JPH0350770A - Mos type semiconductor integrated circuit device - Google Patents

Mos type semiconductor integrated circuit device

Info

Publication number
JPH0350770A
JPH0350770A JP18536389A JP18536389A JPH0350770A JP H0350770 A JPH0350770 A JP H0350770A JP 18536389 A JP18536389 A JP 18536389A JP 18536389 A JP18536389 A JP 18536389A JP H0350770 A JPH0350770 A JP H0350770A
Authority
JP
Japan
Prior art keywords
high melting
layer
polycrystalline silicon
silicon layer
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18536389A
Other languages
Japanese (ja)
Inventor
Matsuo Ichikawa
市川 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18536389A priority Critical patent/JPH0350770A/en
Publication of JPH0350770A publication Critical patent/JPH0350770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent intrusion of a high melting-point metal into a polycrystalline silicon layer, reaction of the high melting-point metal and formation of an silicide by forming the nitride film of the stable and conductive high melting-point metal onto the polycrystalline silicon layer, which is doped with an impurity, and forming the high melting-point metal onto the nitride film. CONSTITUTION:A field oxide film 2 and a gate insulating film 3 are formed onto a P-type Si single crystal substrate 1. A polycrystalline silicon layer 4 is shaped onto the field oxide film 3 and the gate insulating film 3, and N<+> diffusion is conducted through thermal diffusion. A titanium nitride layer 8 is formed onto the layer 4, a high melting-point metallic layer 5 is shaped onto the layer 8, and others are removed through etching while leaving an electrode and a wiring region required. N<+> diffusion is performed through ion implantation, and a source and a drain 6 are formed. An SiO2 film 7 is shaped onto the source and the drain. An impurity in the source and the drain 6 is activated and the SiO2 film 7 is annealed through heat treatment at a high temperature in a nitrogen atmosphere. Since there is the titanium nitride film between the polycrystalline silicon layer and the high melting-point metallic layer at that time, both the polycrystalline silicon layer and the high melting-point metallic layer are not reacted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はMOS型半導体集積回路装置の電極構造に関し
、電極に高融点金属を用いた電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode structure for a MOS type semiconductor integrated circuit device, and more particularly to an electrode structure using a high melting point metal for the electrode.

[従来の技術] 従来より、半導体装置の電極配線にはALや多結晶シリ
コン、それに多結晶シリコン層とシリサイド層の二層を
用いたポリサイド配線が広(用いられている。AJ、は
比抵抗が小さ(、シリコン基板とのコンタクトも良好で
あるため多用されているが融点が低いために高温処理工
程が全て終了した後でなげれば用いられないという制約
がある。
[Prior Art] Conventionally, AL, polycrystalline silicon, and polycide wiring using two layers of a polycrystalline silicon layer and a silicide layer have been widely used for electrode wiring of semiconductor devices. AJ is the specific resistance. It is often used because it has a small surface area (and good contact with the silicon substrate), but its low melting point means that it cannot be used unless it is removed after all high-temperature treatment steps are completed.

従って、MOSデバイスを自己整合法で作る場合や多1
ツ配線構造の集積回路を作る場合には多結晶シリコン配
線やポリサイド配線が良(用いられる微線化が進むにつ
れて、配線の抵抗が問題になり、多結晶シリコン配線か
らポリサイ4、ド配線に変わり、2μmプロセス、1.
2μmプロセス、0.8μmプロセスでは、おもにポリ
サイド配線が使用されている。しかし、微細化が進むに
したがってポリサイド配線でも抵抗が問題になり、高融
点金属配線の実用化が要求されている。
Therefore, when making MOS devices using the self-alignment method,
Polycrystalline silicon interconnects and polycide interconnects are preferable when making integrated circuits with a two-wire structure (as the wires used become finer, the resistance of the interconnects becomes a problem, and polycrystalline silicon interconnects are replaced by polycrystalline silicon interconnects and polycide interconnects. , 2 μm process, 1.
In the 2 μm process and the 0.8 μm process, polycide wiring is mainly used. However, as miniaturization progresses, resistance becomes a problem even with polycide wiring, and there is a demand for practical use of refractory metal wiring.

しかし、高融点金属配線の実用化にはい(つかの問題点
が残っており、いまだ実用化にいたっていない。
However, there are still some problems with the practical application of high-melting point metal wiring, and it has not yet been put into practical use.

第2図(α)〜第2図(d)に例を挙げ以下に従来の方
法について説明する。
The conventional method will be described below with examples shown in FIGS. 2(α) to 2(d).

第2図(IZ)に示すように、P型S11結晶基板11
上に、フィールド酸化膜12とゲート絶縁膜13を形成
する。
As shown in FIG. 2 (IZ), a P-type S11 crystal substrate 11
A field oxide film 12 and a gate insulating film 13 are formed thereon.

第2図(b)に示すように、多結晶シリコン層14を形
成した後、N+拡散を熱拡散でおこなった後、その上に
高融点金属層15を形成した後、電極及び配線となる部
分を残して、他をホトエツチングで除去する。
As shown in FIG. 2(b), after a polycrystalline silicon layer 14 is formed, N+ diffusion is performed by thermal diffusion, and a high melting point metal layer 15 is formed thereon. The remaining parts are removed by photo-etching.

第2図(C)に示すように、イオン打込みによってN+
拡散をおこない、ソース及びドレイン16を形成する。
As shown in Figure 2 (C), N+
Diffusion is performed to form the source and drain 16.

その上に、0VDSiO,膜17を形成する。A 0VDSiO film 17 is formed thereon.

第2図(d)に示すように、窒素雰囲気中で高温の熱処
理をおこなって、ソース及びドレイン16の不純物の活
性化とO’VDSiO,膜17のアニールをおこなう。
As shown in FIG. 2(d), high temperature heat treatment is performed in a nitrogen atmosphere to activate impurities in the source and drain 16 and anneal the O'VDSiO film 17.

熱アニール工程が入ると、多結晶シリコン層14と高融
点金属層15が反応してシリサイド層18が形成される
When the thermal annealing step is performed, the polycrystalline silicon layer 14 and the high melting point metal layer 15 react to form a silicide layer 18.

多結晶シリコンの厚みによるが、熱処理の温度と時間に
よって、反応が進行し、場合によっては下地となる多結
晶シリコン層がなくなってしまうほど反応が進行する。
Although it depends on the thickness of the polycrystalline silicon, the reaction progresses depending on the temperature and time of the heat treatment, and in some cases, the reaction progresses to such an extent that the underlying polycrystalline silicon layer disappears.

この反応の進行具合によって、シリサイドの結晶粒が多
結晶シリコンを突き抜けたり、シリサイド膜及び高融点
金属膜のヒズミが直接、ゲート絶縁膜につたわり、ゲー
ト絶縁膜に悪影響をおよぼし、ゲート絶縁膜の絶縁耐圧
をいちじるしく降下させると同時に、絶縁が破壊される
にいたる。この現象によって、歩留りが低下すると同時
に信頼性がいちじるしく悪(、高融点金属のゲート電極
及び配線に使用されえなかつた。
Depending on the progress of this reaction, silicide crystal grains may penetrate the polycrystalline silicon, or distortions in the silicide film and high-melting point metal film may be directly transmitted to the gate insulating film, adversely affecting the gate insulating film. At the same time, the dielectric strength drops significantly and the insulation is destroyed. Due to this phenomenon, the yield was reduced and the reliability was so bad that it could not be used for gate electrodes and wiring made of high melting point metals.

[発明が解決しようとする課題] 本発明の方法は、熱処理によっておこる高融点金属層の
下地多結晶シリコン層との反応、それによって発生する
多結晶シリコン層の薄膜化、シリサイド粒の多結晶シリ
コン層の突き抜け、及びシリサイド膜及び高融点金属膜
のヒズミの影響を防止し、ゲート絶縁膜への悪影響(耐
圧降下、絶縁リーク等)を防止し、素子の歩留向上及び
信頼性を向上する事を目的とする。
[Problems to be Solved by the Invention] The method of the present invention deals with the reaction of the high-melting point metal layer with the base polycrystalline silicon layer caused by heat treatment, the thinning of the polycrystalline silicon layer generated thereby, and the thinning of the polycrystalline silicon layer of silicide grains. Preventing layer penetration and the effects of distortion on silicide films and high-melting point metal films, preventing adverse effects on gate insulating films (voltage drop, insulation leakage, etc.), and improving device yield and reliability. With the goal.

[課題を解決するための手段] 不純物をドープした多結晶シリコン層上に安定で導電性
のある高融点金属の窒化膜を形成し、その上に高融点金
属層を形成する事によって高融点金属が多結晶シリコン
層の中に侵入し、反応してシリサイドを形成してい(の
を防止する。
[Means for solving the problem] A stable and conductive high melting point metal nitride film is formed on a polycrystalline silicon layer doped with impurities, and a high melting point metal layer is formed on top of the high melting point metal nitride film. (prevents) from penetrating into the polycrystalline silicon layer and reacting to form silicide.

[実施例] 第1図(α)〜第1図(d)に例を挙げて本発明の方法
について説明する。
[Example] The method of the present invention will be described with reference to FIGS. 1(α) to 1(d) as examples.

第1図(α)に示すように、P型S1単結晶基板1上に
、フィールド酸化膜2及びゲート絶縁膜3を形成する。
As shown in FIG. 1(α), a field oxide film 2 and a gate insulating film 3 are formed on a P-type S1 single crystal substrate 1.

第1図(h)に示すように、その上に、多結晶シリコン
層4を500^程度形成したのち、N+拡散を熱拡散で
おこなう。その上にチタンナイトライド層8を4ooX
H度形成し、その上に、高融点金属層5を3000X程
度形成し、必要な電極及び配線領域を残して、他をエツ
チング除去する。
As shown in FIG. 1(h), a polycrystalline silicon layer 4 having a thickness of about 500^ is formed thereon, and then N+ diffusion is performed by thermal diffusion. 4ooX titanium nitride layer 8 on top of it
A high melting point metal layer 5 is formed thereon to a thickness of about 3000X, and the necessary electrode and wiring areas are left and the rest are removed by etching.

第1図<c>に示すように、イオン打込みによってN 
拡散をおこない、ソース及びドレイン6を形成する。そ
の上に、ovpsto、g7を形成する。
As shown in Figure 1 <c>, N
Diffusion is performed to form the source and drain 6. On top of that, form ovpsto, g7.

第1図(d)に示すように、窒素雰囲気中で高温の熱処
理をおこなって、ソース及びドレイン乙の不純物の活性
化と0VDSi02膜7のアニールをおこなう。熱アニ
ール工程が入っても多結晶シリコン層と高融点金属層と
の間にチタンナイトライド膜があるので、両者の反応は
おこらない。
As shown in FIG. 1(d), high temperature heat treatment is performed in a nitrogen atmosphere to activate impurities in the source and drain and anneal the 0VDSi02 film 7. Even if a thermal annealing process is performed, since there is a titanium nitride film between the polycrystalline silicon layer and the high melting point metal layer, no reaction between the two will occur.

[発明の効果コ 本発明の方法によると、多結晶シリコン層と高融点金属
層の間に安定な、導電性のある高融点金属窒化物層をも
うける事によって、上層の高融点金属層と多結晶シリコ
ン層と反応するのを防止し、反応によって発生するシリ
サイドの結晶粒が多結晶シリコン層を突き抜けて、ゲー
ト膜に悪影響を与えたり、シリサイド膜及び高融点金属
膜のヒズミが直接ゲート絶縁膜につたわって、絶縁耐圧
をいちじるしく降下させたり、絶縁が破壊されるといっ
た事もな(なる。
[Effects of the Invention] According to the method of the present invention, by providing a stable and conductive high melting point metal nitride layer between the polycrystalline silicon layer and the high melting point metal layer, the upper high melting point metal layer and the polycrystalline silicon layer are bonded. It prevents silicide crystal grains generated by the reaction from penetrating the polycrystalline silicon layer and adversely affecting the gate film, or distortions in the silicide film and high-melting point metal film directly damage the gate insulating film. There is no possibility that the dielectric strength will drop significantly or the insulation will be destroyed.

又、そのために下地の多結晶シリコン層を薄(する事が
でき、電極及び配線を薄(でき、段差形状を改善する事
ができる。
Moreover, for this reason, the underlying polycrystalline silicon layer can be made thinner, the electrodes and wiring can be made thinner, and the step shape can be improved.

又、必要に応じて、段差形状をそのままにして高融点金
属層を厚くする事ができ、配線抵抗を小さ(する事がで
きる。
Furthermore, if necessary, the high melting point metal layer can be made thicker while leaving the stepped shape unchanged, and the wiring resistance can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(α)〜第1図(d)は本発明の方法による、工
程順の断面略図である。 第2図(α)〜第2図(d)は従来の方法による、工程
順の断面略図である。 以上
FIG. 1(α) to FIG. 1(d) are schematic cross-sectional views of the process steps according to the method of the present invention. FIG. 2(α) to FIG. 2(d) are schematic cross-sectional views of the steps in the conventional method. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板表面に形成されたゲート絶縁膜上に、
基板と逆導電型不純物もしくは同じ導電型不純物がドー
プされた多結晶シリコン層、高融点金属窒化物層及び高
融点金属層からなりたっているゲート電極を有する事を
特徴とするMOS型半導体集積回路装置。
(1) On the gate insulating film formed on the surface of the semiconductor substrate,
A MOS type semiconductor integrated circuit device characterized by having a gate electrode made of a polycrystalline silicon layer doped with an impurity of conductivity type opposite to that of the substrate or an impurity of the same conductivity type as the substrate, a refractory metal nitride layer, and a refractory metal layer. .
(2)該高融点金属窒化物層がチタンナイトライド膜で
ある事を特徴とする請求項1記載のMOS型半導体集積
回路装置。
(2) The MOS type semiconductor integrated circuit device according to claim 1, wherein the high melting point metal nitride layer is a titanium nitride film.
(3)該多結晶シリコン層の厚みが200Å〜2500
Å、該高融点金属窒化物層の厚みが100Å〜1500
Åである事を特徴とする請求項1記載のMOS型半導体
集積回路装置。
(3) The thickness of the polycrystalline silicon layer is 200 Å to 2500 Å.
Å, the thickness of the high melting point metal nitride layer is 100 Å to 1500 Å
2. The MOS type semiconductor integrated circuit device according to claim 1, wherein the MOS semiconductor integrated circuit device is Å.
JP18536389A 1989-07-18 1989-07-18 Mos type semiconductor integrated circuit device Pending JPH0350770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18536389A JPH0350770A (en) 1989-07-18 1989-07-18 Mos type semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18536389A JPH0350770A (en) 1989-07-18 1989-07-18 Mos type semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0350770A true JPH0350770A (en) 1991-03-05

Family

ID=16169491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18536389A Pending JPH0350770A (en) 1989-07-18 1989-07-18 Mos type semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0350770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668394A (en) * 1993-06-24 1997-09-16 United Microelectronics Corporation Prevention of fluorine-induced gate oxide degradation in WSi polycide structure
WO1998059372A1 (en) * 1997-06-20 1998-12-30 Hitachi, Ltd. Semiconductor integrated circuit and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668394A (en) * 1993-06-24 1997-09-16 United Microelectronics Corporation Prevention of fluorine-induced gate oxide degradation in WSi polycide structure
WO1998059372A1 (en) * 1997-06-20 1998-12-30 Hitachi, Ltd. Semiconductor integrated circuit and method of fabricating the same

Similar Documents

Publication Publication Date Title
JPS63127551A (en) Manufacture of semiconductor device
JPS6173370A (en) Semiconductor device and method of producing same
JPH034527A (en) Manufacture of semiconductor element
JPS61142739A (en) Manufacture of semiconductor device
JPS62113421A (en) Manufacture of semiconductor device
JPH06204170A (en) Semiconductor device and its manufacture
JPH0350770A (en) Mos type semiconductor integrated circuit device
JPH11317406A (en) Semiconductor device and manufacture of the same
JPH08204188A (en) Semiconductor device and its manufacture
JPH0258259A (en) Manufacture of semiconductor device
JPS61174767A (en) Semiconductor element electrode
JPH04320029A (en) Manufacture of semiconductor device
JPS61224435A (en) Semiconductor device
JPS59177926A (en) Manufacture of semiconductor device
KR20010001764A (en) manufacturing method of semiconductor devices
JPS61150216A (en) Manufacture of semiconductor device
KR940010500B1 (en) Manufacturing method of semiconductor device
JPH09186104A (en) Manufacture of semiconductor device
JPH053172A (en) Semiconductor device and manufacture thereof
JPH0154867B2 (en)
JPH0232537A (en) Manufacture of semiconductor device
JPH07111969B2 (en) Method for manufacturing semiconductor device
JPH021171A (en) Mis semiconductor integrated circuit device
JPH03154332A (en) Manufacture of semiconductor device
JPS60115265A (en) Semiconductor device and manufacture thereof