JPH0350480Y2 - - Google Patents

Info

Publication number
JPH0350480Y2
JPH0350480Y2 JP1986014226U JP1422686U JPH0350480Y2 JP H0350480 Y2 JPH0350480 Y2 JP H0350480Y2 JP 1986014226 U JP1986014226 U JP 1986014226U JP 1422686 U JP1422686 U JP 1422686U JP H0350480 Y2 JPH0350480 Y2 JP H0350480Y2
Authority
JP
Japan
Prior art keywords
cladding tube
steel container
piping
airtightly
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986014226U
Other languages
Japanese (ja)
Other versions
JPS62126798U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986014226U priority Critical patent/JPH0350480Y2/ja
Publication of JPS62126798U publication Critical patent/JPS62126798U/ja
Application granted granted Critical
Publication of JPH0350480Y2 publication Critical patent/JPH0350480Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Installation Of Indoor Wiring (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 本考案は原子炉格納容器における配管の壁貫通
部の構造に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to the structure of a wall penetrating portion of piping in a nuclear reactor containment vessel.

「従来の技術」 高速増殖炉(以下FBRという)の格納容器は、
鋼製容器の内側および外側にコンクリート製の遮
蔽壁を設け、内側遮蔽壁の内部にN2ガスを充填
するとともに、内外の遮蔽壁と鋼製格納容器との
間の空間部を減圧状態とすることによつて、万一
の冷却材金属ナトリウムの漏洩に対する冷却材と
空気との接触を防止するようにした構造を採用す
る計画となつている。
"Conventional technology" The containment vessel of a fast breeder reactor (hereinafter referred to as FBR) is
Concrete shielding walls are installed inside and outside the steel container, and the inside of the inner shielding wall is filled with N2 gas, and the space between the inner and outer shielding walls and the steel containment vessel is reduced in pressure. In particular, it is planned to adopt a structure that will prevent contact between the coolant and air in the unlikely event that the coolant metal sodium leaks.

「考案が解決しようとする問題点」 ところで、前記FBRの格納容器には、冷却材
を初めとする種々の流体が流される数多くのプロ
セス配管を貫通させる必要があるが、該プロセス
配管には、高温の流体が流通させられるから、格
納容器との間における熱応力を緩和し、かつ地震
等に際して配管を確実に拘束し得る構造の採用が
必要とされている。
"Problems to be solved by the invention" By the way, the FBR containment vessel needs to be penetrated by numerous process pipes through which various fluids including coolant flow. Since high-temperature fluid is circulated, it is necessary to adopt a structure that can alleviate thermal stress between the pipe and the containment vessel and can reliably restrain the piping in the event of an earthquake or the like.

本考案は上記事情に鑑みて提案されたもので、
プロセス配管と格納容器との間の熱応力の発生を
防止し、かつ、地震等に際して確実に配管を拘束
し得るとともに、構造が簡単で十分な耐久力を持
つた配管貫通部の構造を得ることを目的とするも
のである。
This idea was proposed in view of the above circumstances.
To obtain a structure for a pipe penetration part that can prevent the occurrence of thermal stress between a process pipe and a containment vessel, can securely restrain the pipe in the event of an earthquake, etc., and has a simple structure and sufficient durability. The purpose is to

「問題点を解決するための手段」 上記目的を達成するため、鋼製容器壁とその内
外に位置するコンクリート製の内側遮蔽壁及び外
側遮蔽壁とを貫通しているプロセス配管の外周面
に、その回りを同心状に囲む内部被覆管及び外部
被覆管の一端部がそれぞれ気密に固着され、外部
被覆管の外周面が鋼製容器壁の穴を遮蔽した状態
に取り付けられ、内部被覆管の内側端部及び内側
遮蔽壁に明けた穴の間と、鋼製容器壁より外側に
位置する外部被覆管の途中箇所とに、その間を気
密に遮蔽しかつ管軸方向の相対移動を許容するベ
ローズ継手がそれぞれ設けられ、外部被覆管の一
端部近傍の外周面と外側遮蔽壁の貫通孔との間
に、これを気密に仕切りかつ弾性変形可能なリン
グ状のシール部材と、管轄方向の相対移動を許容
しかつ周方向の相対移動を規制するガイド機構と
が設けられている構成の原子炉格納容器の配管貫
通部構造としている。
"Means for Solving the Problem" In order to achieve the above purpose, on the outer peripheral surface of the process piping that penetrates the steel container wall and the concrete inner and outer shielding walls located inside and outside the steel container wall, One end of the inner cladding tube and the outer cladding tube concentrically surrounding the inner cladding tube and one end of the outer cladding tube are respectively fixed airtightly, and the outer circumferential surface of the outer cladding tube is installed with the hole in the steel container wall shielded, and the inner cladding tube is attached to the inner side of the inner cladding tube. A bellows joint that airtightly shields the space between the holes drilled in the end and inner shielding wall, and a midway point of the external cladding tube located outside the steel container wall, and allows relative movement in the tube axis direction. are provided between the outer circumferential surface near one end of the outer cladding tube and the through hole of the outer shielding wall, and a ring-shaped sealing member that airtightly partitions the outer cladding tube and is elastically deformable, and a ring-shaped sealing member that prevents relative movement in the direction of control. The piping penetration structure of the reactor containment vessel is provided with a guide mechanism for permitting and regulating relative movement in the circumferential direction.

そして、プロセス配管が伸縮すると、その伸縮
量がベローズ継手によつて吸収され、プロセス配
管を三つの壁のいずれに対しても伸縮が拘束され
ない自由な状態で、かつ、貫通部の気密性を保持
する。
When the process piping expands and contracts, the amount of expansion and contraction is absorbed by the bellows joint, leaving the process piping in a free state where expansion and contraction is not restricted by any of the three walls, and maintaining the airtightness of the penetration part. do.

地震等の外力が働いた場合は、プロセス配管の
外周面に固着されている外部被覆管と外側遮蔽壁
との間のガイド機構が、管軸方向を除いて移動を
規制することにより、耐震性を生じる。
When an external force such as an earthquake is applied, the guide mechanism between the outer sheathing pipe and the outer shielding wall, which is fixed to the outer circumferential surface of the process pipe, restricts movement except in the pipe axis direction, thereby improving earthquake resistance. occurs.

「実施例」 以下、第1図ないし第3図を参照して本考案の
一実施例を説明する。
"Embodiment" Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

図中符号1は鋼製容器であつて、この鋼製容器
1の内側および外側には、コンクリート製の内側
遮蔽壁2および外側遮蔽壁3がそれぞれ設けられ
ている。そして、これら鋼製容器1、内側遮蔽壁
2、および外側遮蔽壁3を貫通する如くプロセス
配管Pが設けられている。また、該プロセス配管
Pは、FBRの冷却材等の流体が流通させられる
内管4と、該内管4との間に漏洩検出用の空間部
を形成する内装板5とからなる二重構造となつて
いる。
Reference numeral 1 in the figure is a steel container, and an inner shielding wall 2 and an outer shielding wall 3 made of concrete are provided on the inside and outside of the steel container 1, respectively. Process piping P is provided so as to penetrate these steel container 1, inner shielding wall 2, and outer shielding wall 3. Further, the process piping P has a double structure consisting of an inner pipe 4 through which fluid such as FBR coolant flows, and an inner plate 5 that forms a space for leak detection between the inner pipe 4. It is becoming.

前記プロセス配管Pの外周には、該プロセス配
管Pに対して同心状に内部被覆管6と外部被覆管
7とが設けられており、プロセス配管Pと内部被
覆管6との間の空間部8{なお、この空間部8に
は、保温材(図示略)が充填されている}、およ
び内部外部の被覆管6,7の間の空間部9は、い
ずれも原子炉格納容器の外側の端部で密閉されて
いる。すなわち、外部被覆管7の格納容器外側の
端部はプロセス配管Pの外周に気密に固着され、
一方、内部被覆管6の外側端部は、外部被覆管7
の内周に気密に固着されている。
An inner cladding tube 6 and an outer cladding tube 7 are provided on the outer periphery of the process piping P concentrically with respect to the process piping P, and a space 8 between the process piping P and the inner cladding tube 6 is provided. {This space 8 is filled with a heat insulating material (not shown)} and the space 9 between the internal and external cladding tubes 6 and 7 are both located at the outer end of the reactor containment vessel. The area is sealed. That is, the end of the outer cladding tube 7 outside the containment vessel is airtightly fixed to the outer periphery of the process piping P.
On the other hand, the outer end of the inner cladding tube 6 is connected to the outer cladding tube 7.
is airtightly fixed to the inner circumference of the

前記内部被覆管6の内側端部は、外部被覆管7
よりも内側に突出して設置されており、この内部
被覆管6の内側端部は、直列に配置された第1の
ベローズ継手10,10を介して内側コンクリー
ト製遮蔽壁2に気密にかつ相対移動可能に接続さ
れている。また、外部被覆管7の内側端部は、前
記第1のベローズ継手10と同様に直列に配置さ
れた第2のベローズ継手11,11を介して鋼製
容器1に気密にかつ相対移動可能に接続されてい
る。さらに、前記外部被覆管7は、鋼製容器1と
外側コンクリート製遮蔽壁3との間の部分で長さ
方向に分割されており、この分割部は、直列に配
置された第3のベローズ継手12,12を介して
気密にかつ相対移動可能に接続されている。そし
て、前記ベローズ継手10,11,12は、いず
れも、ステンレス鋼製の薄板等の弾性材料で形成
された本体13と、該本体13の外周を覆う筒状
のカバー13aとから構成されている。
The inner end of the inner cladding tube 6 is connected to the outer cladding tube 7.
The inner end of the inner cladding tube 6 can be moved airtightly and relative to the inner concrete shielding wall 2 via the first bellows joints 10, 10 arranged in series. Possibly connected. Further, the inner end of the outer cladding tube 7 is airtightly and relatively movable to the steel container 1 via second bellows joints 11, 11 arranged in series like the first bellows joint 10. It is connected. Further, the outer cladding tube 7 is divided in the length direction at a portion between the steel container 1 and the outer concrete shielding wall 3, and this divided portion is connected to a third bellows joint arranged in series. They are connected airtightly and relatively movably via 12, 12. The bellows joints 10, 11, and 12 each include a main body 13 made of an elastic material such as a thin plate of stainless steel, and a cylindrical cover 13a that covers the outer periphery of the main body 13. .

したがつて、前記第1のベローズ継手10によ
り、内側コンクリート壁2内の空間部14と、鋼
製容器1〜内側コンクリート壁2間の空間部15
とを仕切り、第2,第3のベローズ継手11,1
2により、前記空間部15と、鋼製容器1〜外側
コンクリート壁2間の空間部16とを仕切ること
ができる。
Therefore, the first bellows joint 10 connects the space 14 within the inner concrete wall 2 and the space 15 between the steel container 1 and the inner concrete wall 2.
and the second and third bellows joints 11 and 1.
2 can partition the space 15 from the space 16 between the steel container 1 and the outer concrete wall 2.

なお、符号17はシール部材であつて、このシ
ール部材17は、前記空間部16と格納容器外の
空間部18とを気密に仕切るとともに、これらの
間で弾性変形可能なリング状をなす構造となつて
いる。
Note that reference numeral 17 is a sealing member, and this sealing member 17 airtightly partitions the space 16 and the space 18 outside the containment vessel, and has a ring-shaped structure that can be elastically deformed between them. It's summery.

さらに、前記外側遮蔽壁3と外部被覆管7との
間には、プロセス配管Pを管軸方向に移動自在に
支持しかつ他の方向への移動を規制するガイド機
構19(第3図参照)が設けられている。
Further, between the outer shielding wall 3 and the outer cladding tube 7, a guide mechanism 19 (see FIG. 3) that supports the process piping P so as to be movable in the tube axis direction and restricts movement in other directions. is provided.

すなわち、外側遮蔽壁3の貫通孔3aの内周に
は、該貫通孔3aの半径方向に向う複数(4個)
の取り付け金具20が互いに周方向に等しい間隔
をおいて取り付けられており、この取り付け金具
20には、スリーブ21が設けられている。この
スリーブ21には、フランジ22が取り付けられ
ており、このフランジ22は、前記外部被覆管7
より大径の拘束リング23と一体のフランジ22
にスペーサ24を介して連結されて、前記拘束リ
ング23を外部被覆管7(および配管P)と同心
状に支持している。
That is, on the inner periphery of the through hole 3a of the outer shielding wall 3, there are a plurality of (four) holes facing in the radial direction of the through hole 3a.
Mounting fittings 20 are attached to each other at equal intervals in the circumferential direction, and each of the fittings 20 is provided with a sleeve 21. A flange 22 is attached to this sleeve 21, and this flange 22 is attached to the outer cladding tube 7.
Flange 22 integrated with larger diameter restraining ring 23
The restraining ring 23 is supported concentrically with the outer cladding tube 7 (and the piping P).

前記拘束リング23の内周には、周方向拘束金
物25が周方向に等間隔をおいて複数(4個)設
けられ、一方、前記外部被覆管7の外周には、ラ
グ26が周方向に等間隔をおいて複数(4個)設
けられており、これらラグ26は、前記周方向拘
束金物25の間の部分に配管Pの管軸方向に移動
自在に支持される一方、周方向拘束金物25に当
接することによつて、外部被覆管7の回転を規制
している。
A plurality (four) of circumferential restraining hardware 25 are provided on the inner periphery of the restraining ring 23 at equal intervals in the circumferential direction, while lugs 26 are provided on the outer periphery of the outer cladding tube 7 in the circumferential direction. A plurality (4 pieces) of lugs 26 are provided at equal intervals, and these lugs 26 are supported in a portion between the circumferential restraining hardware 25 so as to be movable in the axial direction of the pipe P. By coming into contact with 25, rotation of the outer cladding tube 7 is restricted.

以上のように構成された配管貫通部構造におい
ては、内側遮蔽壁2内側の空間部14にN2ガス
を充填するとともに、この鋼製容器1と内側外側
の遮蔽壁2,3それぞれとの間の空間部15,1
6を大気圧に対してマイナス50〜150mmAq程度に
減圧することにより、空間部14内への空気の侵
入を防止して、万一の冷却材漏洩に際しての冷却
材の急激な化学反応を防止することができるとと
もに、放射性物質の系外への漏洩を確実に防止し
得るようになつている。
In the pipe penetration structure configured as described above, the space 14 inside the inner shielding wall 2 is filled with N 2 gas, and the space between the steel container 1 and the inner and outer shielding walls 2 and 3 is space 15,1
6 to about minus 50 to 150 mmAq relative to atmospheric pressure to prevent air from entering the space 14 and prevent a rapid chemical reaction of the coolant in the event of coolant leakage. It is now possible to reliably prevent radioactive materials from leaking outside the system.

また、上記一実施例の構造では、配管Pが熱伸
縮した場合、あるいは、内部外部の被覆管6,7
が配管Pから伝わる熱によつて伸縮した場合に、
ベローズ継手10,11,12の弾性変形によつ
てこれを吸収することができるとともに、ガイド
機構19によつて配管Pを拘束することができ
る。
In addition, in the structure of the above-mentioned embodiment, when the piping P expands and contracts due to heat, or when the internal and external cladding tubes 6 and 7
When expands and contracts due to the heat transmitted from the pipe P,
This can be absorbed by the elastic deformation of the bellows joints 10, 11, 12, and the pipe P can be restrained by the guide mechanism 19.

すなわち、第2図において上下に並んだ2つの
ガイド機構19,19によつて水平方向への拘束
が行なわれ、一方、左右に並んだ2つのガイド機
構19,19により上下方向の拘束がなされて、
地震等に際しての配管の上下動を防止し、あるい
は、他の部分の配管から伝わるねじれモーメント
を支持し得るとともに、周方向拘束金物25とラ
グ26とを摺動させることによつて配管P(およ
び外部被覆管7)と格納容器の壁との相対移動が
許容されるようになつている。
That is, in FIG. 2, horizontal restraint is performed by two guide mechanisms 19, 19 arranged vertically, while vertical restraint is performed by two guide mechanisms 19, 19 arranged horizontally. ,
It is possible to prevent the vertical movement of the piping during an earthquake or the like, or to support the torsional moment transmitted from other parts of the piping, and by sliding the circumferential restraining hardware 25 and the lugs 26, the piping P (and Relative movement between the outer cladding tube 7) and the wall of the containment vessel is allowed.

さらに、この一実施例では、格納容器内外の空
間を仕切るバウンダリー(境界)の外側にガイド
機構19を設けるようにしたから、高放射線環境
に立ち入ることなく、摺動部分等のメンテナンス
作業を行なうことができる。
Furthermore, in this embodiment, since the guide mechanism 19 is provided outside the boundary that partitions the space inside and outside the containment vessel, maintenance work on sliding parts etc. can be performed without entering the high radiation environment. I can do it.

なお、ガイド機構の設置個数は上記一実施例に
限定されるものではなく、少なくとも3個のガイ
ド機構を設けることにより、配管を拘束しかつね
じれを防止することができる。
Note that the number of guide mechanisms to be installed is not limited to that in the above embodiment; by providing at least three guide mechanisms, it is possible to restrain the piping and prevent it from twisting.

また、上記ガイド機構を設置すべき配管貫通部
の構造は前記一実施例に限定されるものではな
く、他の構造の配管貫通部にも適用し得るのはも
ちろんである。
Further, the structure of the pipe penetrating portion in which the guide mechanism is to be installed is not limited to the one embodiment described above, and it goes without saying that the present invention can be applied to pipe penetrating portions having other structures.

「考案の効果」 以上の説明で明らかなように、本考案に係る原
子炉格納容器の配管貫通部構造によれば、プロセ
ス配管に固着された外部被覆管及び内部被覆管
と、プロセス配管を貫通させている三つの壁との
間に、ベローズ継手が介在して、プロセス配管
が、三つの壁のいずれに対しても直接固定されず
に伸縮が自由な状態となつているので、プロセス
配管に熱伸縮が生じてもその伸縮がベローズ継手
の部分で吸収され、プロセス配管に熱応力が発生
すること、あるいは、プロセス配管から三つの壁
に対する反力の発生を抑制することができるとと
もに、プロセス配管を挿通する高温流体の許容温
度を高くすることができる。
"Effect of the invention" As is clear from the above explanation, according to the piping penetration structure of the reactor containment vessel according to the present invention, the outer cladding tube and the inner cladding tube fixed to the process piping, and the process piping are penetrated. A bellows joint is interposed between the three walls, allowing the process piping to expand and contract freely without being directly fixed to any of the three walls. Even if thermal expansion/contraction occurs, the expansion/contraction is absorbed by the bellows joint, suppressing thermal stress in the process piping or reaction force from the process piping against the three walls. It is possible to increase the permissible temperature of the high-temperature fluid that passes through the tube.

そして、三つの壁の配管貫通部は、各ベローズ
継手や外部被覆管によつて多重に遮蔽され、貫通
部の気密性を保持することができる。
The piping penetrations in the three walls are shielded multiple times by the respective bellows joints and the outer cladding tubes, and the airtightness of the penetrations can be maintained.

また、外部被覆管と外側遮蔽壁との間にガイド
機構が設けられて、地震等の外力が働いた場合
に、プロセス配管等の周方向及び上下左右方向の
移動を規制し、良好な耐震性を生じる等の効果を
奏するものである。
In addition, a guide mechanism is provided between the outer cladding pipe and the outer shielding wall to restrict movement of process piping in the circumferential direction and in the vertical and horizontal directions in the event of external force such as an earthquake, resulting in good earthquake resistance. This has the effect of producing

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示すもので、第1図
は縦断面図、第2図は第1図の−線に沿う矢
視図、第3図は第2図鎖線で示す部分の詳細図
である。 1……鋼製容器、2……内側遮蔽壁、3……外
側遮蔽壁、3a……貫通孔、6……内部被覆管、
7……外部被覆管、8,9……空間部、10,1
1,12……ベローズ継手、13……本体、13
a……カバー、14,15,16,18……空間
部、17……シール部材、19……ガイド機構、
23……拘束リング、25……周方向拘束金物、
26……ラグ、P……プロセス配管。
The drawings show one embodiment of the present invention, in which Fig. 1 is a longitudinal sectional view, Fig. 2 is a view taken along the - line in Fig. 1, and Fig. 3 is a detail of the part indicated by the chain line in Fig. 2. It is a diagram. DESCRIPTION OF SYMBOLS 1... Steel container, 2... Inner shielding wall, 3... Outer shielding wall, 3a... Through hole, 6... Inner cladding tube,
7...Outer cladding tube, 8, 9...Space part, 10, 1
1, 12... Bellows joint, 13... Main body, 13
a... Cover, 14, 15, 16, 18... Space portion, 17... Seal member, 19... Guide mechanism,
23...Restriction ring, 25...Circumferential restraint hardware,
26... Lug, P... Process piping.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 鋼製容器壁とその内外に位置するコンクリート
製の内側遮蔽壁及び外側遮蔽壁とを貫通している
プロセス配管の外周面に、その回りを同心状に囲
む内部被覆管及び外部被覆管の一端部がそれぞれ
気密に固着され、外部被覆管の外周面が鋼製容器
壁の穴を遮蔽した状態に取り付けられ、内部被覆
管の内側端部及び内側遮蔽壁に明けた穴の間と、
鋼製容器壁より外側に位置する外部被覆管の途中
箇所とに、その間を気密に遮蔽しかつ管軸方向の
相対移動を許容するベローズ継手がそれぞれ設け
られ、外部被覆管の一端部近傍の外周面と外側遮
蔽壁の貫通孔との間に、これを気密に仕切りかつ
弾性変形可能なリング状のシール部材と、管軸方
向の相対移動を許容しかつ周方向の相対移動を規
制するガイド機構とが設けられていることを特徴
とする原子炉格納容器の配管貫通部構造。
One end of the inner cladding tube and the outer cladding tube concentrically surrounding the outer peripheral surface of the process piping that penetrates the steel container wall and the concrete inner and outer shielding walls located inside and outside the steel container wall. are each airtightly fixed, the outer circumferential surface of the outer cladding tube is installed with the hole in the steel container wall shielded, and the inner end of the inner cladding tube and the hole in the inner shielding wall are connected to each other.
A bellows joint is provided at a midway point of the outer cladding tube located outside the steel container wall to airtightly shield the space between the two and allow relative movement in the tube axis direction. A ring-shaped seal member that airtightly partitions the surface and the through hole of the outer shielding wall and is elastically deformable, and a guide mechanism that allows relative movement in the tube axis direction and restricts relative movement in the circumferential direction. A piping penetration structure for a nuclear reactor containment vessel, characterized in that it is provided with:
JP1986014226U 1986-02-03 1986-02-03 Expired JPH0350480Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986014226U JPH0350480Y2 (en) 1986-02-03 1986-02-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986014226U JPH0350480Y2 (en) 1986-02-03 1986-02-03

Publications (2)

Publication Number Publication Date
JPS62126798U JPS62126798U (en) 1987-08-11
JPH0350480Y2 true JPH0350480Y2 (en) 1991-10-28

Family

ID=30804014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986014226U Expired JPH0350480Y2 (en) 1986-02-03 1986-02-03

Country Status (1)

Country Link
JP (1) JPH0350480Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557669C1 (en) * 2014-02-26 2015-07-27 Акционерное общество "Атомэнергопроект" (АО "Атомэнергопроект") Sealed cable gland through outer and inner walls of protective cover for nuclear power plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160695A (en) * 1974-06-18 1975-12-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160695A (en) * 1974-06-18 1975-12-26

Also Published As

Publication number Publication date
JPS62126798U (en) 1987-08-11

Similar Documents

Publication Publication Date Title
US5217681A (en) Special enclosure for a pressure vessel
US3712012A (en) Reinforced-concrete pressure vessel with lining
JPH0350480Y2 (en)
US3920518A (en) Pressure vessels having thermal insulsation
US3807772A (en) Device for providing a tight seal between two fluids at different temperatures
US4356144A (en) Closure hold-down system for a reactor vessel
JPH048397Y2 (en)
US4035232A (en) Closure system
JPH0350479Y2 (en)
US4681731A (en) Nuclear reactor construction with bottom supported reactor vessel
JPH0336781Y2 (en)
US4335467A (en) Liquid metal cooled nuclear reactor
JPS6153593B2 (en)
JPS6082888A (en) Reactor containing vessel piping
US3243353A (en) Fluid-tight access means for a nuclear reactor
JPH0612886U (en) Structure of wall penetration of piping
JPH0126436B2 (en)
JPS60111189A (en) Supporter for circulating pump for fast breeder reactor
JPS6245515B2 (en)
JPH05626Y2 (en)
JPS64787U (en)
JPH0458917B2 (en)
JPS63125891A (en) Cassette type flange pipe supporter
JPH0378692A (en) Fast breeder reactor
JP6197374B2 (en) Primary containment vessel