JPH0353068A - Method for plotting film by laser cvd - Google Patents

Method for plotting film by laser cvd

Info

Publication number
JPH0353068A
JPH0353068A JP18789689A JP18789689A JPH0353068A JP H0353068 A JPH0353068 A JP H0353068A JP 18789689 A JP18789689 A JP 18789689A JP 18789689 A JP18789689 A JP 18789689A JP H0353068 A JPH0353068 A JP H0353068A
Authority
JP
Japan
Prior art keywords
film
base material
laser beam
laser
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18789689A
Other languages
Japanese (ja)
Inventor
Yuko Ito
由布子 伊藤
Hideo Koseki
小関 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18789689A priority Critical patent/JPH0353068A/en
Publication of JPH0353068A publication Critical patent/JPH0353068A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the plotting of the film consisting of a uniform compsn. always stably on a base material by irradiating the surface of the base material perpendicularly with a laser beam and setting the plotting direction of the film on the base material and the ejecting direction of a reaction gas for film formation at the same direction at the time of formation of the film in the extremely fine region on the surface of the base material by a laser CVD method. CONSTITUTION:The surface of the base material 5 is irradiated perpendicularly with the CO2 laser beam 1 and a gaseous mixture composed of tetramethyl tin and gaseous CO2 as the reaction gas is supplied from a gas nozzle 3 onto the position irradiated with the laser beam on the substrate 5 at the time of formation of a transparent SnO2 film of a fine pattern on the surface of the base material 5 consisting of 'Pyrex(R)' glass, etc., by the laser CVD method. A stage 6 imposed with the base material 5 is simultaneously moved in a direction B to set the plotting direction of the fine film of the SnO2 formed by the reaction of the tetramethyl tin and O2 and the ejecting direction of the gaseous mixture at the same A direction. The film of the fine pattern consisting of the SnO2 is stably plotted on the glass substrate by the laser CVD method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種の気相戒長法で作威可能な種々の膜の、
直接描画を目的とした、レーザCVDによる描画方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the production of various films that can be produced by various vapor phase methods.
This invention relates to a drawing method using laser CVD for the purpose of direct drawing.

従来の技術 近年、気相戒長法において、光エネルギーをガスの活性
化手段とする光C V D ( chemical v
apordeposition)法が注目を集めている
。光CVD法は、従来の熱CVD,プラズマCVDに比
較して低温プロセス,ノンダメージプロセスという長所
を持っている。なお、光源としてレーザを用いた場合の
光CVD法を特にレーザCVD法と呼んで区別している
。ランプ光源に比較し、レーザは光エネルギー密度が高
いこと、及び、コヒーレントで指向性のあるビームが得
られるという特徴を持つ為、レーザCVD法は、極小的
な高速成膜が可能であり、膜の直接描画法としての応用
に大きなメリットを持っている. 発明が解決しようとする!iB レーザCVD法において、集光したビームを基材面に垂
直に照射し局部的な領域に成膜を行う、いわゆる膜の直
接描画を行う場合、成膜域が極めて限定されている為、
底膜に必要な反応ガスの供給も必要箇所のみにノズルを
用いて供給される形式を使用するのが、安全上,経済上
好ましい。しかしながら、従来は、ノズルからの反応ガ
ス流に対し、特にその流れの方向性を規制することがな
されていなかった為、描画の方向により、成膜表面が極
めて粗い、特性の悪い膜がしばしば発生するという問題
があった。
Conventional technology In recent years, in the gas phase Kaicho method, optical CVD (chemical v
The apordeposition method is attracting attention. The photo-CVD method has the advantage of being a low-temperature process and a non-damaging process compared to conventional thermal CVD and plasma CVD. Note that the optical CVD method using a laser as a light source is specifically called the laser CVD method to distinguish it. Compared to lamp light sources, lasers have a higher optical energy density and a coherent and directional beam, so the laser CVD method can form extremely small films at high speed. It has great advantages when applied as a direct drawing method. Invention tries to solve! In the iB laser CVD method, when performing so-called direct film writing, in which a focused beam is irradiated perpendicularly to the substrate surface to form a film in a localized area, the film forming area is extremely limited.
From the viewpoint of safety and economy, it is preferable to use a system in which the reaction gas necessary for the bottom membrane is supplied only to the necessary locations using a nozzle. However, in the past, the flow direction of the reactant gas from the nozzle was not particularly regulated, so depending on the drawing direction, a film with poor properties and an extremely rough surface was often formed. There was a problem.

課題を解決するための手段 上記課題を解決する為、本発明のレーザCVD法は、7
il2v.を所望する位置に照射されるレーザビーム、
及び、同位置に反応ガスを極小的に噴出供給するノズル
から構成されるレーザCVD装置において、膜のif画
方向と供給ガスの噴出方向が基材に対して常に同方向の
関係を保つ構成を持つものである. 作用 本発明は、上記した構戒によって、常に安定した均一な
組威の膜を描画可能とするレーザCVDによる膜の描画
方法を提供するものである。
Means for Solving the Problems In order to solve the above problems, the laser CVD method of the present invention has 7
il2v. a laser beam irradiated to the desired position,
In a laser CVD apparatus composed of a nozzle that ejects and supplies a reaction gas at the same position in a very small amount, the IF image direction of the film and the ejection direction of the supply gas are always kept in the same direction with respect to the base material. It is something you have. Operation The present invention provides a method of drawing a film by laser CVD, which allows drawing of a film with a stable and uniform texture at all times by following the above-mentioned precautions.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の実施例におけるレーザCVD装置の
反応器内部の断面図を示したものであり、第2図は、同
じ反応部のみをとりだした図である。
FIG. 1 shows a cross-sectional view of the inside of a reactor of a laser CVD apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing only the same reaction section.

ここでは、特に酸化導電膜の一つであるSn○2膜のレ
ーザCVD法を例にとる。lに示すレーザ光源としては
、C○2レーザを用いた.レーザビームは、透過窓2を
通して基材であるパイレックスガラス5表面の成膜を所
望する位置に垂直に照射される。一方、成膜に必要な反
応ガスは、ガスノズル4により、レーザビーム照射スポ
ット部に、ガスが衝突する形で噴出される.反応ガス源
としては、テトラメチルスズ及び酸素を用いた。レーザ
の照射された基材スポットは10μ以下の表面層のみが
、瞬時に加熱され、近接する反応ガスを分解し、レーザ
の照射軌跡に相当するSn○2膜4の描画が行われる。
Here, the laser CVD method of a Sn*2 film, which is one of the oxidized conductive films, will be taken as an example. A C○2 laser was used as the laser light source shown in 1. The laser beam is irradiated perpendicularly through the transmission window 2 to a position on the surface of the base material Pyrex glass 5 at which a film is desired to be formed. On the other hand, the reaction gas necessary for film formation is ejected from the gas nozzle 4 in the form of gas colliding with the laser beam irradiation spot. Tetramethyltin and oxygen were used as reaction gas sources. Only the surface layer of the substrate spot irradiated with the laser, which is 10 μm or less, is instantaneously heated, decomposing the nearby reactive gas, and drawing the Sn◯2 film 4 corresponding to the laser irradiation locus.

レーザ出力はIW−10W、ビーム径は約100μ〜l
1m。レーザビーム1およびガスノズル3はいずれも固
定されており、成膜位置の移動、すなわち所望のパター
ンの膜描画は基材5を固定したステージ6の稼働により
達威される.今、ガスの噴出方向をAで示す方向とし、
これに対するステージの移動方向をガスの噴出方向と逆
のBの方向、すなわちガスの噴出方向が基材上での膜の
描画進行方向と同一である場合と、ステージの移動方向
がガスの噴出方向Aと同一方向である。すなわちガスの
噴出方向が基材上での膜の曜両方向と逆向きである場合
の2通りについて、描画した膜を比較した。B方向にス
テージを移動して描画を行った前者の場合は透明度の良
い膜が得られたが、A方向にステージを移動することで
得られた膜はややスモークが掛かった外観であった。後
者の膜の膜表面はパウダー状で、かなり粗な状態であっ
た。また、各々電気特性は、透明度の良い膜については
、比抵抗2X10−2Ωcmが得られたが、スモークが
かったもう一方の膜は、導電性が得られず、透明電極と
しての特性を満たしていなかった。すなわち、後者の例
は、レーザビーム照射直後のまだ熱をもった膜面に基板
面に衝突した後の乱流を伴った反応ガス流が接触し、膜
表面にパウダー状の堆積物が生成していると予想される
。なお、反応ガスの噴出ガス流が基材面に衝突する領域
がレーザビーム照射スポットに対し、約2lIm程度以
上前後左右にずれるとやはり、膜の外観は明らかにスモ
ークがかったものとなる。
Laser output is IW-10W, beam diameter is approximately 100μ~l
1m. Both the laser beam 1 and the gas nozzle 3 are fixed, and the movement of the film forming position, that is, the drawing of a desired pattern, is achieved by operating the stage 6 on which the base material 5 is fixed. Now, let the gas ejection direction be the direction indicated by A,
In contrast, the direction of movement of the stage is the direction B, which is opposite to the direction of gas ejection, that is, the direction of gas ejection is the same as the direction in which the film is drawn on the substrate, and the direction of movement of the stage is the direction of gas ejection. It is in the same direction as A. That is, the drawn films were compared in two cases in which the gas ejection direction was opposite to the direction of the film on the base material. In the former case, where drawing was performed by moving the stage in the B direction, a film with good transparency was obtained, but the film obtained by moving the stage in the A direction had a slightly smoked appearance. The surface of the latter film was powdery and quite rough. In addition, regarding the electrical properties of each film, a resistivity of 2 x 10-2 Ωcm was obtained for the film with good transparency, but the other film, which had a smoky tint, did not have conductivity and did not meet the characteristics as a transparent electrode. Ta. In other words, in the latter example, the turbulent reaction gas flow that has collided with the substrate surface comes into contact with the still-heated film surface immediately after laser beam irradiation, and powder-like deposits are generated on the film surface. It is expected that Note that if the area where the ejected gas flow of the reactive gas collides with the substrate surface is shifted from the laser beam irradiation spot by about 2 lIm or more in the front, back, left, and right directions, the appearance of the film will become clearly smoked.

特に、基材上での描画進行方向手前にガス流が衝突する
場合、その傾向が大きい。よって、膜の溝画を行う際に
、常に、反応ガス流の基材上での衝突領域がレーザビー
ム照射スポットと一致しており、かつ、その反応ガス流
の水平戒分進行方向が基材に対する招画の進行方向と一
致していることは、良好で均一な膜の描画を行う為に極
めて重要な条件であるといえる。
This tendency is particularly strong when the gas flow collides with the front of the drawing direction on the base material. Therefore, when forming grooves on a film, the collision area of the reactive gas flow on the base material always coincides with the laser beam irradiation spot, and the horizontal movement direction of the reactive gas flow is always aligned with the base material. It can be said that matching the advancing direction of the image with respect to the image is an extremely important condition for good and uniform film drawing.

なお、以上の実施例で示した構成は、レーザCVD法を
用いて作威されるあらゆる描画膜に共通に効果をもたら
すものであり、酸化膜.メタル膜等の膜材質に依らない
。また、実施例では、レーザビームとして、C○2レー
ザを加熱源として用いているが、この他にもY A G
 (Ytriua+ AlminumGarnet) 
レーザ、あるいはYMGの第2,第4高調波、Arレー
ザ等加熱源としての使用ばかりでなく、光分解反応で戒
膜を行う場合も同様な効果が示される。
It should be noted that the configuration shown in the above embodiments has a common effect on all drawing films produced using the laser CVD method, and is effective for all types of drawing films produced using the laser CVD method. It does not depend on the film material such as metal film. In addition, in the example, a C○2 laser is used as a heating source as a laser beam, but in addition to this, Y A G
(Ytriua+ Aluminum Garnet)
Similar effects can be obtained not only when used as a heating source such as a laser, the second and fourth harmonics of YMG, or an Ar laser, but also when a film is formed by a photolysis reaction.

発明の効果 以上のように本発明は、レーザCVD法で膜の溝画を行
う際に、常に、反応ガス流の基材上での衝突領域がレー
ザビーム照射スボントと一致しており、かつ、その反応
ガス流の水平戊分進行方向が基材に対する描画の進行方
向に一致させる構成を持つレーザCVD法における膜の
描画方法であり、良好で均一な!a画膜を提供するもの
である。
Effects of the Invention As described above, the present invention provides a method in which, when grooves are formed in a film using the laser CVD method, the collision area of the reactant gas flow on the base material always coincides with the laser beam irradiation spont, and This is a film drawing method in the laser CVD method that has a configuration in which the horizontal segment progress direction of the reaction gas flow matches the drawing progress direction on the base material, resulting in good and uniform film drawing. It provides an a-picture film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例であるレーザCVD装置の反応
部の構戒図、第2図は本発明の実施例における膜の猫画
時の反応部分を拡大して示した構或図である。 l・・・・・・レーザビーム、3・・・・・・ガスノズ
ル。
Fig. 1 is a structural diagram of the reaction section of a laser CVD apparatus according to an embodiment of the present invention, and Fig. 2 is an enlarged structural diagram showing the reaction section during cat drawing of a membrane in an embodiment of the present invention. be. l...Laser beam, 3...Gas nozzle.

Claims (3)

【特許請求の範囲】[Claims] (1)基材上の成膜を所望する位置に、基材に垂直な方
向より照射されるレーザビーム、及び同位置に局部的に
供給される反応ガスより構成され、基材上のレーザビー
ムスポットの位置を連続的に移動し、膜の描画を行う際
、前記反応ガスの流れがレーザビーム照射直後の成膜面
に接触しない様構成するレーザCVDによる膜の描画方
法。
(1) The laser beam on the base material consists of a laser beam irradiated from a direction perpendicular to the base material at the desired position on the base material to form a film, and a reactive gas locally supplied to the same position. A method for drawing a film by laser CVD, in which the position of a spot is continuously moved to draw a film so that the flow of the reactive gas does not come into contact with the film-forming surface immediately after laser beam irradiation.
(2)供給される反応ガス流が、ノズルより供給される
ビーム状のガス流であり、基材上のレーザビーム照射ス
ポット面と同じ領域に、ガス流が衝突するように供給さ
れており、ガスの流れの水平成分の進行方向が基材面に
対し、膜の描画進行方向と同方向となるように構成され
た請求項(1)のレーザCVDによる膜の描画方法。
(2) The reactant gas flow to be supplied is a beam-shaped gas flow supplied from a nozzle, and the gas flow is supplied so as to collide with the same area as the laser beam irradiation spot surface on the base material, 2. The method of drawing a film by laser CVD according to claim 1, wherein the direction of movement of the horizontal component of the gas flow is the same as the direction of movement of the film with respect to the surface of the substrate.
(3)成膜を所望する基材に垂直に照射されるレーザビ
ーム、及び、基材のレーザビーム照射部と同一領域に斜
め上方より衝突するように供給される反応ガスを噴出す
るノズル、基材を2次元に移動させるステージから構成
される装置であって、所望の膜の描画を行う際にノズル
の噴出口の水平成分の向きが、常に、基材上の描画が進
行する方向の直線上にあって、かつ、方向が同一となる
よう操作されるレーザCVD装置。
(3) A nozzle that ejects a laser beam that is perpendicularly irradiated onto the base material on which a film is to be formed, and a reactive gas that is supplied so as to collide with the same area of the base material as the laser beam irradiation part from diagonally above; It is a device consisting of a stage that moves a material two-dimensionally, and when drawing a desired film, the horizontal component of the nozzle jet port is always oriented in a straight line in the direction in which drawing progresses on the substrate. Laser CVD equipment that is located above and operated in the same direction.
JP18789689A 1989-07-20 1989-07-20 Method for plotting film by laser cvd Pending JPH0353068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18789689A JPH0353068A (en) 1989-07-20 1989-07-20 Method for plotting film by laser cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18789689A JPH0353068A (en) 1989-07-20 1989-07-20 Method for plotting film by laser cvd

Publications (1)

Publication Number Publication Date
JPH0353068A true JPH0353068A (en) 1991-03-07

Family

ID=16214092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18789689A Pending JPH0353068A (en) 1989-07-20 1989-07-20 Method for plotting film by laser cvd

Country Status (1)

Country Link
JP (1) JPH0353068A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073161A1 (en) * 2000-03-29 2001-10-04 Seiko Epson Corporation Method for producing ceramic and apparatus for producing the same, semiconductor device, and piezoelectric device
WO2001083846A1 (en) * 2000-03-29 2001-11-08 Seiko Epson Corporation Method for producing ceramic and apparatus for producing the same, semiconductor device, and piezoelectric device
JP2006320416A (en) * 2005-05-17 2006-11-30 Aichi Prefecture Muscle training implement with music playing function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073161A1 (en) * 2000-03-29 2001-10-04 Seiko Epson Corporation Method for producing ceramic and apparatus for producing the same, semiconductor device, and piezoelectric device
WO2001083846A1 (en) * 2000-03-29 2001-11-08 Seiko Epson Corporation Method for producing ceramic and apparatus for producing the same, semiconductor device, and piezoelectric device
US7018676B2 (en) 2000-03-29 2006-03-28 Seiko Epson Corporation Method and device for manufacturing ceramics, semiconductor device and piezoelectric device
JP2006320416A (en) * 2005-05-17 2006-11-30 Aichi Prefecture Muscle training implement with music playing function

Similar Documents

Publication Publication Date Title
US5174826A (en) Laser-assisted chemical vapor deposition
KR101043792B1 (en) Method for depositing titania and substrate
US4377735A (en) Laser working treatment process capable of controlling the form of heated portion of a steel material
CA1281819C (en) Source of high flux energetic atoms
US4332999A (en) Method for machining a workpiece with a beam of radiant energy assisted by a chemically-reactive gas
HUT55715A (en) Process for producing coating on surfaces of glass
JPS5943987B2 (en) Selective plating method using energy beam heat
US5847357A (en) Laser-assisted material spray processing
CN109652786B (en) Coloring method and device based on metal material surface coloring technology
Shannon et al. High power laser welding in hyperbaric gas and water environments
JPS5852023B2 (en) Thermospray method for the production of aluminum porous boiling surfaces
JP2003249492A (en) Plasma discharge processing system, method for forming thin film and base material
JPH0798990B2 (en) Cross flow laser spray nozzle
JPH0353068A (en) Method for plotting film by laser cvd
JPH0480116B2 (en)
JPS59140368A (en) Method and device for producing thin film
Dai et al. Improvement of Al thin film morphology with picosecond pulsed laser deposition in burst mode
JP2000309885A (en) Production of gradient functional material
JPH03174306A (en) Production of oxide superconductor
US5835519A (en) Laser thermal plasma method
JP3526935B2 (en) Laser marking method and laser processing apparatus used for the method
JPS5827036B2 (en) Laser welding method
JPH06198466A (en) Rainbow color development processing method
Geretovsky et al. Dependence of deposition kinetics on precursor concentration and writing speed in pyrolytic laser deposition from solution
JPH0445263A (en) Production of thin film with large area