JPH0352602B2 - - Google Patents

Info

Publication number
JPH0352602B2
JPH0352602B2 JP57104318A JP10431882A JPH0352602B2 JP H0352602 B2 JPH0352602 B2 JP H0352602B2 JP 57104318 A JP57104318 A JP 57104318A JP 10431882 A JP10431882 A JP 10431882A JP H0352602 B2 JPH0352602 B2 JP H0352602B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
region
conversion element
state imaging
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57104318A
Other languages
Japanese (ja)
Other versions
JPS58220106A (en
Inventor
Masaharu Imai
Osamu Onizuka
Akimasa Morita
Ikuo Tofukuji
Shunpei Tanaka
Hiroshi Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP57104318A priority Critical patent/JPS58220106A/en
Publication of JPS58220106A publication Critical patent/JPS58220106A/en
Publication of JPH0352602B2 publication Critical patent/JPH0352602B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Description

【発明の詳細な説明】 この発明は固体撮像装置に係り、特に、カラー
撮像用の固体撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device, and particularly to a solid-state imaging device for color imaging.

近年、半導体集積技術の進歩に伴ない、撮像管
に代わつ固体撮像装置が使われている。ここで、
固体撮像装置においては、入射光は表面に形成さ
れる電極の間隙から光電変換部に照射されるの
で、開口率(全入射光量に対する実際に光電変換
される光量の比)が悪いという欠点がある。特
に、CCD等の電荷転送素子を用いた固体撮像素
子においては、光電変換素子以外の垂直、水平転
送レジスタ、オーバーフロードレインなどは遮光
されているので、特に開口率が悪い。
In recent years, with advances in semiconductor integration technology, solid-state imaging devices have been used in place of image pickup tubes. here,
In solid-state imaging devices, incident light is irradiated onto the photoelectric conversion unit through the gap between the electrodes formed on the surface, so there is a drawback that the aperture ratio (the ratio of the amount of light that is actually photoelectrically converted to the total amount of incident light) is poor. . In particular, in a solid-state imaging device using a charge transfer device such as a CCD, vertical and horizontal transfer registers, overflow drains, etc. other than the photoelectric conversion device are shielded from light, so the aperture ratio is particularly poor.

これを解決するために、光電変換部の上に各光
電変換素子に対応した微小凸レンズを有するレン
ズアレイを配することが考えられる。この凸レン
ズにより遮光部に直進する入射光を光電変換素子
上に収束することにより、開口率を向上すること
ができる。
In order to solve this problem, it is conceivable to arrange a lens array having minute convex lenses corresponding to each photoelectric conversion element on the photoelectric conversion section. The aperture ratio can be improved by converging the incident light that goes straight into the light shielding section onto the photoelectric conversion element using this convex lens.

しかしながら、通常、各光電変換素子の寸法は
10μm前後であり、これと同じ精度で凸レンズの
球面を形成するのが困難である。また、このレン
ズアレイと光電変換部の相対的な位置合わせが正
確に行なわれないと、入射光が光電変換素子上で
はなく遮光領域上に収束してしまうことも起る。
さらに、カラー撮像に用いるには、光電変換部の
上に3色の色分解フイルタアレイを配す必要もあ
り、このような場合は3つの相対的な位置合わせ
は事実上不可能である。
However, usually the dimensions of each photoelectric conversion element are
It is around 10 μm, and it is difficult to form a spherical surface of a convex lens with the same precision. Further, if the relative positioning of the lens array and the photoelectric conversion section is not performed accurately, the incident light may converge not on the photoelectric conversion element but on the light-shielding region.
Furthermore, when used for color imaging, it is also necessary to arrange a three-color color separation filter array above the photoelectric conversion section, and in such a case, relative alignment of the three is virtually impossible.

この発明は上述の事情に対処すべくなされたも
ので、カラー撮像用の固体撮像装置において開口
率を向上することを目的とする。
The present invention was made in order to cope with the above-mentioned circumstances, and an object of the present invention is to improve the aperture ratio in a solid-state imaging device for color imaging.

以下、図面を参照してこの発明による固体撮像
装置の一実施例を説明する。第1図はその分解斜
視図であり、第2図は断面図である。半導体基板
10の表面領域に光電変換素子12がマトリクス
状に形成されるとともに、制御電極14、垂直転
送レジスタ16、水平転送レジスタ18が形成さ
れる。基板10の表面上には、第2図に示すよう
に、酸化膜19を介して平板状のフイルタアレイ
20が貼付けられる。フイルタアレイ20は各光
電変換素子12に対応している複数のフイルタか
らなるフイルタ部と遮光性の枠部とを有する。フ
イルタ部の詳細は第2図に示すように、透光性基
板22の表面に多数の球面状の凹部が形成され、
その凹部の中に赤、緑、青のそれぞれの色素が混
入された透光性材料24,26,28が充填され
る。ここで、基板22、透光性材料24,26,
28はガラス、樹脂等からなり、透光性材料2
4,26,28は基板22より屈折率が高い材料
が使われる。第2図の断面図では、光電変換素子
12以外の遮光されるべきレジスタ等は図示が省
略される。
Hereinafter, one embodiment of a solid-state imaging device according to the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view thereof, and FIG. 2 is a sectional view thereof. Photoelectric conversion elements 12 are formed in a matrix on the surface region of semiconductor substrate 10, and control electrodes 14, vertical transfer registers 16, and horizontal transfer registers 18 are also formed. As shown in FIG. 2, a flat filter array 20 is pasted on the surface of the substrate 10 with an oxide film 19 interposed therebetween. The filter array 20 includes a filter section including a plurality of filters corresponding to each photoelectric conversion element 12 and a light-shielding frame section. As shown in FIG. 2, the details of the filter section include a large number of spherical recesses formed on the surface of the transparent substrate 22.
The recesses are filled with translucent materials 24, 26, and 28 mixed with red, green, and blue pigments, respectively. Here, the substrate 22, the transparent materials 24, 26,
28 is a transparent material 2 made of glass, resin, etc.
4, 26, and 28 are made of a material having a higher refractive index than the substrate 22. In the cross-sectional view of FIG. 2, resistors and the like that should be shielded from light other than the photoelectric conversion element 12 are not shown.

このような構成によれば、凹部内に充填された
透光性材料24,26,28は色分解フイルタと
して作用するとともに、屈折率が高いので凸レン
ズとしても作用する。その結果、第3図に示すよ
うに、フイルタアレイ20がなければ光電変換素
子以外の遮光領域に入射される光が収束されて光
電変換素子のみに入射される。したがつて、開口
率の向上が計られる。しかも、フイルタアレイ自
体がレンズ効果を有するので、フイルタとレンズ
の位置合せが不要である。さらに、フイルタアレ
イは半導体基板の表面の光電変換素子の製造プロ
セスの延長として基板上に直接製造することが可
能であるので、フイルタアレイと光電変換素子の
相対的な位置合せは高精度に行なわれる。また、
直接製造することにより、使用中にフイルタアレ
イがずれることも防止される。
According to such a configuration, the translucent materials 24, 26, and 28 filled in the recesses act as color separation filters, and also act as convex lenses because of their high refractive index. As a result, as shown in FIG. 3, without the filter array 20, light that would otherwise be incident on the light-blocking area other than the photoelectric conversion element is converged and incident only on the photoelectric conversion element. Therefore, the aperture ratio can be improved. Furthermore, since the filter array itself has a lens effect, there is no need to align the filter and lens. Furthermore, since the filter array can be manufactured directly on the substrate as an extension of the manufacturing process of photoelectric conversion elements on the surface of the semiconductor substrate, the relative alignment of the filter array and the photoelectric conversion elements can be performed with high precision. . Also,
Direct manufacturing also prevents the filter array from shifting during use.

次に、第4図a〜dを参照してこの製造方法を
説明する。基板10に光電変換素子12、その他
の撮像素子としての必要素子が形成された後に、
第4図aに示すように、酸化膜19上に透光性基
板22、フオトレジスト30が貼付される。そし
て、各フイルタに対応する開口(ここでは水平方
向に長い長方形)を有するマスクを介してフオト
レジスト30が露光される。ここで、マスクの各
開口の中心が各光電変換素子12の中心と一致す
るように、マスクと撮像装置が位置合せされる。
これにより、同図bに示すように、フイルタ(凹
部)に対応する部分のフオトレジストが除去され
る。次に、この残されたフオトレジストをマスク
として、フイルタに対応する部分にレーザービー
ムを照射する。ここで、フイルタに対応する部分
は長方形の平面形状を有するので、レーザビーム
はシリンドリカルレンズ等によつて楕円ビームと
して照射される。樹脂等の透光性基板22はレー
ザビームにより熱変性を受け脆くなる。ここで、
レーザビームの強度分布はガウス分布であるの
で、光軸上が最も強く熱変性を受け、周辺部に向
かうにつれてその程度は弱くなる。そのため、レ
ーザビームを照射した後に透光性基板22の表面
を腐食液を用いて腐食すれば、熱変性を受けた部
分が腐食され、同図cに示すように、基板22の
表面領域に球面状の凹部が形成される。そして、
同図dに示すように、表面に残されたフオトレジ
スト30を除去し、凹部に色素を含む高屈折率の
透光性部材24,26,28を充填する。この
際、フイルタの色区分に従つて、一色毎に3回に
分けて充填する。
Next, this manufacturing method will be explained with reference to FIGS. 4a to 4d. After the photoelectric conversion element 12 and other necessary elements as an image sensor are formed on the substrate 10,
As shown in FIG. 4a, a transparent substrate 22 and a photoresist 30 are pasted on the oxide film 19. The photoresist 30 is then exposed to light through a mask having an opening (here, a horizontally long rectangle) corresponding to each filter. Here, the mask and the imaging device are aligned so that the center of each opening of the mask coincides with the center of each photoelectric conversion element 12.
As a result, as shown in FIG. 2B, the photoresist in the portion corresponding to the filter (recess) is removed. Next, using the remaining photoresist as a mask, a portion corresponding to the filter is irradiated with a laser beam. Here, since the portion corresponding to the filter has a rectangular planar shape, the laser beam is irradiated as an elliptical beam by a cylindrical lens or the like. The transparent substrate 22 made of resin or the like is thermally denatured by the laser beam and becomes brittle. here,
Since the intensity distribution of the laser beam is a Gaussian distribution, the area on the optical axis undergoes thermal degeneration most strongly, and the degree of degeneration becomes weaker toward the periphery. Therefore, if the surface of the transparent substrate 22 is corroded using a corrosive liquid after being irradiated with a laser beam, the thermally denatured portion will be corroded, and as shown in FIG. A shaped recess is formed. and,
As shown in Figure d, the photoresist 30 left on the surface is removed, and the recesses are filled with high refractive index transparent members 24, 26, and 28 containing dye. At this time, each color is filled three times according to the color classification of the filter.

この実施例では、透光性基板22の各凹部は多
少の間隙があけられて設けられているが、各凹部
を密接して設ければ、なお開口率が向上する。
In this embodiment, the recesses of the light-transmitting substrate 22 are provided with some gaps between them, but if the recesses are provided closely together, the aperture ratio can still be improved.

次に、第5図を参照してこの発明の第2の実施
例を説明する。素子の上に塗付、蒸着等によりガ
ラス層40を形成し、ガラス層40の上に多数の
微小な孔を有するマスク42を重ねて、これら
を、ある種のイオン雰囲気中に入れる。ここで、
孔と光電変換素子12の中心が一致するようにマ
スクが重ねられる。こうするとガラス内部のイオ
ンとのイオン交換により外部のイオンがガラス層
40内に拡散される。孔は非常に小さいので、イ
オンの拡散分布は孔を中心とする同心球状とな
り、孔から離れるにつれてイオン濃度が徐々に小
さくなる。このようなイオン交換においては、新
しく拡散されたイオンがガラス層40内にあつた
イオンより、分極率が小さければ、元のガラス層
40に比べてイオンが拡散された部分の屈折率が
下がる。そこで、このような条件を満たすような
イオンを選んでイオン交換を行なえば、孔を中心
として同心球状に屈折率が下がり、結果として凸
レンズが形成されたことになる。この後、雰囲気
中から取出し、マスクを取り除く。そして、第1
の実施例で使つたようなフイルタの大きさに対応
した開口を有するマスクを重ねて、色分解フイル
タの色素をガラス層40上に塗付する。あるい
は、色素ドーピングする。
Next, a second embodiment of the present invention will be described with reference to FIG. A glass layer 40 is formed on the element by coating, vapor deposition, etc., a mask 42 having a large number of minute holes is placed on the glass layer 40, and these are placed in a certain type of ion atmosphere. here,
The masks are overlapped so that the center of the hole and the photoelectric conversion element 12 coincide. In this way, external ions are diffused into the glass layer 40 by ion exchange with ions inside the glass. Since the pores are very small, the ion diffusion distribution becomes concentric spheres centered on the pores, and the ion concentration gradually decreases as the distance from the pores increases. In such ion exchange, if the newly diffused ions have a smaller polarizability than the ions existing in the glass layer 40, the refractive index of the portion where the ions are diffused will be lower than that of the original glass layer 40. Therefore, if ions that satisfy these conditions are selected and ion exchange is performed, the refractive index decreases concentrically around the hole, resulting in the formation of a convex lens. After this, it is taken out of the atmosphere and the mask is removed. And the first
The pigments of the color separation filter are applied onto the glass layer 40 by overlapping a mask having an aperture corresponding to the size of the filter as used in the embodiment. Alternatively, dye doping is performed.

このようにして製造される第2の実施例によつ
ても、撮像素子、レンズ、フイルタの間の位置合
せが容易で、しかも、開口率が向上される。な
お、この実施例で、イオン雰囲気中に入れる代わ
りに、イオンビームをマスク42の孔を介してガ
ラス層40に照射することによりイオン交換を行
なつてもよい。また、ガラス層40内のレンズ作
用をする領域の大きさは、イオンの拡散時間を制
御することにより調整することができる。
Also in the second embodiment manufactured in this manner, alignment between the image sensor, lens, and filter is easy, and the aperture ratio is improved. In this embodiment, ion exchange may be performed by irradiating the glass layer 40 with an ion beam through the hole in the mask 42 instead of placing it in an ion atmosphere. Furthermore, the size of the region within the glass layer 40 that acts as a lens can be adjusted by controlling the ion diffusion time.

以上説明したようにこの発明によれば、複雑な
調整を必要とせずに開口率を向上した固体撮像装
置を提供することができる。
As described above, according to the present invention, it is possible to provide a solid-state imaging device with improved aperture ratio without requiring complicated adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による固体撮像装置の一実施
例の斜視図、第2図はその断面図、第3図はその
効果を説明する図、第4図a〜dはその製造工程
を示す図、第5図は第2実施例の製造工程を示す
図である。 10……半導体基板、12……光電変換素子、
22……透光性基板、24,26,28……透光
性部材、30……フオトレジスト。
FIG. 1 is a perspective view of an embodiment of the solid-state imaging device according to the present invention, FIG. 2 is a cross-sectional view thereof, FIG. 3 is a diagram explaining its effects, and FIGS. 4 a to d are diagrams showing its manufacturing process. , FIG. 5 is a diagram showing the manufacturing process of the second embodiment. 10... Semiconductor substrate, 12... Photoelectric conversion element,
22... Transparent substrate, 24, 26, 28... Transparent member, 30... Photoresist.

Claims (1)

【特許請求の範囲】 1 半導体基板の表面領域に複数の光電変換素子
部がマトリクス状に形成されてなる第1領域と、 前記第1領域上に要すれば酸化膜を介して設け
られた透光性基板の表面の前記光電変換素子部そ
れぞれに対応した位置に形成された複数の凹部に
該透光性基板よりも屈析率が高い透光性材料が充
填されてなる第2領域とを具備し、 該透光性材料は隣接して位置するものどうしが
異なる色分解特性を呈するように入射光を色分解
する色フイルタとなるとともに、入射光を対応す
る光電変換素子に向けて収束するためのレンズと
もなるように充填されていることを特徴とする固
体撮像装置。
[Claims] 1. A first region in which a plurality of photoelectric conversion elements are formed in a matrix on a surface region of a semiconductor substrate, and a transparent film provided on the first region, if necessary, via an oxide film. a second region in which a plurality of recesses formed on the surface of the optical substrate at positions corresponding to each of the photoelectric conversion element portions are filled with a transparent material having a higher refractive index than that of the transparent substrate; The light-transmitting material serves as a color filter that separates incident light into colors so that adjacent pieces exhibit different color separation characteristics, and also converges the incident light toward a corresponding photoelectric conversion element. A solid-state imaging device characterized in that the solid-state imaging device is filled with a material that also serves as a lens for the purpose of the camera.
JP57104318A 1982-06-17 1982-06-17 Solid-state image pickup device Granted JPS58220106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57104318A JPS58220106A (en) 1982-06-17 1982-06-17 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104318A JPS58220106A (en) 1982-06-17 1982-06-17 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS58220106A JPS58220106A (en) 1983-12-21
JPH0352602B2 true JPH0352602B2 (en) 1991-08-12

Family

ID=14377581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104318A Granted JPS58220106A (en) 1982-06-17 1982-06-17 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS58220106A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992568A (en) * 1982-11-18 1984-05-28 Mitsubishi Electric Corp Photo receptor such as solid-state image pickup element and manufacture thereof
JPS59198754A (en) * 1983-04-26 1984-11-10 Toshiba Corp Solid-state color image pickup device
JPS60191548A (en) * 1984-03-12 1985-09-30 Hitachi Ltd Image sensor
JPS6132469A (en) * 1984-07-24 1986-02-15 Toppan Printing Co Ltd Color solid-state image pickup element
JP2578774B2 (en) * 1986-09-02 1997-02-05 日本板硝子株式会社 Method for manufacturing module with lens
JPS63188102A (en) * 1987-01-30 1988-08-03 Fujitsu Ltd Color solid-state image pickup element
JPS63291466A (en) * 1987-05-25 1988-11-29 Nippon Sheet Glass Co Ltd Solid-state image sensing device
JPS6488501A (en) * 1987-09-30 1989-04-03 Nippon Sheet Glass Co Ltd Plane lens plate
JPS6491101A (en) * 1987-10-01 1989-04-10 Nippon Sheet Glass Co Ltd Plane lens plate
JP2597037B2 (en) * 1990-07-09 1997-04-02 シャープ株式会社 Method for manufacturing solid-state imaging device
JP2841037B2 (en) * 1995-07-26 1998-12-24 エルジイ・セミコン・カンパニイ・リミテッド Manufacturing method of CCD solid-state imaging device
US6211916B1 (en) * 1996-03-11 2001-04-03 Eastman Kodak Company Solid state imager with inorganic lens array
FR2938078B1 (en) * 2008-11-03 2011-02-11 Saint Gobain GLAZING WITH ZONES CONCENTRATING THE LIGHT BY IONIC EXCHANGE.
JP2015025835A (en) * 2013-07-24 2015-02-05 セイコーエプソン株式会社 Color filter substrate, electro-optic device, projection type display device, and manufacturing method of color filter substrate
US9240428B1 (en) * 2014-07-09 2016-01-19 Visera Technologies Company Limited Image sensor and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175356U (en) * 1981-04-30 1982-11-05

Also Published As

Publication number Publication date
JPS58220106A (en) 1983-12-21

Similar Documents

Publication Publication Date Title
US6301051B1 (en) High fill-factor microlens array and fabrication method
US6518640B2 (en) Solid-state image sensor, production method of the same, and digital camera
JPH0352602B2 (en)
US4565756A (en) Color imaging device
KR970002120B1 (en) Solid state image pick-up apparatus having microlens
JPH05134109A (en) Manufacture of color filter
US20140145285A1 (en) Solid-state imaging device and method for manufacturing the same
JPH06310695A (en) Lens arrangement for photodiode device provided with aperture containing lens region and non-lens region
JPS6344624A (en) Liquid crystal device
JPH04334056A (en) Solid state image sensing device and its manufacture
JPH0470601B2 (en)
CN100459139C (en) Solid-state imaging apparatus and method for producing same
JP2006003869A (en) Method for forming microlenses of image sensor
JP2005079344A (en) Solid state imaging apparatus and its manufacturing method
JPH07176708A (en) Solid-state image pickup device
CN107452762A (en) A kind of imaging sensor photosensitive structure and preparation method thereof
JPS6060757A (en) Image pickup element with microlens and manufacture thereof
JPS6164158A (en) Manufacture of solid-state image pickup device
JPH03190169A (en) Solid-state image sensing device and manufacture thereof
JPH04303801A (en) Solid-state image pickup device and production thereof
JPS59195861A (en) Manufacture of solid-state image pickup device
JPH04234705A (en) Manufacture of color filter
JP2751376B2 (en) Solid-state imaging device
JPH03190168A (en) Manufacture of solid-state image sensing device
JPH0442966A (en) Solid-state colored image sensing element