JPH0350110A - Method for highly purifying graphite - Google Patents

Method for highly purifying graphite

Info

Publication number
JPH0350110A
JPH0350110A JP1188223A JP18822389A JPH0350110A JP H0350110 A JPH0350110 A JP H0350110A JP 1188223 A JP1188223 A JP 1188223A JP 18822389 A JP18822389 A JP 18822389A JP H0350110 A JPH0350110 A JP H0350110A
Authority
JP
Japan
Prior art keywords
graphite
purity
impurities
hydrofluoric acid
refined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1188223A
Other languages
Japanese (ja)
Other versions
JPH06102529B2 (en
Inventor
Akira Kitahara
北原 彰
Takahiko Ema
江間 高彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP1188223A priority Critical patent/JPH06102529B2/en
Publication of JPH0350110A publication Critical patent/JPH0350110A/en
Publication of JPH06102529B2 publication Critical patent/JPH06102529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-purity graphite in a short time with a relatively simple process by disintegrating the graphite of >=95% purity to specified grain diameter with an instantaneous external force in one direction and then dipping the disintegrated material in hydrofluoric acid. CONSTITUTION:The graphite of >=95% purity obtained by removing the impurities such as iron oxide from natural graphite or kish graphite generated in an iron-manufacturing process by the conventional method is used. The graphite is disintegrated to <=30mu grain diameter by a jet mill or by collision with electromagnetic-wave energy based on an ultrasonic wave. As a result, the graphite can be peeled off so that the graphite and impurities are not embedded in each other. The disintegrated material is then dipped in aq. 10-70% hydrofluoric acid. Since the remaining impurities consist essentially of a silicon compd. in the case of the graphite refined to >=95% purity, almost all the impurities can be removed. Accordingly, the graphite can be refined to >=99.9% purity in a short time without need for an expensive special device such as an electric furnace.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は、天然黒鉛や製鉄工程で生成するキッシュグラ
ファイト等の黒鉛をより高純度に精製する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for refining graphite such as natural graphite or quiche graphite produced in a steel manufacturing process to a higher purity.

[従来の技術] 高炉から出銑される溶銑中には大量の炭素が溶解されて
おり、溶銑温度の低下に伴なって過飽和炭素が晶出浮上
してくる。こうして晶出した炭素はキッシュグラファイ
トと呼ばれており、特に鋳物用銑の製造工程においては
珪素の積極的添加がなされるため炭素の溶解度が低下し
てより多量のキッシュグラファイトが発生する。上記キ
ッシュグラファイトは20〜60%程度の黒鉛を含み、
不純物としては酸化鉄が主流を占め、その他、酸化カル
シウム、アルミナ、シリカ等の酸化物も少量含まれてい
る。
[Prior Art] A large amount of carbon is dissolved in hot metal tapped from a blast furnace, and as the hot metal temperature decreases, supersaturated carbon crystallizes and floats to the surface. The carbon thus crystallized is called quiche graphite, and especially in the manufacturing process of foundry pig iron, silicon is actively added, so the solubility of carbon decreases and a larger amount of quiche graphite is generated. The above-mentioned quiche graphite contains about 20 to 60% graphite,
Iron oxide is the main impurity, and small amounts of other oxides such as calcium oxide, alumina, and silica are also included.

こうしたキッシュグラファイトは従来主に燃料用炭材と
して利用されていたが、不純物を効果的に除去して黒鉛
を高純度で回収することができれば、天然黒鉛に代替し
得る新しい素材が提供されることになる。
Kish graphite has traditionally been used primarily as a fuel carbon material, but if impurities can be effectively removed and graphite can be recovered in high purity, a new material that can replace natural graphite will be provided. become.

一方鉱石として天然に産出する天然黒鉛は、5〜20%
程度の灰分を含んでいるが、耐酸化性、高温での耐アル
カリ性、耐熱性等が優れているので、るつぼ等の各種の
耐火物の原料として多量に使用されている。また精製し
て灰分を1%程度にした黒鉛は、潤滑性、電導性、伝熱
性が優れており、これらの性質を利用してカーボンブラ
シや機械用炭素製品等の摺動部材の原料として利用され
ている。
On the other hand, natural graphite, which is naturally produced as ore, accounts for 5 to 20%
Although it contains a certain amount of ash, it has excellent oxidation resistance, alkali resistance at high temperatures, heat resistance, etc., so it is used in large quantities as a raw material for various refractories such as crucibles. In addition, graphite that has been refined to an ash content of approximately 1% has excellent lubricity, electrical conductivity, and heat conductivity, and these properties are used as raw materials for sliding parts such as carbon brushes and mechanical carbon products. has been done.

[発明が解決しようとする課題] 上記した様な耐火物の原料としては純度80%以上の黒
鉛であってもその性能を十分に発揮させることができる
のであるが、原子炉用材料等の原料としては上記程度の
純度の黒鉛では不十分であり、この様な材料には純度9
9.9%以上の高純度黒鉛が必要である。
[Problems to be Solved by the Invention] Graphite with a purity of 80% or more can fully demonstrate its performance as a raw material for refractories such as those described above, but graphite as a raw material for nuclear reactor materials, etc. Graphite with purity of the above level is insufficient for such materials, and graphite with purity of 9 is required for such materials.
High purity graphite of 9.9% or more is required.

天然黒鉛やキッシュグラファイトの精製法としては、こ
れまで種々提案されており、黒鉛純度95〜98%位ま
で精製する程度であれば、分級や浮遊遷鉱等の手段を適
宜組合わせることによって比較的容易になされ得る。
Various methods for refining natural graphite and quiche graphite have been proposed so far, and in order to refine graphite to a purity of 95 to 98%, it is relatively easy to refine by appropriately combining methods such as classification and floating trace minerals. It can be done easily.

しかしながら純度99.9%以上の黒鉛を得るには上記
方法では尚不十分であり、この様な場合には上記工程に
加え更に次に示す様な工程が必要となる。即ち黒鉛の高
純度化に当たっては、酸化鉄等の不純物を除いて黒鉛を
純度95%程度にまで予備精製した後、塩酸、カセイソ
ーダおよび弗酸等による薬品洗浄を施して99〜99.
9%純度程度まで高め、更に約2000℃に加熱した電
気炉に入れ、塩素や弗素等を徐々に吹き込んで残存不純
物の主成分であるシリカ等と反応させてこれを揮発性の
ハロゲン化物として除去し、純度99.9%以上の黒鉛
を得ている。しかしながらこの様な方法であると、高温
に耐える高価で特殊な電気炉を使用する必要があると共
に長時間を要し、製造コストが高くなる。
However, the above method is still insufficient to obtain graphite with a purity of 99.9% or more, and in such a case, the following steps are required in addition to the above steps. That is, when purifying graphite, impurities such as iron oxide are removed and graphite is pre-purified to a purity of about 95%, and then chemically washed with hydrochloric acid, caustic soda, hydrofluoric acid, etc. to a purity of 99 to 99%.
The purity is increased to about 9%, and then placed in an electric furnace heated to approximately 2000°C, where chlorine, fluorine, etc. are gradually blown in to react with the remaining impurities, such as silica, which is the main component, and remove them as volatile halides. Graphite with a purity of 99.9% or higher has been obtained. However, such a method requires the use of an expensive and special electric furnace that can withstand high temperatures, takes a long time, and increases manufacturing costs.

本発明はこうした技術的課題を解決する為になされたも
のであって、その目的は、電気炉等の高価で特殊な装置
を必要とせず、比較的簡単な工程によって短時間で黒鉛
を純度99.9%以上に精製することのできる方法を提
供することにある。
The present invention was made to solve these technical problems, and its purpose is to produce graphite with a purity of 99% in a short time using a relatively simple process without the need for expensive and special equipment such as an electric furnace. The object of the present invention is to provide a method that allows purification to .9% or higher.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、黒鉛を高純度化する
に当たり、純度95%以上の黒鉛に対して一方側からの
瞬間的外力によって該黒鉛を粒径30μm以下に解砕し
た後、濃度10〜70%の弗酸に浸漬し、その後水洗、
乾燥する点に要旨を有する黒鉛の高純度化法である。
[Means for Solving the Problems] The present invention, which has achieved the above object, is a process in which graphite with a purity of 95% or more is granulated by an instantaneous external force from one side. After crushing to a diameter of 30 μm or less, it is immersed in hydrofluoric acid with a concentration of 10 to 70%, and then washed with water.
This is a method for highly purifying graphite, the key point of which is drying.

[作用] 本発明者らは、低純度の黒鉛から簡単な手段によって純
度99.9%以上の高純度黒鉛を回収することのできる
手段を探究する目的で、まず従来方法における粉砕工程
について検討を加えた。その結果判明したところによれ
ば、ローラミルやボールミル等による粉砕の場合は、対
向する2方向からの押圧力によって粗黒鉛を押しつぶす
ことになり、見掛は上は微細な小片まで粉砕されていて
もミクロ的には不純物を黒鉛の中に押し込む様に埋没さ
せている状態で粉砕されているものであることが分かっ
た。従って次工程の薬剤洗浄における分離効率が悪くな
るものと考えられた。
[Function] The present inventors first investigated the pulverization process in the conventional method in order to explore a means of recovering high-purity graphite with a purity of 99.9% or more from low-purity graphite by a simple means. added. The results revealed that when pulverization is performed using roller mills, ball mills, etc., the coarse graphite is crushed by pressure from two opposing directions, and even though it appears to have been pulverized into tiny pieces, At a microscopic level, it was found that the impurities were crushed in a way that they were buried in the graphite. Therefore, it was thought that the separation efficiency in the next step of cleaning chemicals would be poor.

そこで本発明者らは、黒鉛を高純度に回収するためには
、まず黒鉛と不純物が埋没し合わない様な状態に効率よ
く引きはがすことが必要であると考え、その為の引きは
がし乃至解離手段について更に検討を重ねた。
Therefore, the present inventors believe that in order to recover graphite with high purity, it is necessary to first peel it off efficiently so that the graphite and impurities are not buried in each other. Further consideration was given to the means.

その結果、黒鉛と不純物を機械的に確実に引きはがし、
または解離するには、高速回転羽根による破砕または粒
子の衝突による衝撃力を利用したジェットミル粉砕(以
下従来の粉砕と区別する為にこれらの手段による分離を
解砕と呼ぶ)、或は超音波等に基づく電磁波エネルギー
の衝突等による解砕を行なうのが最適であることを見出
した。
As a result, graphite and impurities can be mechanically and reliably removed,
Alternatively, to dissociate, crushing with high-speed rotating blades or jet mill pulverization using impact force caused by collision of particles (hereinafter, separation by these means will be referred to as crushing to distinguish it from conventional crushing), or ultrasonic waves. It has been found that it is optimal to carry out disintegration by collision of electromagnetic wave energy based on etc.

即ちこれらの手段によると、一方向からの瞬間的外力に
よって黒鉛を解砕できるので、黒鉛と不純物のかみ込み
に基づく埋没し合いどいった不都合な現象を生じずに両
者を効率よく解離できる。尚上記解砕は湿式条件および
乾燥条件の如何を問わない。
That is, according to these means, since the graphite can be crushed by an instantaneous external force from one direction, it is possible to efficiently dissociate both graphite and impurities without causing an inconvenient phenomenon such as mutual embedding due to encroachment. Note that the above-mentioned crushing may be carried out under wet conditions or dry conditions.

通常の方法で黒鉛を純度95%以上に精製した場合、残
存する不純物は珪素化合物が主体であると考えられる。
When graphite is refined to a purity of 95% or higher by a conventional method, it is thought that the remaining impurities are mainly silicon compounds.

上記解砕によって黒鉛と不純物を効率よく解離できれば
、不純物の主成分が珪素化合物であることから、この化
合物と反応する弗酸を用いることによって不純物のほと
んどを取除くことができる。
If graphite and impurities can be efficiently dissociated by the above-mentioned crushing, most of the impurities can be removed by using hydrofluoric acid, which reacts with the silicon compound, since the main component of the impurity is a silicon compound.

本発明者らが実験によって確認したところによれば、純
度95%以上の黒鉛に対して上記解砕を行なって粒径を
30μm以下に解砕した後弗酸に浸漬し、その後水洗、
乾燥すれば純度99.9%以上の高純度黒鉛が得られる
ことが分かった。
According to what the present inventors have confirmed through experiments, graphite with a purity of 95% or higher is crushed to a particle size of 30 μm or less, then immersed in hydrofluoric acid, and then washed with water.
It was found that high purity graphite with a purity of 99.9% or more can be obtained by drying.

本発明は比較的簡単な方法によって高純度の黒鉛を得る
ことを趣旨とするものであるが、その目的を達成する為
には対象どする黒鉛の純度は少なくとも95%は必要で
あり、これより低純度では本発明の目的は達成されない
。但し、対象とする黒鉛の純度を更に98〜99%程度
にまで高めておくことは有効であり、これによって精製
効率をより高めることができる。また弗酸によって不純
物を効率よく除去する為には、解砕後の黒鉛の粒径は3
0μm以下にする必要があるが、更に高効率に不純物を
除去するという観点からすれば、解砕後の黒鉛の粒径は
10μm以下にするのが好ましい。
The purpose of the present invention is to obtain high-purity graphite by a relatively simple method, but in order to achieve that purpose, the purity of the target graphite must be at least 95%, and from this If the purity is low, the object of the present invention will not be achieved. However, it is effective to further increase the purity of the target graphite to about 98 to 99%, thereby further increasing the purification efficiency. In addition, in order to efficiently remove impurities with hydrofluoric acid, the particle size of graphite after crushing must be 3.
Although it is necessary to reduce the particle size to 0 μm or less, from the viewpoint of removing impurities with higher efficiency, it is preferable that the particle size of graphite after crushing is 10 μm or less.

ちなみに本発明者らの実験によれば、純度98%以上と
した黒鉛を、粒径が10μm以下となるまで解砕した後
、弗酸に浸漬し、その後水洗、乾燥して得られた黒鉛は
純度が99.99%以上のものであった(後記実施例参
照)。
Incidentally, according to experiments conducted by the present inventors, graphite obtained by crushing graphite with a purity of 98% or more until the particle size became 10 μm or less, immersing it in hydrofluoric acid, then washing with water, and drying it. The purity was 99.99% or higher (see Examples below).

尚本発明で用いる弗酸は珪素化合物を溶解する必要があ
るので、濃度は10%以上であることが必要であるが、
弗酸は腐食性の強い劇薬であるから、安全性や作業環境
等を考慮すれば70%以下のものを使用すべきである。
The hydrofluoric acid used in the present invention needs to dissolve the silicon compound, so the concentration needs to be 10% or more.
Since hydrofluoric acid is a highly corrosive and powerful chemical, it is recommended to use 70% or less in consideration of safety, work environment, etc.

また弗酸の本発明における作用や安全性等を総合的に考
慮すると、用いる弗酸等の濃度は40〜55%程度が好
ましい。
Furthermore, when considering the effects and safety of hydrofluoric acid in the present invention, the concentration of the hydrofluoric acid used is preferably about 40 to 55%.

黒鉛を浸漬するときの弗酸の温度および浸漬時間につい
ては濃度によっても作用が異なり特に限定するものでは
ないが、常温若しくは80℃以下の加温下で少なくとも
30分以上、好ましくは2時間以上浸漬すればよい。
The temperature and immersion time of hydrofluoric acid when immersing graphite vary depending on the concentration and are not particularly limited, but immersion at room temperature or under heating of 80°C or less for at least 30 minutes, preferably 2 hours or more. do it.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the following examples are not intended to limit the present invention.
Any design changes for the purposes described below are included within the technical scope of the present invention.

[実施例] 実施例1 第1表に示す性状に予備精製した天然黒鉛を・、ジェッ
トミル(ホソカヮミクロン社製)によって平均粒径が7
μmとなるまで解砕した後、50%濃度の弗酸に3時間
浸漬し、その後水洗、乾燥した。このとき回収された黒
鉛の品位は第2表に示す通りであり、高純度の黒鉛が得
られていた。
[Example] Example 1 Natural graphite pre-purified to the properties shown in Table 1 was milled using a jet mill (manufactured by Hosoka Micron Co., Ltd.) to an average particle size of 7.
After crushing to μm size, it was immersed in 50% hydrofluoric acid for 3 hours, then washed with water and dried. The quality of the graphite recovered at this time was as shown in Table 2, and high purity graphite was obtained.

第1表 処理前の天然黒鉛の性状 第2表 処理後の天然黒鉛の品位 実施例2 第3表に示す性状に予備処理したキッシュグラファイト
を、高速回転羽根付解砕機(ヘンシェルミキサー:三井
三池化工機域株式会社製)によって平均粒径が20μm
となるまで解砕した後、55%濃度の弗酸に2時間浸漬
し、その後水洗、乾燥した。このとき回収された黒鉛の
品位は第4表の通りであり、高純度の黒鉛が得られてい
た。
Table 1 Properties of natural graphite before treatment Table 2 Quality of natural graphite after treatment Example 2 Quiche graphite pretreated to the properties shown in Table 3 was crushed using a high-speed rotary blade crusher (Henschel mixer: Mitsui Miike Chemical Co., Ltd.) (manufactured by Kikyo Co., Ltd.), the average particle size is 20 μm.
After crushing until it became , it was immersed in 55% hydrofluoric acid for 2 hours, and then washed with water and dried. The quality of the graphite recovered at this time was as shown in Table 4, and high purity graphite was obtained.

第3表 郊理前のキッシュグラフアイ トの性状 第4表 処理後のキッシュグラフアイ トの品位 比較例1 前記第1表に示した性状の天然黒鉛を、通常のボールミ
ルで平均粒径7μmとなるまで粉砕した後、50%濃度
の弗酸に3時間浸漬し、その後水洗、乾燥した。このと
き回収された黒鉛の品位は第5表に示す通りであり、純
度99.6%の黒鉛しか得られていなかった。
Table 3: Properties of quiche graphite before processing Table 4: Comparative example of the quality of quiche graphite after processing 1 Natural graphite having the properties shown in Table 1 above was processed in a normal ball mill until the average particle size was 7 μm. After pulverizing, it was immersed in 50% hydrofluoric acid for 3 hours, then washed with water and dried. The quality of the graphite recovered at this time was as shown in Table 5, and only graphite with a purity of 99.6% was obtained.

第5表 従来法で処理した天然黒鉛の品位[発明の効果
] 以上述べた如く本発明によれば、宣気炉の様な高価で特
殊な装置を必要とせず、比較的簡単な工程によって黒鉛
を純度99.9%以上に精製することができた。
Table 5 Quality of natural graphite treated by conventional method [Effects of the invention] As described above, according to the present invention, graphite can be produced by a relatively simple process without the need for expensive and special equipment such as an air furnace. could be purified to a purity of 99.9% or higher.

Claims (1)

【特許請求の範囲】[Claims] 黒鉛を高純度化するに当たり、純度95%以上の黒鉛に
対して一方側からの瞬間的外力によって該黒鉛を粒径3
0μm以下に解砕した後、濃度10〜70%の弗酸に浸
漬し、その後水洗、乾燥することを特徴とする黒鉛の高
純度化法。
When purifying graphite, an instantaneous external force is applied from one side to graphite with a purity of 95% or more to reduce the particle size to 3.
A method for highly purifying graphite, which comprises crushing it to 0 μm or less, immersing it in hydrofluoric acid at a concentration of 10 to 70%, and then washing and drying it with water.
JP1188223A 1989-07-19 1989-07-19 Graphite purification method Expired - Lifetime JPH06102529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188223A JPH06102529B2 (en) 1989-07-19 1989-07-19 Graphite purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188223A JPH06102529B2 (en) 1989-07-19 1989-07-19 Graphite purification method

Publications (2)

Publication Number Publication Date
JPH0350110A true JPH0350110A (en) 1991-03-04
JPH06102529B2 JPH06102529B2 (en) 1994-12-14

Family

ID=16219930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188223A Expired - Lifetime JPH06102529B2 (en) 1989-07-19 1989-07-19 Graphite purification method

Country Status (1)

Country Link
JP (1) JPH06102529B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003890A1 (en) * 1993-08-03 1995-02-09 Indresco Inc. Beneficiation of flake graphite
US5700298A (en) * 1996-03-15 1997-12-23 Valence Technology, Inc. Carbon anode for lithium ion electrochemical cell
WO2001062666A1 (en) * 2000-02-25 2001-08-30 HYDRO-QUéBEC Surface purification of natural graphite and effect of impurities on grinding and particle size distribution
CN100390053C (en) * 2004-07-28 2008-05-28 汤世伟 Micro crystal graphite purifying method
CN100418877C (en) * 2006-09-11 2008-09-17 洛阳市冠奇工贸有限责任公司 Ultra-high purity purifying technique for native graphite
CN105823712A (en) * 2016-03-08 2016-08-03 山东理工大学 Method for determining content of large flaky graphite in flaky graphite ore
CN109160511A (en) * 2018-09-17 2019-01-08 厦门大学 A kind of device and method of graphite purification
WO2021172399A1 (en) * 2020-02-28 2021-09-02 株式会社Nsc Graphite refining equipment
CN115716645A (en) * 2022-12-09 2023-02-28 武汉理工大学 Purification method of spherical graphite mixed acid leaching-ultrasonic water washing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741981A (en) * 1980-08-27 1982-03-09 Seiko Epson Corp Controlling method for printing position in printer
JPS57170812A (en) * 1981-04-15 1982-10-21 Kyushu Refract Co Ltd Increasing method for purity of natural graphite
JPS59207825A (en) * 1983-05-10 1984-11-26 Nippon Steel Corp Method for recovering scaly graphite
JPS61158807A (en) * 1984-12-28 1986-07-18 Agency Of Ind Science & Technol Dry purification of kish graphite
JPS62265110A (en) * 1986-05-14 1987-11-18 Showa Denko Kk Production of slurry containing dispersed fine graphite powder
JPS63151609A (en) * 1986-12-12 1988-06-24 Kawasaki Steel Corp Recovery and purification of high-grade graphite from iron manufacturing dust

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741981A (en) * 1980-08-27 1982-03-09 Seiko Epson Corp Controlling method for printing position in printer
JPS57170812A (en) * 1981-04-15 1982-10-21 Kyushu Refract Co Ltd Increasing method for purity of natural graphite
JPS59207825A (en) * 1983-05-10 1984-11-26 Nippon Steel Corp Method for recovering scaly graphite
JPS61158807A (en) * 1984-12-28 1986-07-18 Agency Of Ind Science & Technol Dry purification of kish graphite
JPS62265110A (en) * 1986-05-14 1987-11-18 Showa Denko Kk Production of slurry containing dispersed fine graphite powder
JPS63151609A (en) * 1986-12-12 1988-06-24 Kawasaki Steel Corp Recovery and purification of high-grade graphite from iron manufacturing dust

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2285973A (en) * 1993-08-03 1995-08-02 Indresco Inc Beneficiation of flake graphite
US5518189A (en) * 1993-08-03 1996-05-21 Harbison-Walker Refractories Company Beneficiation of flake graphite
GB2285973B (en) * 1993-08-03 1996-12-18 Indresco Inc Beneficiation of flake graphite
WO1995003890A1 (en) * 1993-08-03 1995-02-09 Indresco Inc. Beneficiation of flake graphite
US5700298A (en) * 1996-03-15 1997-12-23 Valence Technology, Inc. Carbon anode for lithium ion electrochemical cell
JP2013091598A (en) * 2000-02-25 2013-05-16 Hydro Quebec Surface purification of natural graphite and effect of impurities on grinding and particle size distribution
WO2001062666A1 (en) * 2000-02-25 2001-08-30 HYDRO-QUéBEC Surface purification of natural graphite and effect of impurities on grinding and particle size distribution
JP2003528019A (en) * 2000-02-25 2003-09-24 ハイドロ−ケベック Surface purification of natural graphite and the effect of impurities on grinding and particle size distribution
US7993621B2 (en) 2000-02-25 2011-08-09 Hydro-Quebec Surface preparation of natural graphite and the effect of impurities on grinding and the particle distribution
CN100390053C (en) * 2004-07-28 2008-05-28 汤世伟 Micro crystal graphite purifying method
CN100418877C (en) * 2006-09-11 2008-09-17 洛阳市冠奇工贸有限责任公司 Ultra-high purity purifying technique for native graphite
CN105823712A (en) * 2016-03-08 2016-08-03 山东理工大学 Method for determining content of large flaky graphite in flaky graphite ore
CN105823712B (en) * 2016-03-08 2018-06-26 山东理工大学 A kind of method for measuring flaky graphite content in crystalline flake graphite ore deposit
CN109160511A (en) * 2018-09-17 2019-01-08 厦门大学 A kind of device and method of graphite purification
WO2021172399A1 (en) * 2020-02-28 2021-09-02 株式会社Nsc Graphite refining equipment
JP2021134131A (en) * 2020-02-28 2021-09-13 株式会社Nsc Black lead purification facility
CN115716645A (en) * 2022-12-09 2023-02-28 武汉理工大学 Purification method of spherical graphite mixed acid leaching-ultrasonic water washing

Also Published As

Publication number Publication date
JPH06102529B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
CN111620367B (en) Method for recovering ITO powder from ITO residual target/waste target
JP2007276055A (en) Method for regenerating cerium-based abrasive
JPH0350110A (en) Method for highly purifying graphite
CN104556046A (en) Production process of preparing high-purity silica by virtue of quartz sands
CN108584997B (en) Preparation method of magnesium oxide powder for fireproof cable
CN107473231A (en) A kind of processing purifying technique to glass sand mine tailing
GB2116956A (en) Process for purifying silicon
KR101315350B1 (en) Treating method of byproduct
TW202029227A (en) Method for stripping coated wire
WO2009081725A1 (en) Silicon reclamation method
CN102746936A (en) Recycling purification method for carborundum powder in silicon slice cutting waste liquid
CN101875494A (en) Preparation method of low-titanium and high-purity polycrystalline silicon
KR20190023578A (en) Method of producing calcium carbinate and iron oxide from steel making slag
Dobbins et al. Production of an iron ore concentrate from the iron-rich fraction of power plant fly ash
JPS63151609A (en) Recovery and purification of high-grade graphite from iron manufacturing dust
JPH02248312A (en) Method for refining kish graphite
CN113501516A (en) Preparation method of high-purity coal-series graphite
JP2023003497A (en) Production method of synthetic silica powder
JP4071887B2 (en) Waste melting slag treatment method and apparatus
CN111252769A (en) Preparation method of solar polycrystalline silicon
KR100973783B1 (en) The purification method of high purity silica from low-grade silica
TW202244281A (en) Metal recovery method in hard alloy for recovering tungsten from the tungsten carbide powder by the steps of oxidation, ball milling, alkali boiling, filtering, impurity removal, re-filtering, concentrated crystallization, drying, and sodium tungstate
JPH02167808A (en) Purification of kish graphite
CN112661162B (en) Treatment method of petroleum coke hydrogen production ash slag and mesoporous silicon material
CN115846588B (en) Regeneration method of foundry inorganic waste sand and regenerated sand

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 15