JPH0350848B2 - - Google Patents

Info

Publication number
JPH0350848B2
JPH0350848B2 JP19864985A JP19864985A JPH0350848B2 JP H0350848 B2 JPH0350848 B2 JP H0350848B2 JP 19864985 A JP19864985 A JP 19864985A JP 19864985 A JP19864985 A JP 19864985A JP H0350848 B2 JPH0350848 B2 JP H0350848B2
Authority
JP
Japan
Prior art keywords
truss
column
load
fixed
shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19864985A
Other languages
Japanese (ja)
Other versions
JPS6259743A (en
Inventor
Tatsuaki Shorakui
Kyoshi Toyoda
Tomiji Oohori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP19864985A priority Critical patent/JPS6259743A/en
Publication of JPS6259743A publication Critical patent/JPS6259743A/en
Publication of JPH0350848B2 publication Critical patent/JPH0350848B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conveying And Assembling Of Building Elements In Situ (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉄骨鉄筋コンクリート造を含む鉄筋
コンクリート造の建築物の対向する外側柱間に、
鉄骨造のトラスを架設して一般に大スパンの架構
を形成するときのトラス梁の架設工法に関し、と
くに工事の進行に伴つて架構に加えられる荷重に
よつて生ずる架溝内の応力に着目して設計を合理
化するようにしたトラスの架設工法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a structure that provides a structure between opposing outer columns of a reinforced concrete building including a steel-framed reinforced concrete building.
Regarding the construction method of truss beams when steel trusses are erected to generally form large-span structures, this paper focuses on the stress in the bridge grooves caused by the loads applied to the structure as construction progresses. This article relates to a truss construction method that streamlines the design.

従来の技術 柱の施工を先行し、柱頭間に鉄骨トラスを架設
して主架構を構成することは通常の架設工法であ
つて、柱頭上へのトラス端部の結合は固着結合と
される。ついで各架構は桁行き方向につなぎトラ
スや小梁によつて結合され、所要の筋違などを配
して軸組架構が行われ、さらにトラス上面では屋
根工事が行われる。この間に揚重によつて両端部
を柱頭上に載置されたのちのトラスは、まず自重
によつて変形し、ついで工事の進行につれて2次
部材、仕上荷重その他積載荷重が加えられて変形
が増大する。このときのトラスの変形は両端間の
伸長をおこし、トラス両端部の水平移動となつて
現われ、トラスが柱頭に固着されていることか
ら、両側の柱頭間を押し拡げることによつて、柱
脚の内側に引張り力を生ずるような曲げモーメン
トがはたらくため、柱の設計にあたつて、このよ
うな固定荷重に対する応力設計が必要である。
BACKGROUND TECHNOLOGY It is a normal construction method to construct a main frame by first constructing columns and then constructing a steel truss between the column heads, and the end of the truss is connected to the column head by a fixed connection. Next, each frame is connected in the girder direction with connecting trusses and small beams, and the necessary braces are arranged to form a framework frame, and roofing work is then carried out on the top of the trusses. During this time, both ends of the truss are placed on top of the column due to the lifting force, and the truss is first deformed by its own weight, and then as the construction progresses, secondary members, finishing loads, and other live loads are added to the truss, causing deformation. increase The deformation of the truss at this time causes an elongation between both ends, which appears as a horizontal movement of both ends of the truss.Since the truss is fixed to the column capital, by expanding the space between the column capitals on both sides, the column base Since a bending moment that generates a tensile force acts on the inside of the column, it is necessary to design the stress for such a fixed load when designing the column.

一方、近時高層建築物の架構において工事の合
理化が行われるような中で、数階分の高さの鉄骨
柱を先行させ、各段層の梁を架設するにあたつ
て、梁が負担すべき荷重となる部材の一部を梁と
同時に揚重し、揚重の工程を合理化するととも
に、梁の柱への結合と同時にこれらの梁を積載荷
重を持つたまま柱に結合することによつて、柱の
荷重の分散化と均等化をはかることが行われ、工
事中に生ずる応力に対して先行荷重を与えるいわ
ゆるブレロード工法が採用されて来ている。
On the other hand, in recent years, construction work has been streamlined in the construction of high-rise buildings; steel columns several stories high are placed in advance, and when the beams of each level are erected, the burden on the beams is increased. This method streamlines the lifting process by lifting some of the members that carry the load at the same time as the beams, and also connects the beams to the columns with their live loads at the same time as the beams are connected to the columns. Therefore, efforts have been made to distribute and equalize the load on columns, and the so-called bread construction method has been adopted, which applies a preliminary load to the stress generated during construction.

発明が解決しようとする問題点 建築物の対向する1対の柱間に直接鉄骨トラス
を架設するようなスパンの大きい建築物にあつて
は、柱や基礎の設計では水平力で左右される要素
が大きく、固定荷重の応力が大きい程、短期荷重
が加算されるので不利となる。固定荷重は鉛直方
向柱軸応力を発生させるが、これ以外の柱頭に作
用する水平力による柱せん断力および曲げモーメ
ントは出来るだけ小さい方が望ましい。ことに鉄
筋コンクリート柱の柱頭において、トラス両端を
単純支持とすることが望ましい場合に、ピン接合
のようにすべらない型式で固着すると、トラスの
大きな負担面積における固定荷重がトラス端部か
ら柱頭に水平力となつて作用するので、柱の設計
上大きな要素となる。
Problems to be Solved by the Invention In buildings with large spans, such as those in which a steel truss is directly installed between a pair of opposing columns, elements that are influenced by horizontal force are important in the design of columns and foundations. The larger is the stress of the fixed load, the more short-term load is added, which is disadvantageous. Although the fixed load generates vertical column axial stress, it is desirable that the column shear force and bending moment due to horizontal forces acting on the column head are as small as possible. In particular, when it is desirable to simply support both ends of the truss at the capital of a reinforced concrete column, if the truss is fixed with a non-slip type such as a pin connection, the fixed load over a large bearing area of the truss will cause horizontal force from the truss end to the column capital. This is a major factor in the design of columns.

そこでトラスの揚重にあたつても前述したよう
に、固定荷重を先行したブレロード工法が考えら
れなくもないがトラスの揚重は、固定荷重を含め
た総重量と揚重機の容量との問題のみにとどまら
ず、トラス自体がそのような揚重に備えた強度を
有するものではなく、大型の揚重機を設備し、作
業場での経済性を無視したとしても、このような
危険作業は決して許されないものである。
Therefore, when lifting a truss, as mentioned above, it is not unthinkable to use the breoding method, which places a fixed load first, but lifting a truss is a matter of the total weight including the fixed load and the capacity of the lifting machine. Not only that, but the truss itself does not have the strength to handle such a lifting load, and even if a large lifting machine is installed and economic efficiency is ignored in the workplace, such dangerous work is never allowed. It is something that cannot be done.

問題点を解決するための手段 本発明は柱間に大型トラスを架設するときに必
然的に生ずる設計上の問題に取組み、これを合理
化する工法を得ることを目的とし、従来知られた
ブレロード工法の載荷の利点を活用するように開
発されたものである。すなわち、柱頭に架設され
るときのトラス端部と柱頭との結合にあたつて、
トラス自体の変形ならびに載荷荷重で生ずるトラ
スの変形を相互の水平の水平移動によつて吸収す
るとともに、その状態でトラス端部を柱頭に固着
し、載荷荷重を解除したときに変形の復元によつ
て柱に設計と逆のモーメントを生じさせる。しか
るのち、施工の完了時に生ずる設計モーメントと
の釣合いをはかつて、設計荷重によるトラスの変
形による柱頭への水平力を回避ないし減小するこ
とを要旨とし、水平力を載荷荷重解除時と方向が
逆で柱に同様の影響を及ぼす程度とするように載
荷荷重を設定して、トラス端部と柱頭との結合手
段を滑り支承と固着結合とに変換自在となるよう
に構成したことを特徴とするものである。
Means for Solving the Problems The present invention aims to address the design problems that inevitably arise when constructing large trusses between pillars, and to provide a construction method that streamlines the design problems, using the conventionally known braud construction method. It was developed to take advantage of the loading of In other words, when connecting the truss end to the column capital when it is installed on the column capital,
The deformation of the truss itself and the deformation of the truss caused by the applied load are absorbed by mutual horizontal movement, and the truss end is fixed to the column head in this state, and when the applied load is released, the deformation is restored. This creates a moment in the column opposite to the design. However, in order to balance the design moment that occurs at the completion of construction, the main idea was to avoid or reduce the horizontal force on the column head due to the deformation of the truss due to the design load, and the horizontal force was changed in direction from when the applied load was released. The applied load is set so as to have the same effect on the columns in reverse, and the means for connecting the truss end and the column head is configured to be convertible between a sliding bearing and a fixed connection. It is something to do.

実施例 本発明の詳細を好適な実施例の図にもとづいて
説明する。
Embodiments The details of the present invention will be explained based on figures of preferred embodiments.

第1図A,Bにおいて1は鉄筋コンクリート造
の柱であつて、その頂部の均しモルタル11上に
ベースプレート12を有し、アンカーボルト13
とナツトを用いて据付けてある。2は山形の鉄骨
造トラス梁であつて、その端部の竪部材21の下
面にベースプレート22を有している。両ベース
プレート12と22の間には本発明の要部となる
柱1と梁2との結合手段として結合組立体3が設
けてある。
In FIGS. 1A and 1B, 1 is a reinforced concrete column, which has a base plate 12 on leveled mortar 11 at the top, and anchor bolts 13.
It is installed using nuts. 2 is a chevron-shaped steel truss beam, and has a base plate 22 on the lower surface of a vertical member 21 at the end thereof. A coupling assembly 3 is provided between both base plates 12 and 22 as means for coupling the column 1 and the beam 2, which is the essential part of the present invention.

この組立体3は特記しない限りは鋼材を使用
し、精度よく製作した部材を相互に組立てまたは
組合わせたものであつて、主として下シユー4、
上シユー5、係止体6及び下シユー4と上シユー
5の間に介在する摺滑材7等からなつている。下
シユー4は柱1の断面に見合う大きさの矩形の厚
盤であり、建物のスパン方向に直交する2辺に沿
つては立上がり壁41を有し、スパン方向に沿う
2辺の中央部には係止体6を支持するために立上
がり寸法を壁41より若干大きくした支持壁42
を有し、盤の上面中央には円形の浅い凹部43を
設けてある。
Unless otherwise specified, this assembly 3 is constructed by assembling or combining accurately manufactured members using steel materials, and mainly consists of a lower shoe 4,
It consists of an upper shoe 5, a locking body 6, a sliding member 7 interposed between the lower shoe 4 and the upper shoe 5, and the like. The lower shoe 4 is a rectangular slab with a size corresponding to the cross section of the pillar 1, and has rising walls 41 along two sides perpendicular to the span direction of the building, and has walls 41 at the center of the two sides along the span direction. is a support wall 42 whose rising dimension is slightly larger than that of the wall 41 in order to support the locking body 6;
A shallow circular recess 43 is provided in the center of the top surface of the board.

上シユー5は、下シユー4の支持壁42の間に
納まり、立上がり壁41との間には間隔a、bを
設ける大きさとし、下シユー4上面の平面枠形区
画内に設けた厚板であつて、下面の中央大部分に
は不銹鋼の板51が溶接してある。
The upper shoe 5 is sized to fit between the supporting walls 42 of the lower shoe 4 and to provide intervals a and b between it and the rising wall 41, and is a thick plate provided within a planar frame-shaped section on the upper surface of the lower shoe 4. A stainless steel plate 51 is welded to most of the center of the lower surface.

係止体6は断面L形で支持壁42と等長とした
厚形部材で、前記支持壁42の外面に一方の垂直
なフランジ61の内面を接して取り付けたときに
他の水平フランジ62が内方に向かい上シユー5
の側縁上方に むように形成してあり、取付けは
ネジ63によるものである。
The locking body 6 is a thick member having an L-shaped cross section and the same length as the support wall 42, and when attached with the inner surface of one vertical flange 61 in contact with the outer surface of the support wall 42, the other horizontal flange 62 Inward facing upward 5
It is formed so as to be placed above the side edge of the frame, and is attached using screws 63.

次に摺動材7は、前記凹部43内に積層される
下方の円形ゴム板71、中間の皿形円形鋼板72
及び上層の円形テフロン板73からなつている。
ゴム板71はクロロプレンゴムを使用するのがよ
く、その外周縁を圧縮して鋼リング74を嵌めこ
んで補強してある。鋼板72は平坦な皿形凹部内
に上面を一致させてテフロン板73を敷き込んで
あり、摺動材7の全体の上面は凹部43から突出
して上シユー5の下面の不銹鋼板51を支持す
る。
Next, the sliding member 7 includes a lower circular rubber plate 71 laminated in the recess 43 and an intermediate dish-shaped circular steel plate 72.
and an upper circular Teflon plate 73.
The rubber plate 71 is preferably made of chloroprene rubber, whose outer periphery is compressed and reinforced with a steel ring 74 fitted therein. The steel plate 72 has a Teflon plate 73 laid in a flat dish-shaped recess with its upper surface aligned, and the entire upper surface of the sliding member 7 protrudes from the recess 43 to support the stainless steel plate 51 on the lower surface of the upper shoe 5. .

結合組立体はローラー支承の形式による転動軸
とシユーとの組合わせを利用し、移動の最終段に
シユーとローラー軸との接触を解除する別案も可
能である。
Another possibility is that the coupling assembly utilizes a combination of a rolling shaft and shoe in the form of a roller bearing, and that the shoe and the roller shaft are released from contact at the final stage of movement.

施工にあたつては、上記構成は下記のようにし
て達成される。
In construction, the above configuration is achieved as follows.

柱1の柱頭上のベースブレート12の据付けは
常法により、その上面に芯出しをして、結合組立
体3の下シユー4を溶接によつて固着する。次に
下シユー4の凹部43内に摺滑材7を、ゴム板7
1、鋼板72、テフロン板73の順に水平に装着
する。一方、トラス2にあつては、ベースプレー
ト22の下面にネジ23を使用して上シユー5を
取付け、トラス梁2の全体を揚重して、1対の柱
上に架設する。トラス梁2の吊上げ時の全長は、
柱頭上に支持されるときに自重によつて伸長し、
両柱の対向する立上がり壁41に接して載置され
た上シユー5は間隔aを生ずる。ここで係止体6
の水平フランジ62を対向させて支持壁42の外
方から取付ければ、フランジ62の下面は、ベー
スプレート22の側縁上にのぞみ、なお若干の間
隙を残して上シユー5と下シユー4とはスパン方
向に相対移動可能である。このとき、外方の対向
する立上がり壁41と上シユー5との間には残余
の間隔bが残り、a、bの寸法は計算によつて求
めることができる。
The base plate 12 is installed on the top of the column 1 by a conventional method, by centering the base plate 12 on its upper surface and fixing the lower shoe 4 of the coupling assembly 3 by welding. Next, the sliding material 7 is placed in the recess 43 of the lower shoe 4, and the rubber plate 7 is
1. Install the steel plate 72 and the Teflon plate 73 horizontally in this order. On the other hand, for the truss 2, the upper shoe 5 is attached to the lower surface of the base plate 22 using screws 23, and the entire truss beam 2 is lifted up and installed on a pair of columns. The total length of truss beam 2 when lifted is:
When supported on the head of a column, it expands under its own weight,
The upper shoe 5 placed in contact with the opposing rising walls 41 of both columns creates a distance a. Here, the locking body 6
If the horizontal flanges 62 are mounted from the outside of the support wall 42 so as to face each other, the lower surface of the flange 62 will extend onto the side edge of the base plate 22, leaving a slight gap between the upper shoe 5 and the lower shoe 4. Relative movement is possible in the span direction. At this time, a residual distance b remains between the outer opposing rising wall 41 and the upper shoe 5, and the dimensions of a and b can be determined by calculation.

作 用 本発明の作用を架設工法の実施工程にもとづい
て説明する。
Effect The effect of the present invention will be explained based on the implementation process of the erection method.

第2図においてA図は山形梁に形成した鉄骨ト
ラス梁2を線図で表現し、両端で柱1上に支持し
てある。鉄骨トラスを揚重機によつて吊上げ、柱
頭上に載置すると、自重を等分布荷重W1として
トラス2は実線のように両脚端を開くように変形
する。このときのトラス2の端部は柱頭の結合手
段3に対して移動するが、この結合を説明を簡便
とするため、柱1A上で滑り支承3A、柱1B上
で固定支持3Bとするとき、トラス2の端部は柱
1A上でδ1だけ移動する。
In Figure 2, Figure A is a diagrammatic representation of a steel truss beam 2 formed into an angle-shaped beam, supported on columns 1 at both ends. When the steel truss is lifted up by a lifting machine and placed on the column head, the truss 2 is deformed to open both leg ends as shown by the solid line, with its own weight acting as a uniformly distributed load W1 . At this time, the end of the truss 2 moves with respect to the coupling means 3 of the column head, but in order to simplify the explanation of this coupling, when it is assumed that the sliding support 3A is on the column 1A and the fixed support 3B is on the column 1B, The end of truss 2 moves by δ 1 on column 1A.

B図ではトラス梁の所定の節点に下向きに荷重
Pをかけてある。この荷重によつてトラス梁2は
さらに開脚し、柱1A上において、滑り支承3A
上でその端部がさらに外方へδ1だけ水平移動す
る。この付加の荷重Pは節点に係着したワイヤー
を地上からウインチによつて牽引する加力などに
よつて得られ、このトラス2が以後負担する設計
固定荷重によつて生ずる先端の移動量δ0と同じだ
けの移動量が得られるような力Pをプレロードと
する値で、これは計算によつて求める。
In Figure B, a downward load P is applied to a predetermined node of the truss beam. Due to this load, the truss beam 2 is further opened and placed on the sliding bearing 3A on the column 1A.
At the top, its end moves horizontally further outward by δ 1 . This additional load P is obtained by applying force such as pulling the wire attached to the node from the ground with a winch, and the amount of movement of the tip caused by the design fixed load that will be borne by this truss 2 from now on is δ 0 The preload value is the force P that provides the same amount of movement as , and is determined by calculation.

上記の建方工程と、載荷工程におけるトラス2
の変形は、柱1に対してδ1とδ2の移動を生ずる
が、この量は第1図で説明した結合組立体3にお
ける下シユー4の立上がり壁41と上シユー5の
端縁との間隔a、bとして設計され、上下のシユ
ーの相対移動は下シユー4側のテフロン板73と
上シユー5側の不銹鋼板51との円滑な摺動によ
つて吸収される。すなわち、載荷Pによるトラス
2の変形はb→oの方向に上シユー5を移動させ
る。そして、両柱1A,1Bには鉛直力のみが作
用し、水平力は作用しない。
Truss 2 in the above erection process and loading process
The deformation causes a displacement of δ 1 and δ 2 relative to the column 1, which amount is determined by the relationship between the upright wall 41 of the lower shoe 4 and the edge of the upper shoe 5 in the coupling assembly 3 described in FIG. The intervals a and b are designed, and relative movement between the upper and lower shoes is absorbed by smooth sliding between the Teflon plate 73 on the lower shoe 4 side and the stainless steel plate 51 on the upper shoe 5 side. That is, the deformation of the truss 2 due to the load P moves the upper shoe 5 in the direction b→o. Only vertical force acts on both columns 1A and 1B, and no horizontal force acts on them.

ここで結合手段を滑り支承から固着支持に変換
する。第1図B図に示す8は固定ブロツクであつ
て、スパン方向にはa+bの設計幅を有し、立上
がり壁41の突出高さと同じ厚さを有している。
トラス2の変形がその端部でδ1+δ2移動したの
ち、ブロツク8を挿入し、ボルト81を使用して
下シユー4に固着すれば、上シユー5と下シユー
4との間〓でトラス梁2は柱1に固着支持され
る。なお結合組立体3は上下シユー同士をさらに
溶接を使用して固着してもよい。
Here, the coupling means is converted from a sliding support to a fixed support. Reference numeral 8 shown in FIG. 1B is a fixed block, which has a designed width of a+b in the span direction and has the same thickness as the protruding height of the rising wall 41.
After the deformation of the truss 2 moves by δ 1 + δ 2 at its end, insert the block 8 and fix it to the lower shoe 4 using the bolt 81, and the truss will be removed between the upper shoe 5 and the lower shoe 4. The beam 2 is firmly supported by the column 1. Note that the upper and lower shoes of the coupling assembly 3 may be further fixed together using welding.

トラス2が両柱頭上に固定されたのちに、トラ
ス節点における載荷荷重Pを徐々に解除する。第
2図Cのようにトラス2の変形は自重による変形
δ1だけを残して無荷重の状態に戻るが、載荷荷重
によつて開いたトラス2がバネ効果となつて先端
が閉じる方向に水平移動−δ3を生ずる。この変化
は両柱頭部の固着によつて柱頭部に均等に水平力
Hを作用させ、両柱脚部外側に引張力を生ずるよ
うな曲げモーメントMが発生するが、この応力は
柱頭に加わる短期荷重と同一性質のものであり、
十分に考慮されているので架構の耐力面での影響
はない。
After the truss 2 is fixed above both column heads, the applied load P at the truss nodes is gradually released. As shown in Figure 2C, the deformation of the truss 2 returns to the unloaded state leaving only the deformation δ 1 due to its own weight, but the truss 2 opened by the applied load becomes a spring effect and the tip is horizontal in the direction of closing. Movement − yields δ 3 . This change causes a horizontal force H to be applied evenly to the column head due to the fixation of both column heads, and a bending moment M that generates a tensile force on the outside of both column bases, but this stress is applied to the column capital in a short period of time. It has the same properties as the load,
This has been carefully considered and has no effect on the strength of the structure.

次に第2図Dは通常の工事が進行して、屋根が
葺き上げられた状態を示す。ここで屋根部分の諸
構成材の固定荷重がほぼ等分布の設計荷重W0
してトラス2にかかり、端部は再び開脚方向に移
動して、柱頭頭間にH0の力が作用し、それぞれ
1/2δ0分の変位を生じさせ、したがつて両柱脚部
の内側に引張力を生ずるようなモーメントM0
発生する。ここで先行荷荷重Pの加力による変位
δ2と、屋根の固定荷重W0による変位δ0とは等し
く設定されているから、加力Pの解除時の両柱頭
の変位−1/2δ3と、工事進行後の両柱頭の変位1/2
δ0とは方向が逆であつて、値が等しいものとする
ことができ、従つて柱脚部のモーメントMはモー
メントM0によつて相殺されることは明らかであ
る。
Next, Figure 2D shows the state in which the roof has been raised as normal construction progresses. Here, the fixed loads of the various constituent members of the roof are applied to the truss 2 as a design load W 0 with almost equal distribution, and the ends move in the direction of opening again, and a force H 0 acts between the capitals. A moment M 0 is generated which causes a displacement of 1/2 δ 0 in each case and thus creates a tensile force on the inside of both column bases. Here, since the displacement δ 2 due to the applied force of the preceding load P and the displacement δ 0 due to the fixed load W 0 of the roof are set equal, the displacement of both column heads when the applied force P is released is −1/2 δ 3 and displacement 1/2 of both column heads after construction progresses.
It is clear that δ 0 can be opposite in direction and equal in value, so that the moment M of the column base is canceled by the moment M 0 .

又、必要であればM0をMの2倍程度とするこ
とにより、載荷解除時と長期設計時の柱脚のモー
メントを同じにすることもできる。
Furthermore, if necessary, by setting M 0 to about twice M, the moment of the column base during unloading and during long-term design can be made the same.

発明の効果 本発明は鉄筋コンクリート造の柱間に架設され
る鉄骨梁の架設工法において、柱頭部における柱
とトラス梁との結合手段を、トラス梁の変形に応
じて先端の水平移動を吸収する滑り支承と、これ
を固着支持に変換可能の両態様に対応する構成と
し、トラス梁を滑り支承で架設したのちに、固定
荷重に見合う鉛直荷重を先行して加力することに
よつて変形状態のトラス梁を固着支持し、柱梁の
架構をプレロードの状態に維持することとしたか
ら、工事の進行に伴う固定荷重による変形は、プ
レロードを消去する方向にのみ作用し、従つて、
トラス梁自体には格別の手段を付加することなく
柱の設計における長期荷重によるモーメントの考
慮を全面的に消去ないし減小させることが可能で
ある。しかも、トラス梁に対する先行荷重の載荷
加力は通常のウインチ設備を利用して達成できる
ものであり、トラス梁を架構して固定したのちは
工事の早期段階で加力を解除するものであるか
ら、他の工事の進行の障害となることもない。
Effects of the Invention The present invention provides a method of constructing a steel beam installed between columns in a reinforced concrete structure, in which a means for connecting a column and a truss beam at the column head is provided with a sliding slide that absorbs the horizontal movement of the tip in accordance with the deformation of the truss beam. The structure is compatible with both support and fixed support, and after the truss beam is erected with sliding support, a vertical load corresponding to the fixed load is applied in advance to prevent deformation. Since the truss beams were fixedly supported and the frame of the columns and beams was maintained in a preloaded state, deformation due to the fixed load as construction progresses will only act in the direction of eliminating the preload, and therefore,
It is possible to completely eliminate or reduce consideration of moments due to long-term loads in column design without adding special measures to the truss beam itself. Moreover, the application of the advance load to the truss beam can be achieved using normal winch equipment, and the load can be released at an early stage of construction after the truss beam has been framed and fixed. , and will not interfere with the progress of other construction works.

本発明によつて、固定荷重によつて発生させら
れた鉛直方向柱軸応力以外の柱頭に作用する柱剪
断力および曲げモーメントは実質的になくなる。
また、本発明では、プレロードのための大型の揚
重機を設備する必要がなくなるので、作業上の危
険性はなくなる。
The present invention substantially eliminates column shear forces and bending moments acting on the column capital other than vertical column axial stresses generated by fixed loads.
Further, in the present invention, there is no need to install a large-scale lifting machine for preloading, so there is no danger in the work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の架設工法で使用される結合手
段の実施例を示す柱、梁の結合部分の詳細図であ
つてAは断面図、Bは平面図を示す。第2図は山
形トラス梁を例とする鉄骨トラス梁の架設工程を
順に示す模式説明図であつて、そのA図はトラス
自重、B図は載荷加力、C図は載荷加力の解除、
D図は本設固定荷重によるそれぞれの場合のトラ
ス梁の変形説明図である。 1……柱、2……鉄骨トラス梁、3……結合手
段、組立体、4……下シユー、5……上シユー、
6……係止体、7……摺滑材、8……固定ブロツ
ク、12,22……ベースプレート、W0,W1
…等分布設計荷重P先行載荷加力、δ0,δ1,δ2
δ3……トラス梁先端部移動量。
FIG. 1 is a detailed view of a joint portion between a column and a beam, showing an embodiment of the joining means used in the construction method of the present invention, in which A shows a cross-sectional view and B shows a plan view. Fig. 2 is a schematic explanatory diagram showing the construction process of a steel truss beam in order, taking a chevron-shaped truss beam as an example.
Figure D is an explanatory diagram of the deformation of the truss beam in each case due to the permanent fixed load. 1... Column, 2... Steel truss beam, 3... Connection means, assembly, 4... Lower shoe, 5... Upper shoe,
6... Locking body, 7... Sliding material, 8... Fixed block, 12, 22... Base plate, W 0 , W 1 ...
...Evenly distributed design load P advance loading force, δ 0 , δ 1 , δ 2 ,
δ 3 ...Amount of movement of the tip of the truss beam.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄筋コンクリート造の柱頭に鉄骨トラスを結
合する手段を設けてトラスを架設する建方工法に
おいて、柱頭頂部に、周囲および上部がそれぞれ
制限された空間を有する下シユーを設け、トラス
下端に固着された上シユーを該下シユー内に嵌装
して滑り支承させ、該上シユーを該下シユー内で
スパン方向に実質的に水平に移動させうる結合組
立体を使用して、トラスの架設建方時にはトラス
自重によるトラスの変形を柱頭上での該組立体の
滑り支承によつてトラス端部を水平移動させて支
承し、つぎにこのトラスの中間部節点にこのトラ
スが支持すべき固定荷重に見合う付加荷重を先行
載荷してトラス端部をさらに柱頭上の該組立体で
水平移動させ、ついでその状態で滑り支承を固着
支持に切換えてトラス端部を柱頭上に固定結合し
たのち、トラスの付加荷重を解除することを特徴
とするトラス梁架設工法。
1. In a construction method in which a means is provided to connect a steel truss to the capital of a reinforced concrete column and a truss is erected, a lower shoe is provided at the top of the column capital with a limited space around and above, and is fixed to the lower end of the truss. During erection of the truss, an upper shoe is slidably supported within the lower shoe using a coupling assembly that allows the upper shoe to be moved substantially horizontally in the spanwise direction within the lower shoe. The deformation of the truss due to the truss's own weight is supported by horizontally moving the end of the truss by sliding support of the assembly on the column head, and then the intermediate node of this truss is supported to correspond to the fixed load that this truss should support. An additional load is applied in advance and the truss end is further moved horizontally by the assembly above the column head, then the sliding bearing is switched to fixed support in this state to fixedly connect the truss end to the column head, and then the truss is added. A truss beam construction method characterized by releasing the load.
JP19864985A 1985-09-10 1985-09-10 Truss beam temporary construction method Granted JPS6259743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19864985A JPS6259743A (en) 1985-09-10 1985-09-10 Truss beam temporary construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19864985A JPS6259743A (en) 1985-09-10 1985-09-10 Truss beam temporary construction method

Publications (2)

Publication Number Publication Date
JPS6259743A JPS6259743A (en) 1987-03-16
JPH0350848B2 true JPH0350848B2 (en) 1991-08-05

Family

ID=16394723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19864985A Granted JPS6259743A (en) 1985-09-10 1985-09-10 Truss beam temporary construction method

Country Status (1)

Country Link
JP (1) JPS6259743A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657972B2 (en) * 1987-05-23 1994-08-03 清水建設株式会社 How to build a structure
JPH04312641A (en) * 1991-04-11 1992-11-04 Ohbayashi Corp Horizontally moving construction

Also Published As

Publication number Publication date
JPS6259743A (en) 1987-03-16

Similar Documents

Publication Publication Date Title
CA2017669C (en) Curtain wall for a building
US3952472A (en) Joint for transferring bending moments
US20040134152A1 (en) Method and apparatus for precast and framed block element construction
US12012745B2 (en) System and apparatus for securing a floorplate to a structure
CN108222480B (en) High-altitude cantilever main truss type steel formwork construction platform
CN207633734U (en) A kind of high-altitude overhanging main truss posture steel mould base operation platform
JP3638571B2 (en) Support load transfer method for existing buildings
JPH0350848B2 (en)
JPH07300817A (en) Concrete-filled steel pipe truss pier and construction method
JP3413584B2 (en) Construction method of frame structure
JP3247749B2 (en) Construction method of long span truss beams
Hassler Erecting the staggered-truss system: A view from the field
JPH094052A (en) Joint structure for column capital and column base, column base footing joint structure, and unit building
JP2916585B2 (en) Construction method of building
JPH07279247A (en) Skeleton of building consisting of concrete core wall and structural steel frame
Smilow et al. The Spiral-66 Hudson Blvd Supertall
JP3323064B2 (en) Unit building and its construction method
Bogun Analysis of the steel structures connections in Finland and in Russia
JPH02120435A (en) Construction method for skeleton in steel framed buiding
KR20240029538A (en) Partial reflection composite girder and column connection structure construction method and girder and column connection structure constructed thereby
Dubina et al. Innovative cold-formed steel structure for restructuring of existing RC or masonry buildings by vertical addition of supplementary storey
Honeck USE OF STEEL IN THE SEISMIC RETROFIT OFHISTORICOAKLANDCITYHALL
Joyner et al. STRUCTURAL ASPECTS OF THE BOEING 747 HANGAR FOR BOAC AT HEATHROW AIRPORT.
JPH0589603U (en) Connecting structure of wooden buildings
Liu et al. Cyclic Behavior of Steel Shear Connections Including Floor Slab