JPH0346729A - Field emission type cold cathode and manufacture thereof - Google Patents

Field emission type cold cathode and manufacture thereof

Info

Publication number
JPH0346729A
JPH0346729A JP1181140A JP18114089A JPH0346729A JP H0346729 A JPH0346729 A JP H0346729A JP 1181140 A JP1181140 A JP 1181140A JP 18114089 A JP18114089 A JP 18114089A JP H0346729 A JPH0346729 A JP H0346729A
Authority
JP
Japan
Prior art keywords
cold cathode
film
field emission
emission type
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1181140A
Other languages
Japanese (ja)
Other versions
JP2923980B2 (en
Inventor
Masanori Watanabe
正則 渡辺
Hiroyuki Kado
博行 加道
Nobuyuki Yoshiike
信幸 吉池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18114089A priority Critical patent/JP2923980B2/en
Publication of JPH0346729A publication Critical patent/JPH0346729A/en
Application granted granted Critical
Publication of JP2923980B2 publication Critical patent/JP2923980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To lower surface potential by the inner resistance of a carbon film and emit an electron from the wide region of a cold cathode surface so as to stabilize an emitted electron by composing the cold cathode surface with a low resistant conductive film and the carbon film laminated. CONSTITUTION:A cold cathode 6 and a gate electrode 7 are facingly arranged on the surface of an insulation substrate 5, and the surface of the metal electrode 8 of the cold cathode 6 is coated with a carbon film 9. The thickness of the carbon film 9 is not limitted particularly, however, e.g. 500A degree is preferable to operate at low voltage. Next a recessed part 10 is formed on the substrate surface of a part, where the cold cathode 6 and the gate electrode 7 are faced, by etching technique. When the cold cathode formed in this way is operated in a required vacuum, electron emission of about 0.1muA/Tip occurs when e.g. 80V voltage is applied between the cold cathode and the gate electrode, and the cold cathode can be operated in an extremely stable manner.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプレーナ型冷陰極を用いた電界放出型冷陰極お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a field emission cold cathode using a planar cold cathode and a method for manufacturing the same.

従来の技術 従来から薄膜を用いた電界放出型冷陰極は数多く報告さ
れている。その中で叡 第4図(特開昭63−2740
47g公報の第5図参照)に示すようなプレーナ型冷陰
極1よ 100V程度の低電圧で電子放出がおこること
が知られていも 絶縁基板1の表面に冷陰極2とゲート
電極3をお互いに対向させて構成されている。ゲート電
極3に対向する冷陰極2の端面には多数の凸状部4が設
けられている。冷陰極2には高融点金属W、M o。
BACKGROUND OF THE INVENTION Many field emission cold cathodes using thin films have been reported. Among them, Ei Figure 4 (Japanese Unexamined Patent Publication No. 63-2740
Although it is known that electron emission occurs at a low voltage of about 100V, it is known that electron emission occurs at a voltage as low as 100V, as shown in Figure 5 of Publication No. 47g). They are configured to face each other. A large number of convex portions 4 are provided on the end surface of the cold cathode 2 facing the gate electrode 3 . The cold cathode 2 contains high melting point metals W and Mo.

Ta、Zr、Siなど、およびこれらの合金の他jQ 
 wc、  S r C2Z r Cなどの炭化物が一
般に使用されている。冷陰極2とゲート電極3の間に約
100Vの電圧を印加すると、冷陰極の先端部には約1
0’ V/cmの高電界が加わり、電子放出が起こる。
Ta, Zr, Si, etc. and their alloys as well as
Carbides such as wc, S r C2Z r C are commonly used. When a voltage of about 100V is applied between the cold cathode 2 and the gate electrode 3, the tip of the cold cathode has a voltage of about 1
A high electric field of 0' V/cm is applied and electron emission occurs.

発明が解決しようとする課題 この構成の電界放出型冷陰極は比較的低電圧で動作する
ことかぺ 最返 特に注目を浴びるようになってき島 
しかし 陰極材料に余尺 炭化物を使用するこの種の電
界放出型冷陰極(友 一般にスペックルノイズと呼ばれ
る放出電流の変動があり、不安定な電子源とされていて
実用化に至っていなしも その主な原因は電子放出が0
.1μm2以下の極めて微少な電極表面から起こってい
て、使用中に電極表面の形状が変化したり、表面の仕事
関数が変化し 電子放出部分が転々と変化するためであ
ると考えられている。
Problems to be Solved by the Invention Field emission type cold cathodes with this configuration operate at relatively low voltages.
However, this type of field emission cold cathode, which uses carbide as the cathode material, has fluctuations in the emission current, commonly called speckle noise, and is considered an unstable electron source, so it has not yet been put into practical use. The main reason is that electron emission is 0.
.. It is believed that this occurs from extremely small electrode surfaces of 1 μm2 or less, and that the electron-emitting portion changes as the shape of the electrode surface changes during use or the work function of the surface changes.

本発明(上 こうした放出電流の変動が極めて小さい電
界放出型冷陰極 また 放出電流変動の極めて小さい電
界放出型冷陰極を安価に製造する方法を提供することを
目的とする。
It is an object of the present invention to provide a field emission type cold cathode with extremely small fluctuations in emission current, and a method for inexpensively manufacturing a field emission type cold cathode with extremely small fluctuations in emission current.

課題を解決するための手段 本発明(上 冷陰極表面を低抵抗導電膜と炭素膜を積層
して構成する。冷陰極を構成する炭素膜はCVDm  
あるいは不揮発性の高分子膜を冷陰極表面に積層し 加
熱焼成して形成する。
Means for Solving the Problems The present invention (Part 1) The cold cathode surface is constructed by laminating a low resistance conductive film and a carbon film.The carbon film constituting the cold cathode is formed by CVD m
Alternatively, it can be formed by laminating a nonvolatile polymer film on the surface of the cold cathode and heating and baking it.

作用 冷陰極表面に厚さ0.OI〜0.2μ代比抵抗1〜10
テΩ−cmの炭素膜を積層した場合、冷陰極表面の限ら
れた微小部分に電子放出が集中しようとすると、炭素膜
の内部抵抗によって表面電位が低下し いわゆる負帰還
作用が働くた八 冷陰極表面の広い領域から電子放出が
起こるようになる。従って、冷陰極表面の特定の部分の
形状変化が起こり難く、安定した電子放出が得られる。
The thickness of the working cold cathode surface is 0. OI~0.2μ specific resistance 1~10
When carbon films with a diameter of Ω-cm are laminated, when electron emission tries to concentrate on a small, limited portion of the cold cathode surface, the surface potential decreases due to the internal resistance of the carbon film, causing a so-called negative feedback effect. Electron emission begins to occur from a wide area on the cathode surface. Therefore, the shape of a specific portion of the cold cathode surface is unlikely to change, and stable electron emission can be obtained.

また 炭素膜法02、H2Oを主成分とする真空容器内
の残留ガスと化学反応してLCO。
In addition, carbon film method 02 produces LCO by chemically reacting with the residual gas in the vacuum container whose main component is H2O.

CO2、炭化水素などの気体となって離散するたべ常に
清浄な炭素面が保持され 冷陰極表面の仕事関数の変化
が起こり難1+〜 従って、to−’〜10−’T。
A clean carbon surface is always maintained when it becomes a gas such as CO2 or hydrocarbon, and changes in the work function of the cold cathode surface are unlikely to occur. Therefore, to-' to 10-'T.

rrの真空度であっても安定した電子放出が得られる特
徴があム この様な冷陰極は低抵抗導電膜と炭素膜を積層して構成
することができる。電極表面に形成する炭素膜はCVD
法によるアモルファス炭素風 グラファイトA ダイヤ
モンド風 あるいは有機高分子膜を所定の厚さに塗布し
 非酸化性雰囲気中で焼成して炭素膜を形成する方法 
ホトリソケラフィ技術によって冷陰極を形成し ホトレ
ジストを残したまま非酸化性雰囲気中で焼成して電極表
面にのみ炭素膜を残す方法などによって形成することが
できる(以下これらの炭素膜をグラファイト様膜と呼ぶ
)。
Such a cold cathode can be constructed by laminating a low-resistance conductive film and a carbon film. The carbon film formed on the electrode surface is CVD
Amorphous carbon style graphite A diamond style method or a method in which a carbon film is formed by applying an organic polymer film to a predetermined thickness and firing it in a non-oxidizing atmosphere.
It can be formed by forming a cold cathode using photolithography technology and firing it in a non-oxidizing atmosphere while leaving the photoresist, leaving a carbon film only on the electrode surface (hereinafter, these carbon films are referred to as graphite-like films). ).

実施例 以下に 本発明の実施例について図面を参照しながら説
明する。
EXAMPLES Below, examples of the present invention will be described with reference to the drawings.

実施例1 第1図に本発明の実施例1の電極構成の要部断面図を示
も 絶縁基板5の表面に冷陰極6とゲート電極7を対向
させて構成されていム 冷陰極6は金属電極8と、その
表面に被覆した炭素膜9で構成されている。冷陰極6と
ゲート電極7の対向する部分の基板面にはエツチング技
術によって凹部10が形成されていも 次ζミ このプレーナ型冷陰極の製造方法について説明
する。絶縁基板例えばガラス基板5の表面にスバタリン
グ法によって厚さ0.2μmのW S i 2膜8を形
成し 更く その表面に減圧CVD法によってグラファ
イト様膜9を厚さ0.1A1m形成し九ドライエツチン
グ技術によって冷陰極6とゲート電極7を同時に形成す
も 冷陰極とゲート電極の間隔は1〜4μmであも 次
GQ  この基板5をバッファエッチ溶液(HFI容と
NHaF6容の混合液)に浸漬してガラス板表面を深さ
約1μmエツチングすると、冷陰極先端部下部に凹部1
oが形成され 庇状の冷陰極先端部を有する冷陰極を形
成することができる。グラファイト様膜9は形成条件に
よって異なる力交 比抵抗が1からIQj1Ω−cmの
広範囲のグラファイト膜またはアモルファス炭素膜を形
成することができa 本実施例では比抵抗約10”Ω−
Cmのグラファイト様膜を形成し九 ゲート電極7の表
面にもグラファイト様膜9が形成される力丈 冷陰極の
動作玉 特に障害となることはなu〜 CVD法によって形成した炭素膜の比抵抗は形成条イ生
 例えLf、、  CHa、  Cp H2,Ce H
a ナト使用する原料ガス 放電条件あるいはガラス基
板の温度などによって異なム 一般く 基板温度が低い
場合(400℃以下)は水素原子を含む高抵抗膜のアモ
ルファス炭素膜が形成され 基板温度を高める(400
〜800℃)に従ってグラファイトの微結晶を含む低抵
抗の炭素膜となり、さらに高温(80Qt:以上)にす
るとダイヤモンド結晶を含む高抵抗の炭素膜となること
がしられていも この様にして形成した冷陰極を真空度10−@Torr
以上の真空中で動作させると、冷陰極とゲート電極間に
80Vの電圧を印加した啄 約0,1μA/Tipの電
子放出が起こり、極めて安定に動作させる事ができ九 
炭素膜9の厚さは 特に限定されるものではない力丈 
できるだけ低電圧で動作させるには100OA以下、例
えば500A程度の厚さが望ましく′IQ 炭素膜は真空容器中に含まれる酸点 水魚 炭化水素な
どの残留ガスがイオン化されて表面に付着しても金属電
極と異なり、C○、CO2、あるいは炭化水素となって
離散するた八 炭素電極表面は常に清浄な面が保持され
 安定な電子放出が得られる。また 炭素電極は金属電
極に比べて3〜IO桁も高い比抵抗を持たせることがで
きるたへ電子放出が微小部分に集中しようとすると負帰
還作用が働き、電極表面の電位が下がへ そのた八重極
表面のより広い部分から電子が放出され 突沸的な電極
先端部の破壊が起こらず安定に動作する。
Embodiment 1 FIG. 1 shows a cross-sectional view of a main part of an electrode configuration according to Embodiment 1 of the present invention. It is composed of a cold cathode 6 and a gate electrode 7 facing each other on the surface of an insulating substrate 5. The cold cathode 6 is made of metal. It consists of an electrode 8 and a carbon film 9 coated on its surface. Although a recess 10 is formed by etching on the surface of the substrate where the cold cathode 6 and the gate electrode 7 face each other, a method for manufacturing this planar cold cathode will now be described. A W Si 2 film 8 with a thickness of 0.2 μm is formed on the surface of an insulating substrate, for example, a glass substrate 5, by a sputtering method, and a graphite-like film 9 with a thickness of 0.1 A1 m is formed on the surface by a low-pressure CVD method. Although the cold cathode 6 and gate electrode 7 are formed simultaneously by etching technology, the distance between the cold cathode and the gate electrode is 1 to 4 μm. When the surface of the glass plate is etched to a depth of approximately 1 μm, a recess 1 is formed at the bottom of the cold cathode tip.
A cold cathode having an eave-shaped cold cathode tip can be formed. The graphite-like film 9 can be formed in a wide range of graphite films or amorphous carbon films with a specific resistance of 1 to IQj1 Ω-cm, which varies depending on the formation conditions.
A graphite-like film 9 of Cm is formed, and a graphite-like film 9 is also formed on the surface of the gate electrode 7.The strength is such that a graphite-like film 9 is also formed on the surface of the gate electrode 7.There is no particular obstacle to the operation of the cold cathode.U~ Specific resistance of the carbon film formed by the CVD method Formation striations Example: Lf, CHa, Cp H2, Ce H
a Raw material gas used varies depending on the discharge conditions or the temperature of the glass substrate.Generally, when the substrate temperature is low (below 400°C), an amorphous carbon film containing hydrogen atoms with high resistance is formed, raising the substrate temperature (400°C or less).
Although it is known that a low resistance carbon film containing graphite microcrystals can be formed at higher temperatures (up to 800°C), and a high resistance carbon film containing diamond crystals can be formed at higher temperatures (80Qt: or higher). Cold cathode vacuum degree 10-@Torr
When operating in the above vacuum, when a voltage of 80V is applied between the cold cathode and the gate electrode, electron emission of approximately 0.1μA/Tip occurs, making it possible to operate extremely stably.
The thickness of the carbon film 9 is not particularly limited.
In order to operate at as low a voltage as possible, a thickness of 100 OA or less, for example around 500 amps, is desirable. Unlike electrodes, carbon atoms are dispersed as C○, CO2, or hydrocarbons.The carbon electrode surface always remains clean, resulting in stable electron emission. Also, carbon electrodes can have a resistivity 3 to IO orders of magnitude higher than metal electrodes, so when electron emission tries to concentrate on a minute part, a negative feedback effect works, and the potential on the electrode surface decreases. Electrons are emitted from a wider area of the octopole surface, and the electrode tip does not break due to bumping, resulting in stable operation.

本実施例では金属膜表面に炭素膜を積層したものについ
て述べた爪 金属膜と炭素膜を逆にしたものについても
同様な結果が得られ九 実施例2 第2図?−本発明の他の実施例の要部断面図を示す。本
実施例は第1実施例に示す電界放出型冷陰極を第1実施
例と同様な方法で製造L 更く冷陰極先端部下部の金属
膜をエツチングし 炭素膜の庇11を形成したものであ
も この電界放出型冷陰極を真空中て 実施例1と同様な動
作をさせると更に安定に動作した実施例3 第1図に示す電界放出型冷陰極の他の製造方法について
、第3図に基すいて説明すも 絶縁基板、例えば ガラス基板5の表面にスバタリング
法などによって厚さ0.2μmのタングステン膜8を形
成し、その表面にポリアクリルニトリル(以下PANと
呼ぶ)の膜を厚さ0.3μm塗布しく第3図(a)) 
、ホトリソ技術によって冷陰極6とゲート電極7を同時
に形成する(第3図(b))。
In this example, a nail with a carbon film laminated on the surface of a metal film was described. Similar results were obtained with a nail in which the metal film and carbon film were reversed.Example 2 Figure 2? - A sectional view of a main part of another embodiment of the present invention is shown. In this example, the field emission type cold cathode shown in the first example was manufactured in the same manner as in the first example. Furthermore, the metal film at the bottom of the cold cathode tip was etched to form a carbon film eaves 11. Example 3: Amoko's field emission type cold cathode operated more stably when operated in a vacuum in the same manner as in Example 1. Figure 3 shows another manufacturing method for the field emission type cold cathode shown in Figure 1. The explanation is based on the following: A 0.2 μm thick tungsten film 8 is formed on the surface of an insulating substrate, for example a glass substrate 5, by a sputtering method, etc., and a polyacrylonitrile (hereinafter referred to as PAN) film is formed on the surface. Figure 3 (a))
, the cold cathode 6 and the gate electrode 7 are formed simultaneously by photolithography (FIG. 3(b)).

次へ この電極基板を窒素ガス雲囲気中で600tに加
熱して比抵抗が約10”Ω−Cmの炭素膜12゛を形成
する(第3図(C))。更く バッファエッチ溶液に浸
漬してガラス基板表面をエツチングして庇部14を形成
する(第3図(d))。
Next, this electrode substrate is heated to 600 t in a nitrogen gas atmosphere to form a 12" carbon film with a specific resistance of about 10" Ω-Cm (Fig. 3 (C)).Furthermore, it is immersed in a buffer etch solution. Then, the surface of the glass substrate is etched to form the eaves portion 14 (FIG. 3(d)).

PANの薄膜形成はPANをジメチルフオルマアミド(
DMF)の溶液に解して金属層8の表面に塗布して形成
し九 PANは焼成温度によって膜の抵抗値を大きく変
えることができも 例えt′L400℃で焼成すると比
抵抗的106Ω−cmの炭素膜ができ、800℃で焼成
すれば約10Ω−CIllの炭素膜かえられる。本実施
例ではPANについて述べた力丈 焼成することによっ
て比較的低抵抗になる有機高分子であれば 例えばアク
リル系樹脂 イミド系樹脂など、特に限定することなく
使用することができる。また グラファイトの微結晶粉
太 低抵抗の炭素微粉末を有機高分子に混合したものを
使用することもできる。
To form a thin film of PAN, PAN was mixed with dimethylformamide (
PAN is formed by dissolving it in a solution of DMF and coating it on the surface of the metal layer 8.The resistance value of the PAN film can be greatly changed depending on the firing temperature. A carbon film of approximately 10Ω-CIll can be obtained by firing at 800°C. In this example, the force strength described for PAN can be used without any particular limitation, such as acrylic resins, imide resins, etc., as long as they are organic polymers that become relatively low in resistance when fired. It is also possible to use a mixture of graphite microcrystalline powder and low-resistance carbon micropowder mixed with an organic polymer.

実施例4 第1図に示す電界放出型冷陰極の他の製造方法について
説明する。絶縁基板、例え(f、ガラス基板5の表面に
スバタリング法によって厚さ0.2μmのタングステン
膜8を形成し ホトレジスト膜を約1500A塗布し 
通常のホトリソ技術によって冷陰極6とゲート電極7を
同時に形成する。冷陰極とゲート電極の間隔は1〜4μ
mであ・る。次に 冷陰極6とゲート電極7の表面のホ
トレジスト膜を除去しないで残したまま真空中または不
活性ガス(非酸化性)雰囲気中において600℃に加熱
すると、レジスト膜が炭素膜になも 更へ この電極基
板をバッファエッチ溶液に浸漬してガラス基板表面を深
さ約1μmエツチングすると、実施例1と同様に第1図
に示す構造の電界放出型冷陰極を製造することができる
Example 4 Another method of manufacturing the field emission type cold cathode shown in FIG. 1 will be described. A tungsten film 8 with a thickness of 0.2 μm is formed on the surface of an insulating substrate, for example (f), a glass substrate 5 by a sputtering method, and a photoresist film of about 1500A is applied.
A cold cathode 6 and a gate electrode 7 are formed simultaneously using a normal photolithography technique. The distance between the cold cathode and the gate electrode is 1 to 4μ.
It's m. Next, when the photoresist film on the surfaces of the cold cathode 6 and gate electrode 7 is left unremoved and heated to 600°C in a vacuum or in an inert gas (non-oxidizing) atmosphere, the resist film changes to a carbon film. By immersing this electrode substrate in a buffer etch solution and etching the surface of the glass substrate to a depth of about 1 μm, a field emission type cold cathode having the structure shown in FIG. 1 can be manufactured in the same manner as in Example 1.

レジスト膜を焼成して形成した炭素膜は一般に比抵抗が
106Ω−Cm以上である力丈 より低い焼成温度で低
抵抗の炭素膜を得るには実施例3と同様は焼成すること
によって閉環構造を作るPANなど、またはアクリル系
樹脂 イミド系の樹脂あるいはグラファイト様の微粉末
などを所定量混合したホトレジスト材料を使用すること
が望まし1、%な抵 炭素膜表面から電子放出が起こる
本発明による電界放出型冷陰極においてζよ 低抵抗導
電膜は従来から使用されてきたW、Mo、Taなどの高
融点今風WS i、  Mo S iなどの合板 ある
いはWC,TaCなどの炭化物のように高融点金属に限
定する必要はない。
The carbon film formed by firing the resist film generally has a resistivity of 106 Ω-Cm or higher.To obtain a carbon film with low resistance at a lower firing temperature, a ring-closed structure is formed by firing as in Example 3. It is desirable to use a photoresist material mixed with a predetermined amount of PAN, acrylic resin, imide resin, or graphite-like fine powder. In the emission type cold cathode, the low-resistance conductive film is made of conventionally used high melting point metals such as W, Mo, and Ta, plywood such as plywood such as WS i and Mo Si, or high melting point metals such as carbides such as WC and TaC. There is no need to limit it to.

発明の詳細 な説明したように 本発明による電界放出型冷陰極cヨ
  冷陰極先端部に電流が集中することによる突沸的な
冷陰極表面の破壊 あるいは形状、変(1,仕事関数の
変化によって起こる放出電流変動が極めて小さい電界放
出型冷陰極であも また本発明による製造方法に依れぼ
 電解放出型冷陰極を安価に製造することができる。
As described in detail of the invention, the field emission type cold cathode according to the present invention is caused by bumping-like destruction of the cold cathode surface due to current concentration at the cold cathode tip, or by changes in shape and work function. Even a field emission type cold cathode whose emission current fluctuation is extremely small can be manufactured at low cost by the manufacturing method according to the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる電界放出型冷陰極の一実施例の
要部断面医 第2図は同冷陰極の他の実施例の要部断面
は 第3図は同冷陰極の製造方法を示す工程は 第4図
は従来の電界放出型冷陰極の斜視図であも 1、5・・・絶縁基板 2、6・・・冷陰極3、7・・
・ゲート電極 4、11、14・・冷陰極庇眠 8 素wL 10・・ Ng、12’  ・ 風
FIG. 1 shows a cross section of a main part of one embodiment of a field emission cold cathode according to the present invention. FIG. 2 shows a cross section of a main part of another embodiment of the same cold cathode. FIG. 3 shows a method of manufacturing the same cold cathode. The steps shown in Fig. 4 are perspective views of a conventional field emission type cold cathode.
・Gate electrode 4, 11, 14... Cold cathode protection 8 element wL 10... Ng, 12' ・ Wind

Claims (11)

【特許請求の範囲】[Claims] (1)冷陰極が低抵抗導電膜と炭素膜を積層して構成さ
れていることを特徴とする電界放出型冷陰極。
(1) A field emission type cold cathode characterized in that the cold cathode is constructed by laminating a low resistance conductive film and a carbon film.
(2)炭素膜がグラファイト様微結晶を含む膜であるこ
とを特徴とする請求項1記載の電界放出型冷陰極。
(2) The field emission type cold cathode according to claim 1, wherein the carbon film is a film containing graphite-like microcrystals.
(3)炭素膜の厚さが0.2μm以下であることを特徴
とする請求項1又は2記載の電界放出型冷陰極。
(3) The field emission cold cathode according to claim 1 or 2, wherein the carbon film has a thickness of 0.2 μm or less.
(4)冷陰極端部の前記炭素膜が前記導電膜より突出し
ていることを特徴とする請求項1、2又は3記載の電界
放出型冷陰極。
(4) The field emission type cold cathode according to claim 1, 2 or 3, wherein the carbon film at the cold cathode end protrudes from the conductive film.
(5)絶縁基板表面に低抵抗膜とグラファイト様薄膜を
積層し、ホトリソグラフィ技術によって冷陰極とゲート
電極を同時に形成することによって、請求項1、2、3
又は4記載の電界放出型冷陰極を製造することを特徴と
する電界放出型冷陰極の製造方法。
(5) Claims 1, 2, and 3 are achieved by laminating a low resistance film and a graphite-like thin film on the surface of an insulating substrate, and simultaneously forming a cold cathode and a gate electrode using photolithography technology.
or 4. A method for manufacturing a field emission type cold cathode, which comprises manufacturing the field emission type cold cathode according to item 4.
(6)絶縁基板表面に低抵抗導電膜と有機高分子膜を積
層し、ホトリソグラフィ技術によって電極形成後、加熱
焼成して炭素膜を形成することによって、請求項1、2
、3又は4記載の電界放出型冷陰極を製造することを特
徴とする電界放出型冷陰極の製造方法。
(6) By laminating a low-resistance conductive film and an organic polymer film on the surface of an insulating substrate, forming electrodes by photolithography technology, and then heating and baking to form a carbon film.
5. A method for manufacturing a field emission cold cathode, comprising manufacturing the field emission cold cathode according to 3 or 4.
(7)有機高分子膜が焼成することによってグラファイ
ト様膜となる高分子を含有するものであることを特徴と
する請求項6記載の電界放出型冷陰極の製造方法。
(7) The method for manufacturing a field emission type cold cathode according to claim 6, wherein the organic polymer film contains a polymer that becomes a graphite-like film upon firing.
(8)有機高分子膜が低抵抗の炭素微粉末を含有するも
のであることを特徴とする請求項6又は7記載の電界放
出型冷陰極の製造方法。
(8) The method for manufacturing a field emission type cold cathode according to claim 6 or 7, wherein the organic polymer film contains carbon fine powder having low resistance.
(9)ホトリソグラフィ技術を用いて冷陰極を形成し、
レジスト膜を残したまま加熱焼成して電極表面に炭素膜
を形成することを特徴とする請求項1、2、3又は4記
載の電界放出型冷陰極。
(9) Forming a cold cathode using photolithography technology,
5. The field emission type cold cathode according to claim 1, wherein the carbon film is formed on the electrode surface by heating and baking with the resist film remaining.
(10)ホトレジスト材料が焼成することによってグラ
ファイト様膜となる高分子を含有するホトレジストであ
る請求項9に記載の電界放出型冷陰極を製造することを
特徴とする電界放出型冷陰極の製造方法。
(10) A method for producing a field emission cold cathode, characterized in that the photoresist material is a photoresist containing a polymer that becomes a graphite-like film upon firing. .
(11)ホトレジスト材料が低抵抗の炭素微粉末を含有
するホトレジストである請求項9に記載の電界放出型冷
陰極を製造することを特徴とする電界放出型冷陰極の製
造方法。
(11) A method for manufacturing a field emission type cold cathode, comprising manufacturing the field emission type cold cathode according to claim 9, wherein the photoresist material is a photoresist containing a low resistance carbon fine powder.
JP18114089A 1989-07-12 1989-07-12 Method of manufacturing field emission cold cathode Expired - Fee Related JP2923980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18114089A JP2923980B2 (en) 1989-07-12 1989-07-12 Method of manufacturing field emission cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18114089A JP2923980B2 (en) 1989-07-12 1989-07-12 Method of manufacturing field emission cold cathode

Publications (2)

Publication Number Publication Date
JPH0346729A true JPH0346729A (en) 1991-02-28
JP2923980B2 JP2923980B2 (en) 1999-07-26

Family

ID=16095589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18114089A Expired - Fee Related JP2923980B2 (en) 1989-07-12 1989-07-12 Method of manufacturing field emission cold cathode

Country Status (1)

Country Link
JP (1) JP2923980B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510858A (en) * 1993-06-02 1996-11-12 マイクロイレクトラニクス、アンド、カムピュータ、テクナラジ、コーパレイシャン Amorphous diamond film flat field emission cathode
JP2000090811A (en) * 1998-09-16 2000-03-31 Agency Of Ind Science & Technol Cold electron emitting element and manufacture thereof
US6380665B1 (en) 1998-12-08 2002-04-30 Canon Kabushiki Kaisha Electron-emitting device, electron source using the electron-emitting devices, and image-forming apparatus using the electron source
US6608437B1 (en) 1994-08-29 2003-08-19 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
KR100477727B1 (en) * 1997-08-29 2005-06-07 삼성에스디아이 주식회사 Field emission display device and manufacturing method thereof
KR100477722B1 (en) * 1997-08-19 2005-10-06 삼성에스디아이 주식회사 Surface Emission Field Emission Display
US6992428B2 (en) 2001-12-25 2006-01-31 Canon Kabushiki Kaisha Electron emitting device, electron source and image display device and methods of manufacturing these devices
US7095040B2 (en) 2000-01-13 2006-08-22 Pioneer Corporation Electron-emitting device and method of manufacturing the same and display apparatus using the same
US7391150B2 (en) 2004-03-10 2008-06-24 Canon Kabushiki Kaisha Electron-emitting device, electron source, image display device and information display and reproduction apparatus using image display device, and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266737A (en) * 2000-03-24 2001-09-28 Toshiba Corp Electron source unit, its manufacturing method, and flat display unit equipped with the electron source unit
JP3880595B2 (en) * 2000-09-01 2007-02-14 キヤノン株式会社 Method for manufacturing electron-emitting device, method for manufacturing image display device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510858A (en) * 1993-06-02 1996-11-12 マイクロイレクトラニクス、アンド、カムピュータ、テクナラジ、コーパレイシャン Amorphous diamond film flat field emission cathode
US7758762B2 (en) 1994-08-29 2010-07-20 Canon Kabushiki Kaisha Method for manufacturing an electron-emitting device with first and second carbon films
US7234985B2 (en) 1994-08-29 2007-06-26 Canon Kabushiki Kaisha Method for manufacturing an electric emitting device with first and second carbon films
US6608437B1 (en) 1994-08-29 2003-08-19 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
US7057336B2 (en) 1994-08-29 2006-06-06 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
KR100477722B1 (en) * 1997-08-19 2005-10-06 삼성에스디아이 주식회사 Surface Emission Field Emission Display
KR100477727B1 (en) * 1997-08-29 2005-06-07 삼성에스디아이 주식회사 Field emission display device and manufacturing method thereof
JP2000090811A (en) * 1998-09-16 2000-03-31 Agency Of Ind Science & Technol Cold electron emitting element and manufacture thereof
US6888296B2 (en) 1998-12-08 2005-05-03 Canon Kabushiki Kaisha Electron-emitting device, electron source using the electron-emitting devices, and image-forming apparatus using the electron source
US6380665B1 (en) 1998-12-08 2002-04-30 Canon Kabushiki Kaisha Electron-emitting device, electron source using the electron-emitting devices, and image-forming apparatus using the electron source
US7291962B2 (en) 1998-12-08 2007-11-06 Canon Kabushiki Kaisha Electron-emitting device, electron source using the electron-emitting devices, and image-forming apparatus using the electron source
US7095040B2 (en) 2000-01-13 2006-08-22 Pioneer Corporation Electron-emitting device and method of manufacturing the same and display apparatus using the same
US6992428B2 (en) 2001-12-25 2006-01-31 Canon Kabushiki Kaisha Electron emitting device, electron source and image display device and methods of manufacturing these devices
US7391150B2 (en) 2004-03-10 2008-06-24 Canon Kabushiki Kaisha Electron-emitting device, electron source, image display device and information display and reproduction apparatus using image display device, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2923980B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US5023110A (en) Process for producing electron emission device
KR100491305B1 (en) Field emission-type electron source
US5559342A (en) Electron emitting device having a polycrystalline silicon resistor coated with a silicide and an oxide of a work function reducing material
US5382867A (en) Field-emission type electronic device
EP0299461B1 (en) Electron-emitting device
US5394006A (en) Narrow gate opening manufacturing of gated fluid emitters
EP0483814B1 (en) Field emission type emitter and method of manufacturing thereof
US5969473A (en) Two-part field emission structure
JPH0346729A (en) Field emission type cold cathode and manufacture thereof
JPH01298623A (en) Mim type electron emission element
JPH0687392B2 (en) Method for manufacturing electron-emitting device
JPH02270247A (en) Manufacture of cold cathode electric field emission device
JPH09219144A (en) Electric field emitting cathode and its manufacture
KR100449071B1 (en) Cathode for field emission device
JP2950689B2 (en) Field emission type electron source
JPH0748346B2 (en) Field emission cold cathode device
US5327050A (en) Electron emitting device and process for producing the same
JPH07114104B2 (en) Electron-emitting device and manufacturing method thereof
JPH0547296A (en) Electric field emission type electron source and manufacture thereof
US6181063B1 (en) Election discharge device and election discharge method
US5891321A (en) Electrochemical sharpening of field emission tips
JP2727193B2 (en) Method for manufacturing electron-emitting device
JPH02276129A (en) Planar type cold cathode and manufacture thereof
JP2003100201A (en) Field emission electron source and manufacturing method thereof
JPH0797473B2 (en) Electron-emitting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees