as Reference Example IO. In addition, in Table 3 below, POZO-A, POZO
-8 indicates a polyoxazoline having a triethoxysilyl group at one end synthesized by the force method according to Synthesis Examples 1 to 3, and pozo-c indicates a polyoxazoline synthesized by a method according to Synthesis Example 4. It shows a polyoxazoline with a triethoxysilyl group at the end. Also, D. P. indicates the degree of polymerization of a specific oxazoline polymer (raw material POZO) as a raw material.

第3表 実施例l. 上記合成例1に準じて合成された重合度9.0の特定オ
キサゾリンボリマ−0.39tgとテトラエトキシシラ
ン1.97gを、3mlのエタノールに溶かし均一溶液
としたところへ、1規定の塩酸を0.2ml滴下し数分
間撹拌した溶液を、フッ素樹脂(ポリテトラフルオロエ
チレン)製基材の表面に流延塗布した.この状態で数日
間放置することにより、共加水分解重合反応を進行せし
めた.その結果、基材表面にガラス状固体からなる厚み
100ミクロンの透明塗膜を形成することができた.ク
ロロホルムによる抽出操作でエタノール溶媒及び未反応
原料を溶出することにより(あるいは50℃で加熱乾燥
することにより)該塗膜を精製して、オキサゾリンポリ
マー/シリ力複合体からなる透明な塗膜を得た. 該オキサゾリンポリマー/シリカ複合体塗膜は、フッ素
樹脂製基材の表面から剥がすことにより、複合体薄膜と
することもできる. 実施例2〜5. 実施例1において、使用する特定オキサゾリンポリマー
の種類と量及びテトラエトキシシランの使用量を下記第
4表に示すように変え、その他は同様の条件,手順によ
り、オキサゾリンポリマー/シリカ複合体からなる透明
な塗膜及び薄膜を得ることができた. 第4表 以上の実施例1〜5のようにして得られる塗膜及び薄膜
は、後述の製造例と同様の方法によって、その形状を保
持した状態で容易に多孔質シリカ体へ変換することがで
きる. 実施例6. 上記の合成例4に準じて合成されたところの重合度16
.1の両末端にトリエトキシシリル基を有するポリオキ
サゾリン3.92gとテトラエトキシシラン19.6g
を、40mlのエタノールに溶かし均一溶液としたとこ
ろへ、l規定の塩酸を0.9ml滴下し数分間撹拌した
溶液を原料液として用いた.この原料液40gを、内径
が2cm,長さがLoamの一端を封じたフッ素樹脂(
ポリテトラフルオロエチレン)製バイブ状鋳型内に注入
し、温度27℃に2日間、さらに温度50℃に1日間保
持することにより、共加水分解重合反応を進行せしめた
.その結果、長さ8.5cm,直径1.8cmの透明丸
棒体を得ることができた.該丸棒体を50℃で加熱乾燥
することにより、オキサゾリンポリマー/シリカ複合体
からなる透明な丸棒体を得た. 実施例7. 上記の合成例1〜3に準じて合成された重合度が9.0
の片末端にトリエトキシシリル基を有するポリオキサゾ
リン2.86gとテトラエトキシシラン28.6gを、
40mlのエタノールに溶かし均一溶液としたところへ
、1規定の塩酸を0.8ml滴下し数分間撹拌した溶液
を原料液として用いた. 一端を封じた薄肉のシリコーンゴム製チューブ内に水を
張って膨らませた外径1。5cmの棒状内型及び内径4
cmのフッ素樹脂(ポリテトラフルオロエチレン)製円
筒容器外型を用い、該外型内に該内型を同軸状に挿入し
、該外型の内壁と該内型の外壁との間の空間に上記の原
料液を注入し、温度27℃に2日間、さらに温度50℃
に1日間保持することにより、共加水分解重合反応を進
行せしめた.原料液がゲル化して固化したので、棒状内
型内の水を抜き出し、シリコーンゴム製チューブを抜き
取ることにより、内径0. 7cm,外径3.6cmの
透明バイブ状体を得ることができた.該パイプ状体を5
0℃で加熱乾燥することにより、オキサゾリンポリマー
/シリカ複合体からなる透明なパイプ状体を得た.実施
例8. 上記の合成例4に準じて合成された重合度が16.1の
両末端にトリエトキシシリル基を有するポリオキサゾリ
ン3.92gとテトラエトキシシラン19.6gを、4
0mlのエタノールに溶かし均一溶液としたところへ、
1規定の塩酸を0.9ml滴下し数分間撹拌した溶液を
原料液として用いた.該原料液を撹拌下に温度27℃で
共加水分解重合せしめ、粘度が70ボアズになったもの
を紡糸液とした. 紡糸装置には、孔径0.12mmの孔を200個有する
ノズルロ金(最外周径120mmの円板に孔配置密度1
.6個/ c m ”になるように孔が配列されている
)が組み込まれている.上記の紡糸液を15kg/cm
”の圧力で該ノズルロ金から押し出し、下方に設置した
巻取ドラムによって120m/分の速度で巻き取ったと
ころ、吐出不良やフィラメント切れがおこることなく、
長時間にわたって連続的にゲル状繊維を得ることができ
た。該ゲル状繊維はオキサゾリンボリマ−/シリ力複合
体からなる透明な繊維状体であり、直径が10ミクロン
、延伸比がl2であった.実施例9. 上記実施例8におけると同様の原料液を用いて共加水分
解重合せしめ、粘度が60ボアズになったものを紡糸液
とした.孔径0.10mmの孔を100個有するノズル
口金から該紡糸液を押し出し、巻取ドラムによって10
0m/分の速度で巻き取ることにより、オキサゾリンポ
リマー/シリ力複合体からなる直径20ミクロンの透明
なゲル状繊維が得られた。
Table 3 Examples l. 0.39 tg of the specific oxazoline polymer with a degree of polymerization of 9.0 synthesized according to Synthesis Example 1 above and 1.97 g of tetraethoxysilane were dissolved in 3 ml of ethanol to form a homogeneous solution, and then 1 N hydrochloric acid was added. 0.2 ml of the solution was added dropwise and stirred for several minutes, and then cast and coated on the surface of a fluororesin (polytetrafluoroethylene) substrate. By leaving it in this state for several days, the cohydrolysis polymerization reaction was allowed to proceed. As a result, we were able to form a transparent coating film of 100 microns thick made of glassy solid on the surface of the substrate. The coating film is purified by eluting the ethanol solvent and unreacted raw materials through an extraction operation with chloroform (or by heating and drying at 50°C) to obtain a transparent coating film composed of the oxazoline polymer/silica composite. Ta. The oxazoline polymer/silica composite coating film can also be made into a composite thin film by peeling it off from the surface of the fluororesin base material. Examples 2-5. In Example 1, the type and amount of the specific oxazoline polymer used and the amount of tetraethoxysilane used were changed as shown in Table 4 below, and otherwise a transparent material made of an oxazoline polymer/silica composite was prepared under the same conditions and procedures. We were able to obtain a coating film and a thin film. The coating films and thin films obtained as in Examples 1 to 5 in Table 4 and above can be easily converted into porous silica bodies while maintaining their shape by the same method as in the production examples described below. can. Example 6. Polymerization degree 16 synthesized according to the above Synthesis Example 4
.. 3.92 g of polyoxazoline having triethoxysilyl groups at both ends of 1 and 19.6 g of tetraethoxysilane
was dissolved in 40 ml of ethanol to form a homogeneous solution, 0.9 ml of normal hydrochloric acid was added dropwise and stirred for several minutes, and the solution was used as the raw material solution. 40g of this raw material liquid was mixed with a fluororesin (with an inner diameter of 2cm and a length sealed at one end).
The cohydrolytic polymerization reaction was allowed to proceed by injecting the mixture into a mold made of polytetrafluoroethylene and maintaining the temperature at 27°C for 2 days and then at 50°C for 1 day. As a result, a transparent round rod with a length of 8.5 cm and a diameter of 1.8 cm was obtained. By heating and drying the round rod at 50°C, a transparent round rod made of an oxazoline polymer/silica composite was obtained. Example 7. The degree of polymerization synthesized according to the above Synthesis Examples 1 to 3 was 9.0.
2.86 g of polyoxazoline having a triethoxysilyl group at one end and 28.6 g of tetraethoxysilane,
To a homogeneous solution dissolved in 40 ml of ethanol, 0.8 ml of 1N hydrochloric acid was added dropwise and stirred for several minutes, and the solution was used as a raw material solution. A rod-shaped inner mold with an outer diameter of 1.5 cm and an inner diameter of 4
Using an outer mold of a cylindrical container made of fluororesin (polytetrafluoroethylene) of cm, the inner mold is coaxially inserted into the outer mold, and the space between the inner wall of the outer mold and the outer wall of the inner mold is filled. Inject the above raw material liquid and maintain the temperature at 27℃ for 2 days, then further at 50℃.
The cohydrolysis polymerization reaction was allowed to proceed by holding the solution for 1 day. As the raw material liquid gelled and solidified, the water in the rod-shaped inner mold was extracted and the silicone rubber tube was removed to reduce the inner diameter to 0. A transparent vibrator-like body with a length of 7 cm and an outer diameter of 3.6 cm was obtained. 5.
By heating and drying at 0°C, a transparent pipe-shaped body made of an oxazoline polymer/silica composite was obtained. Example 8. 3.92 g of polyoxazoline having a triethoxysilyl group at both ends and 19.6 g of tetraethoxysilane having a polymerization degree of 16.1 synthesized according to Synthesis Example 4 above,
Dissolve it in 0ml of ethanol to make a homogeneous solution.
A solution obtained by dropping 0.9 ml of 1N hydrochloric acid and stirring for several minutes was used as the raw material solution. The raw material solution was co-hydrolyzed and polymerized at a temperature of 27° C. with stirring, and the resulting solution had a viscosity of 70 boads, which was used as a spinning solution. The spinning device was equipped with a nozzle die having 200 holes with a hole diameter of 0.12 mm (a hole arrangement density of 1 on a disk with an outermost circumferential diameter of 120 mm).
.. The holes are arranged so that the number of holes is 6/cm").The above spinning solution is
When the filament was extruded from the nozzle with a pressure of 100 ft and wound up at a speed of 120 m/min by a winding drum installed below, no ejection failure or filament breakage occurred.
It was possible to obtain gel-like fibers continuously over a long period of time. The gel-like fiber was a transparent fibrous body made of an oxazoline polymer/silica composite, and had a diameter of 10 microns and a drawing ratio of 12. Example 9. Co-hydrolysis polymerization was carried out using the same raw material solution as in Example 8 above, and the resulting spinning solution had a viscosity of 60 boads. The spinning solution is pushed out through a nozzle having 100 holes with a hole diameter of 0.10 mm, and is
By winding at a speed of 0 m/min, transparent gel-like fibers of oxazoline polymer/silica composite with a diameter of 20 microns were obtained.

実施例10. 上記の合成例4に準じて合成された重合度が16.1の
両末端にトリエトキシシリル基を有するポリオキサゾリ
ン3.92gとテトラエトキシシラン19.6gを、4
0mlのエタノールに溶かし均一溶液としたところへ、
l規定の塩酸を0.9ml滴下し、27℃で2日間共加
水分解重合せしめた液を原料液とした. ガラス製の二流体ノズル(内管径0.5mm,外管径2
.5mm)の内管より上記の原料液の40mlを2m1
/分の速度で、また乾燥N雪を上記二流体ノズルの外管
より5リットル/分の速度で送り込み、別に設けた液体
N雪リザーバー中に噴霧した.噴霧終了後に上記リザー
バーを減圧にし、液分を昇華せしめた.得られた微小球
体を50℃で乾燥することにより、オキサゾリンポリマ
ー/シリカ複合体からなる平均粒径0.lmlの透明球
状粒子を得た. 実施例11. 上記合成例1に準じて合成された重合度9.0の片末端
にトリエトキシシリル基を有するポリオキサゾリン2.
86,とテトラエトキシシラン28.6gを40mlの
エタノールに溶かし均一溶液としたところへ、1規定の
塩酸0.8mlを滴下し、更に27℃で2日間共加水分
解重合せしめた液を原料液とした. この原料液を、回転装置にその長軸が水平になるように
設置された内径5cm.長さ20cmのポリテトラフル
オロエチレン製バイブ状鋳型内に注入し、1 0 0 
0  r.p.m.で30分間回転させた.更に,その
後50℃で1日間保持することにより、共加水分解重合
反応を進行せしめた。その結果、外径4.5cm,肉厚
0.5mm,長さ18cmのオキサゾリンポリマー/シ
リカ複合体からなる透明なバイブ状体が得られた。
Example 10. 3.92 g of polyoxazoline having a triethoxysilyl group at both ends and 19.6 g of tetraethoxysilane having a polymerization degree of 16.1 synthesized according to Synthesis Example 4 above,
Dissolve it in 0ml of ethanol to make a homogeneous solution.
0.9 ml of normal hydrochloric acid was added dropwise, and the solution was co-hydrolyzed and polymerized at 27°C for 2 days, which was used as a raw material solution. Glass two-fluid nozzle (inner tube diameter 0.5 mm, outer tube diameter 2
.. Pour 40ml of the above raw material solution into 2ml from the inner tube (5mm).
Dry N snow was sent through the outer tube of the two-fluid nozzle at a rate of 5 liters/min and sprayed into a separate liquid N snow reservoir. After the spraying was completed, the pressure in the reservoir was reduced to allow the liquid to sublimate. By drying the obtained microspheres at 50°C, the average particle size of the oxazoline polymer/silica composite was reduced to 0. 1ml of transparent spherical particles were obtained. Example 11. 2. Polyoxazoline having a triethoxysilyl group at one end and having a degree of polymerization of 9.0, synthesized according to Synthesis Example 1 above.
86, and 28.6 g of tetraethoxysilane were dissolved in 40 ml of ethanol to form a homogeneous solution, 0.8 ml of 1N hydrochloric acid was added dropwise, and the resulting solution was co-hydrolyzed and polymerized at 27°C for 2 days. did. This raw material liquid was transferred to a rotating device with an inner diameter of 5 cm installed so that its long axis was horizontal. Injected into a 20 cm long polytetrafluoroethylene vibe-shaped mold, 100
0 r. p. m. I rotated it for 30 minutes. Furthermore, the cohydrolysis polymerization reaction was allowed to proceed by holding the mixture at 50° C. for 1 day. As a result, a transparent vibrator-like body made of an oxazoline polymer/silica composite with an outer diameter of 4.5 cm, a wall thickness of 0.5 mm, and a length of 18 cm was obtained.

以上の実施例6〜11のようにして得られる各種或形体
についても、後述の製造例と同様の方法によって、その
形状を保持した状態で容易に多孔質シリカ体へ変換する
ことができる. 〈     シ1 力  の  ゛告〉製造例1〜6. 下記第5表に示す原料POZO (特定オキサゾリンポ
リマー)を用いて上記調製例1〜6に準じて調製された
オキサゾリンポリマー/シリカ複合体を、高温熱処理せ
しめることにより多孔質シリカ体を製造した。高温熱処
理は、上記オキサゾリンポリマー/シリカ複合体を58
0〜600℃で24時間加熱することにより行なった.
得られた多孔質シリカ体の表面積及び細孔容積を窒素吸
着法によって測定した結果を下記第5表に示す。
The various shaped bodies obtained in Examples 6 to 11 above can also be easily converted into porous silica bodies while maintaining their shapes by the same method as in the production examples described below. <C1 Power Notice> Production Examples 1 to 6. Oxazoline polymer/silica composites prepared according to Preparation Examples 1 to 6 above using raw material POZO (specific oxazoline polymer) shown in Table 5 below were subjected to high temperature heat treatment to produce porous silica bodies. High-temperature heat treatment reduces the above oxazoline polymer/silica composite to 58
This was done by heating at 0 to 600°C for 24 hours.
The surface area and pore volume of the obtained porous silica body were measured by a nitrogen adsorption method, and the results are shown in Table 5 below.

第5表 上記第5表において、POZO−A, POZO−Bは
合成例1〜3に準じた方法で合成された片末端にトリエ
トキシシリル基を有するポリオキサゾリンであり、po
zo−cは合成例4に準じた方法で合成された両末端に
トリエトキシシリル基を有するポリオキサゾリンである
。また、D. F’.は原料の特定オキサゾリンポリマ
ー(原料pozo)の重合度を示す。さらに、仕込比は
、オキサゾリンポリマー/シリカ複合体調製時の原料p
OZo/テトラエトキシシランの重量比にて示している
Table 5 In Table 5 above, POZO-A and POZO-B are polyoxazolines having a triethoxysilyl group at one end synthesized by a method similar to Synthesis Examples 1 to 3;
zo-c is a polyoxazoline synthesized by a method similar to Synthesis Example 4 and having triethoxysilyl groups at both ends. Also, D. F'. indicates the degree of polymerization of a specific oxazoline polymer (raw material pozo) as a raw material. Furthermore, the charging ratio is the raw material p when preparing the oxazoline polymer/silica composite.
The weight ratio of OZo/tetraethoxysilane is shown.

[発明の効果】 本発明の製造方法は、均一透明のオキサゾリンポリマー
/シリカ複合或形体を円滑有利に与え得るという効果を
達成しているとともに、繊維状,膜状の如き各種用途に
応じた形態の成形体を自由に製造できるという効果をも
有する.これらの効果に基いて、本発明で製造される種
々の形態の複合成形体から、高温熱処理によりその形態
を保持したまま多孔質シリカ体が円滑有利に得られると
いう効果も達成される。
[Effects of the Invention] The manufacturing method of the present invention achieves the effect of smoothly and advantageously producing a homogeneous transparent oxazoline polymer/silica composite body, as well as forms suitable for various uses such as fibers and films. It also has the effect of allowing the free production of molded objects. Based on these effects, it is also possible to smoothly and advantageously obtain porous silica bodies from composite molded bodies of various shapes produced by the present invention while maintaining their shapes through high-temperature heat treatment.

Claims (1)

【特許請求の範囲】 1、加水分解重合性シリル基含有オキサゾリンポリマー
と加水分解重合性シランとを共加水分解重合反応させて
ゲル化せしめ、該ゲル化の前乃至後に賦形を行なうこと
を特徴とするオキサゾリンポリマー/シリカ複合成形体
の製造方法。 2、加水分解重合性シリル基含有オキサゾリンポリマー
における加水分解重合性シリル基がトリアルコキシシリ
ル基である請求項1に記載の製造方法。 3、加水分解重合性シランがテトラアルコキシシランで
ある請求項1又は2に記載の製造方法。 4、賦形がコーティングである請求項1〜3のいずれか
一項に記載の製造方法。 5、成形体が繊維状体である請求項1〜3のいずれか一
項に記載の製造方法。 6、成形体が球状体である請求項1〜3のいずれか一項
に記載の製造方法。 7、成形体が管状体である請求項1〜3のいずれか一項
に記載の製造方法。 8、成形体が膜状体である請求項1〜3のいずれか一項
に記載の製造方法。
[Claims] 1. A hydrolytically polymerizable silyl group-containing oxazoline polymer and a hydrolytically polymerizable silane are co-hydrolytically polymerized to form a gel, and shaping is performed before or after the gelation. A method for producing an oxazoline polymer/silica composite molded article. 2. The manufacturing method according to claim 1, wherein the hydrolytically polymerizable silyl group in the oxazoline polymer containing a hydrolytically polymerizable silyl group is a trialkoxysilyl group. 3. The manufacturing method according to claim 1 or 2, wherein the hydrolytically polymerizable silane is tetraalkoxysilane. 4. The manufacturing method according to any one of claims 1 to 3, wherein the shaping is a coating. 5. The manufacturing method according to any one of claims 1 to 3, wherein the molded body is a fibrous body. 6. The manufacturing method according to any one of claims 1 to 3, wherein the molded body is a spherical body. 7. The manufacturing method according to any one of claims 1 to 3, wherein the molded body is a tubular body. 8. The manufacturing method according to any one of claims 1 to 3, wherein the molded body is a film-like body.
JP19044689A 1989-07-25 1989-07-25 Method for producing oxazoline polymer / silica composite molded article Expired - Lifetime JP2680434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19044689A JP2680434B2 (en) 1989-07-25 1989-07-25 Method for producing oxazoline polymer / silica composite molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19044689A JP2680434B2 (en) 1989-07-25 1989-07-25 Method for producing oxazoline polymer / silica composite molded article

Publications (2)

Publication Number Publication Date
JPH0356535A true JPH0356535A (en) 1991-03-12
JP2680434B2 JP2680434B2 (en) 1997-11-19

Family

ID=16258269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19044689A Expired - Lifetime JP2680434B2 (en) 1989-07-25 1989-07-25 Method for producing oxazoline polymer / silica composite molded article

Country Status (1)

Country Link
JP (1) JP2680434B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085785A1 (en) * 2001-04-17 2002-10-31 Tokuyama Corporation Method for producing inorganic porous material
US7361278B2 (en) 2002-07-18 2008-04-22 Canon Kabushiki Kaisha Process for producing mass transfer device and apparatus for production thereof
US7749606B2 (en) 2004-03-31 2010-07-06 Nippon Sheet Glass Company, Limited Article with organic-inorganic composite film and process for producing the same
US8013055B2 (en) 2005-12-13 2011-09-06 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
US8039111B2 (en) 2005-10-05 2011-10-18 Nippon Sheet Glass Company, Limited Article with organic-inorganic composite film
US20150329673A1 (en) * 2012-12-19 2015-11-19 3M Innovative Properties Company Reactive polyoxazolines having a perfluorinated group
WO2017018121A1 (en) * 2015-07-27 2017-02-02 ニッポン高度紙工業株式会社 Method of producing inorganic oxide molded body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045106B2 (en) 2001-04-17 2006-05-16 Tokuyama Corporation Method for producing inorganic porous material
WO2002085785A1 (en) * 2001-04-17 2002-10-31 Tokuyama Corporation Method for producing inorganic porous material
US7361278B2 (en) 2002-07-18 2008-04-22 Canon Kabushiki Kaisha Process for producing mass transfer device and apparatus for production thereof
US7749606B2 (en) 2004-03-31 2010-07-06 Nippon Sheet Glass Company, Limited Article with organic-inorganic composite film and process for producing the same
US8039111B2 (en) 2005-10-05 2011-10-18 Nippon Sheet Glass Company, Limited Article with organic-inorganic composite film
EP2816087A1 (en) 2005-12-13 2014-12-24 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
US8013055B2 (en) 2005-12-13 2011-09-06 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
US9403950B2 (en) 2005-12-13 2016-08-02 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition
US20150329673A1 (en) * 2012-12-19 2015-11-19 3M Innovative Properties Company Reactive polyoxazolines having a perfluorinated group
US9718920B2 (en) * 2012-12-19 2017-08-01 3M Innovative Properties Company Reactive polyoxazolines having a perfluorinated group
US10087287B2 (en) 2012-12-19 2018-10-02 3M Innovative Properties Company Reactive polyoxazolines having a perfluorinated group
WO2017018121A1 (en) * 2015-07-27 2017-02-02 ニッポン高度紙工業株式会社 Method of producing inorganic oxide molded body
JP2017024961A (en) * 2015-07-27 2017-02-02 ニッポン高度紙工業株式会社 Manufacturing method of inorganic oxide compact

Also Published As

Publication number Publication date
JP2680434B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
EP2021283B1 (en) Mechanically reversible gel
Ma et al. Synthesis and biological response of casein-based silica nano-composite film for drug delivery system
TWI757680B (en) A kind of composite microsphere with radial fibrous mesoporous shell layer/hollow core layer structure and preparation method thereof
CN106567248B (en) A kind of preparation method of super-hydrophobic cross-linked silica fibrous foam
JP2574049B2 (en) Organic / inorganic composite transparent homogeneous material and its manufacturing method
JP2014509248A (en) Encapsulated hydrophobic and hydrophilic airgels with PEG hydrogels via surface-initiated photopolymerization
WO2005078021A1 (en) Organic-inorganic composite nanofiber, organic-inorganic composite structure and method for producing those
CN106661263A (en) Method for producing porous cellulose medium
CN110698718B (en) Hollow polymer microsphere coated with nano hydroxyapatite and preparation method and application thereof
JPH0356535A (en) Production of oxazoline polymer/silica composite molded article
CN115028903A (en) Hydrogel and preparation method and application thereof
John et al. Synthesis of cubic spherosilicates for self-assembled organic–inorganic biohybrids based on functionalized methacrylates
CN107096037B (en) Method for preparing nanogel through enzymatic small molecule self-assembly
CN101954119B (en) Method for preparing light-cured bone repair material from double bond-containing siloxane coated and modified hydroxyapatite
CN115849391A (en) Preparation method of hydrophobic silica aerogel material
CN112156730B (en) Preparation method of high-purity monodisperse porous silicon oxide spheres
CN109368647A (en) A kind of preparation of modified manometer silicon dioxide aeroge
Gong et al. Preparation and characterization of a self‐crosslinking sodium alginate‐bioactive glass sponge
JPH05345685A (en) Production of siliceous porous material
CN109265615B (en) Raspberry-shaped porous micro-nano polymer particles and preparation method and application thereof
KR20070014252A (en) Synthetic methods for oleophillic nanoporous silica composites
JPH05310413A (en) Organic-inorganic composite transparent homogeneous material
JPH07113011A (en) Porous material and column charged with the same as filler and production thereof
CN111924850A (en) Preparation method of polymer cross-linking modified spherical silica aerogel material
Ziesmer et al. Synthesis of bifunctional core–shell particles with a porous zeolite core and a responsive polymeric shell