JPH0346501B2 - - Google Patents

Info

Publication number
JPH0346501B2
JPH0346501B2 JP57146258A JP14625882A JPH0346501B2 JP H0346501 B2 JPH0346501 B2 JP H0346501B2 JP 57146258 A JP57146258 A JP 57146258A JP 14625882 A JP14625882 A JP 14625882A JP H0346501 B2 JPH0346501 B2 JP H0346501B2
Authority
JP
Japan
Prior art keywords
resin
antifouling
antifouling paint
general formula
acid residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57146258A
Other languages
Japanese (ja)
Other versions
JPS5936167A (en
Inventor
Koji Kawase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP14625882A priority Critical patent/JPS5936167A/en
Publication of JPS5936167A publication Critical patent/JPS5936167A/en
Publication of JPH0346501B2 publication Critical patent/JPH0346501B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塗膜が強靭で、かつ適度な水可溶性を
有する合成樹脂組成物をビヒクルとして用いた防
汚塗料に関するものである。 船舶や橋りよう、海上タンク等の海中構造物ま
たは養殖網などの海中没入部分にはフジツボ、セ
ルプラ、カキ、ホヤ、フサコケムシ、アオサ、ア
オノリなど多数の海中生物が付着し、構造物体の
腐食や船舶航行速度の低下、網目閉塞のための潮
通し不良による魚類の大量斃死などの大きな被害
を発生するため、長期間にわたり防汚能力を有す
る防汚塗料が要望されている。 防汚塗料は防汚作用と発揮する機構の上から、
大略2種類に分類される。一つは従来主として用
いられていたもので、海水に不溶性の塩化ビニ
ル、塩化ゴム、スチレン−ブタジエンなどの樹脂
とロジンなどの海水に溶解する成分とよりなるビ
ヒクルに、防汚剤を分散させた不溶マトリクス型
防汚塗料と呼ばれるものである。 この防汚塗膜を海水に浸漬するとロジンととも
に防汚剤が溶出し、防汚効果を発揮するものであ
るが、ロジンが溶出した後にも前記不溶性の樹脂
残査層がそのまま残り、浸漬の経過とともにこの
不溶性樹脂残査層により防汚剤の溶出が困難とな
り、防汚期間は12〜16カ月に過ぎず、再々の塗り
かえを必要としていた。 他の一つは、上記不溶マトリクス型防汚塗料の
欠点を解消する目的で開発されたもので、樹脂自
体に微水溶性を持たせ、塗膜のビヒクルが海水中
で徐々に溶解し、それとともに防汚剤が溶出して
いくものであり、溶解マトリクス型防汚塗料と呼
ばれる。この場合防汚剤の溶出に障害となる不溶
性樹脂残査層がないために、防汚剤の溶出が容易
であり、防汚塗膜のある限り防汚性能が維持さ
れ、膜厚を厚くすることにより、2〜3年の防汚
性を保持することは容易である。この意図から発
明さぜた防汚塗料として、特公昭40−21426号、
特公昭44−9579号、特公昭51−12049号の防汚塗
料がある。これらの発明は、 で表わされる有機スズ化合物単独重合体または他
の不飽和化合物との共重合体をビヒクルとして用
いるもので、海水中で、上記の有機スズエステル
基が加水分解され、放出されたスズ化合物が防汚
剤として働き、また、樹脂自体が、海水に溶解性
となるため、溶解マトリクス型防汚塗料となるも
のである。しかし、この有機スズ化合物重合体は
不飽和基をもつた有機スズ化合物モノマーの合成
がむずかしいこと、貯蔵安定性が悪く、増粘する
傾向があること、毒性が強く取り扱いが不便であ
ることなどの実用上の難点があつた。 そこで、本発明者らは、鋭意研究の結果、上記
有機スズ化合物重合体を用いることなしに、溶解
マトリクス型樹脂を得る方法として前記の不溶マ
トリクス型防汚塗料として通常用いられる樹脂お
よび一般の塗料用樹脂に、水によつて分解される
特定の樹脂を混合して得られる混合樹脂が、溶解
マトリクス型防汚塗料のビヒクルとして優れてい
ることを見出し、本発明にいたつたものである。 すなわち本発明は、水に不溶性の樹脂1〜99重
量%と下記一般式() 〔ただし、nは1〜5の整数を表わし、R1
R2はそれぞれ、水素、炭素数1〜5の直鎖また
は分枝アルキル基、ハロゲン、フエニル基または
ニトリル基を示す。〕 で表わされるくりかえし単位を主鎖にもつ水可溶
性樹脂99〜1重量%とからなる混合樹脂をビヒク
ルとすることを特徴とする防汚塗料を提供するも
のである。 本発明に用いる一般式()で表わされるくり
かえし単位の例としては、グリコール酸残基、
dl、またはl−乳酸残基、α−オキシイソ酪酸残
基、α−オキシ−n−酪酸残基、β−オキシプロ
ピオン酸残基、α−クロルプロピオン酸残基、α
−シアノプロピオン酸残基、β−オキシピバリン
酸残基、ε−オキシカプロン酸残基などがあり、
これらは1種または2種以上含まれていてもよ
い。 これらのくりかえし単位を主鎖にもつ水可溶性
樹脂の合成法としては、対応するオキシ酸の環状
ラクトンをモノマーとし、その1種または2種以
上をルイス酸または金属触媒により開環重合する
方法が一般的に行われている。 環状ラクトンとしては、たとえばグリコリド、
ラクチド、β−プロピオラクトン、ピバロラクト
ン、γ−ブチロラクトン、δ−バレロラクトン、
ε−カプロラクトンなどがあげられる。 これらの環状ラクトンの開環重合法としては、
たとえば米国特許2668162号(1954)によれば。
グリコリド、ラクチドの場合、三フツ化アンチモ
ン、三塩化アンチモン、三酸化アンチモンなど
を、モノマーに対して0.01〜0.1重量%加えて重
合させる方法が記されている。またε−カプロラ
クトンの開環重合の例として、特開昭56−49728
号にはモリブデン化合物を触媒として、用いる方
法が記されている。しかし、ポリマーの合成法と
しては、環状ラクトンの開環重合に限定したもの
ではなく、オキシ酸の脱水重縮合法を用いること
もできる。 本発明において、以上のようにして得た樹脂に
ついて分子量の制限は特にないが、塗膜としての
強度を保持でき、かつ塗料作業性の面から重量平
均分子量で1000〜100000、特に好ましくは5000〜
50000が適当である。 本発明に用いる水可溶性樹脂は、オキシカルボ
ン酸の自己縮合型ポリエステルであり、多塩基酸
と多価アルコールとから得られる通常のポリエス
テルとは構造的に異るものである。一般にポリエ
ステルは耐加水分解性に弱いものとされている
が、通常のポリエステルは加水分解速度が遅く、
溶解マトリクス型のビヒクルとしては使用できな
い。一方オキシカルボン酸の自己縮合型ポリエス
テルは加水分解速度が速く、特に一般式()で
表わされるくりかえし単位を主鎖にもつ水可溶性
樹脂は海水中で徐々に加水分解され、主鎖切断に
より小分子片となつて溶解または分散していくた
め、溶解マトリクス型防汚塗料のビヒクルとして
使用することができる。 本発明で用いられる水に不溶性の樹脂として
は、不溶マトリクス型防汚塗料用樹脂および一般
の有機重合体のほとんどのものを用いることがで
きる。前者の例としては、たとえば従来公知の油
性ワニス、塩化ビニル、塩化ゴム、スチレン−ブ
タジエンなどの樹脂があげられ、また、後者の例
としては各種アクリルまたはメタクリル酸エステ
ル、スチレン、酢酸ビニル、エチレン、プロピレ
ンなどのモノエチレン性不飽和化合物の単独また
は共重合体、ポリエステル、ポリウレタン、アル
キド樹脂、メラミン樹脂、尿素樹脂、ケトン樹
脂、エポキシ樹脂、ポリエーテル、石油樹脂など
と、これらの変性誘導体が含まれる。これらの樹
脂の分子量およびモノマーの組成、変性方法など
は特に限定するものではないが、カルボキシル
基、水酸基等の官能基を実質的にもたず、また、
塗膜としての強度を保ちうる分子量であることが
必要である。 本発明においてビヒクルとして用いる樹脂は、
前記の水に不溶性の樹脂1〜99重量%と水可溶性
樹脂99〜1重量%とからなる混合樹脂であり、特
に好ましくは水可溶性樹脂を5重量%以上含む混
合樹脂である。水可溶性樹脂の量が1重量%未満
では望ましい溶解マトリクス型のビヒクルが得ら
れず、またこの量が99重量%を越えてもその効果
は変らない。 本発明によつて得られる混合樹脂が、溶解型マ
トリクスになりうるは、水可溶性樹脂が、海水に
よつて加水分解され、主鎖が切断されることによ
りオリゴマー化されるのであるが、一般式()
のくりかえし単位を主鎖にもつ樹脂の場合、重合
度が20以上のオリゴマーであつても水溶性が高
く、かつ、分散性が高いものであり、このオリゴ
マーが溶出していく時に、水に水溶性の樹脂を随
伴し溶出させ、結果として混合樹脂全体が溶解型
マトリクスになるものと思われる。従来のロジン
を添加した樹脂が、溶解型マトリクスになり得な
いのは、ロジンの分子の大きさが、添加した水溶
性樹脂に比べて小さく、また、鎖状でないため
に、周囲の不溶性樹脂を随伴し、溶出させる能力
に欠けるからである。 本発明の防汚塗料は、上記のようにして得られ
た混合樹脂をビヒクルとして、着色顔料、体質顔
料、防汚剤、溶剤などを分散させて塗料化したも
のである。 本発明の防汚塗料に使用される防汚剤として
は、亜酸化銅、トリブチルスズ化合物、トリフエ
ニルスズ化合物、チウラム化合物をはじめ、従来
公知の防汚剤はすべて使用することができる。そ
のほか顔料、添加剤等も従来公知のものが使用可
能である。 また、本発明の防汚塗料の塗料化も公知のいず
れの方法を用いてもよい。 本発明の防汚塗料から得られる塗膜は、従来の
ロジンなどの低分子化合物を用いたものより優れ
た塗膜強度を持ち、しかも防汚剤の適度な溶出速
度が長期間安定して保たれるため、たとえば乾燥
塗膜厚として150μを塗布したものは、36カ月を
経過してもなお優れた防汚性能を保持している。 本発明は、水に水溶性の樹脂に前記の水可溶性
樹脂を混合するだけで溶解マトリクス型となるの
で、樹脂として安価な一般のものを多量に用いる
ことにより全体の価格を従来よりも低減でき、し
かも混合比率を変えるだけで塗膜全体としての溶
解性を望みどおり変化させることができ、さらに
従来の溶解マトリクス型に比べてはるかに簡便に
製造することができるなどの大きな利点を有して
いる。 次に製造例、実施例によつて具体的に説明す
る。例中の部は重量部、粘度は25℃における測定
値、分子量はGPC法による重量平均分子量を表
わす。 製造例 1 撹拌器つきのフラスコにグリコリド46.4部、L
−ラクチド230.4部、SbF30.08部を仕込み、窒素
気流下で195℃にて、2時間加熱した。次いで230
℃に昇温し、その温度で1時間加熱した後、加熱
を止めフラスコ内容物をオープンバツトに空けて
冷却し、固化物を粉砕した。得られたポリマーの
融点は、207〜215℃、分子量は15000であつた。
本樹脂をB−1とする。B−1の5.0gと塩化ビ
ニル−酢酸ビニル共重合樹脂(積水化学工業(株)
製・エスレツクCL、MW43000)100gとを、キ
シレン−MIBK等量混合液105gを用いて、加熱
溶解させ、25℃での粘度が5ポイズである透明液
体を得た。これを樹脂溶液W−1とする。 製造例 2 製造例1で得た樹脂B−1の12.0gと塩化ゴム
(旭電化工業製・CR−5)の100gとをキシレン
112gを用いて加熱溶解させ、25℃での粘度が3.5
ポイズである透明液体を得た。これを樹脂溶液W
−2とする。 製造例 3 撹拌器つきのフラスコにL−ラクチド288部、
SbF30.086部を仕込み、窒素気流下で製造例1と
同様に加熱して無色透明のガラス状固体を得た。
得られたポリマーの流動点は150℃、分子量は
19000であつた。本樹脂をB−2とする。B−2
の4.5gと製造例1で用いた塩化ビニル−酢酸ビ
ニル共重合樹脂100gとをキシレン−MIBK等量
混合液104.5gを用いて、加熱溶解させ、25℃で
の粘度が5.2ポイズである透明液体を得た。これ
を樹脂溶液W−3とする。 製造例 4 製造例3で得た樹脂B−2の16.0gと酢酸ビニ
ル、ホモポリマー、50%トルエン溶液(日本合成
化学(株)製・ゴーセニールT−50)200gおよびキ
シレン16.0gとを加熱混合し溶解させ、25℃での
粘度が7.0ポイズである透明液体を得た。これを
樹脂溶液W−4とする。 製造例 5 製造例3で得た樹脂B−2の13.0gとスチレン
−ブタジエン樹脂(グツドイヤー社製・ブリオラ
イトS5B)100gとを、キシレン113gを用いて加
熱溶解させ、25℃での粘度が4.5ポイズである透
明液体を得た。これを樹脂溶液W−5とする。 製造例 6 撹拌器つきのフラスコにキシレン50部を仕込み
加熱還流させ、これに2−エチルヘキシルアクリ
レート10部、メチルメタアクリレート25部、スチ
レン10部、ブチルアクリレート5部、t−ブチル
パーオキシベンゾエート0.5部の混合液を1時間
かけて滴下し、さらに3時間加熱還流を続けた。
本樹脂溶液は不揮発分50%の溶液であり、分子量
は70000であつた。これを樹脂溶液A−1とする。
樹脂溶液A−1の200gと製造例3で得た樹脂B
−2の8.6gおよびキシレンの8.6gとを加熱混合
し、25℃の粘度が6.0ポイズである透明液体を得
た。これを樹脂溶液を得た。これを樹脂溶液W−
6とする。 製造例 7 製造例6で得た樹脂溶液A−1の200gとポリ
(ε−カプロラクトン)〔ダイセル化学工業(株)製プ
ラクセルH−1(数平均分子量10000)〕の30gお
よびキシレンの30gとを加熱混合し25℃での粘度
が6.5ポイズである透明液体を得た。これを樹脂
溶液W−7とする。 製造例 8 製造例7で用いたポリ(ε−カプロラクトン)
の25gとエポキシ樹脂(油化シエルエポキシ社
製・エピコート1007)の100gとエチルセロソル
ブ100g、酢酸エチレングリコールモノエチルエ
ーテル25gとを加熱混合し、25℃での粘度17.0ポ
イズの透明液体を得た。これを樹脂溶液W−8と
する。 実施例 塗料化 製造例1〜8で得た樹脂溶液W−1〜W−8を
用いて、第1表に示した塗料配合にて混練分散を
行い、実施例1〜9の防汚塗料の製造を行つた。 他に一般市販の代表的な溶解マトリクス型防汚
塗料の例として、比較例1および不溶解マトリク
ス型の例として比較例2を製造した。 塗装試験板の作成 実施例1〜9および比較例1、2の防汚塗料を
サンドブラスト鋼板にあらかじめ防錆塗料を塗布
してある塗板に乾燥膜厚として150μとなるごと
く刷毛塗りを2回行い、防汚性能試験板を作成し
た。同様に一定の10cm×20cmの面積にのみ防汚塗
料を塗布した防汚剤の溶出速度測定用試験板を作
成した。同様に4cm×2cmの面積に防汚塗料を塗
布した11cm×157cmのアルミニウム板を円形のド
ラムに巻き付けた消耗膜厚測定用のロータリード
ラムを作成した。 浸漬試験 兵庫県洲本市由良湾において、防汚性能試験板
および溶出速度測定用試験板については36カ月の
海中浸漬を、消耗膜厚測定用のロータリードラム
については2カ月の海中回転を行つた。 浸漬試験結果 浸漬試験による防汚性能試験結果を第2表に、
銅の溶出速度測定結果を第3表に、錫の溶出速度
測定結果を第4表に、消耗膜厚測定結果を第5表
に示す。 一般に海水中での防汚剤それぞれ単独の最低防
汚限界濃度は、銅化合物では銅として10γ/cm2
日、錫化合物では錫として、1γ/cm2/日である
とされている。
The present invention relates to an antifouling paint that has a strong coating film and uses a synthetic resin composition having appropriate water solubility as a vehicle. Undersea structures such as ships, bridges, and offshore tanks, or submerged parts such as aquaculture nets are home to a large number of marine organisms such as barnacles, celluloids, oysters, sea squirts, sea breams, sea lettuce, and green laver, which can lead to corrosion of structures and There is a need for anti-fouling paints that have long-term anti-fouling properties, as they cause serious damage such as a decrease in ship navigation speed and the death of large numbers of fish due to poor water passage due to blocked mesh. Antifouling paints have antifouling properties and mechanisms.
It is roughly classified into two types. One type is the one that has been mainly used in the past, in which an antifouling agent is dispersed in a vehicle consisting of a seawater-insoluble resin such as vinyl chloride, chlorinated rubber, or styrene-butadiene, and a seawater-soluble component such as rosin. This is called an insoluble matrix type antifouling paint. When this antifouling coating film is immersed in seawater, the antifouling agent will be eluted together with the rosin, exerting an antifouling effect. However, even after the rosin has eluted, the insoluble resin residue layer will remain as it is, and as the immersion process progresses. At the same time, this insoluble resin residue layer made it difficult for the antifouling agent to dissolve, and the antifouling period was only 12 to 16 months, requiring repeated recoating. The other type was developed to overcome the drawbacks of the above-mentioned insoluble matrix type antifouling paints.The resin itself has slight water solubility, and the vehicle of the paint film gradually dissolves in seawater. The antifouling agent is eluted along with the coating, and it is called a dissolved matrix type antifouling paint. In this case, since there is no insoluble resin residue layer that would be an obstacle to the elution of the antifouling agent, the antifouling agent can be easily eluted, and as long as the antifouling coating is present, the antifouling performance is maintained and the film thickness can be increased. This makes it easy to maintain stain resistance for 2 to 3 years. As an antifouling paint invented with this intention in mind,
There are antifouling paints designated as Special Publication No. 44-9579 and Special Publication No. 51-12049. These inventions are This uses an organotin compound homopolymer or a copolymer with other unsaturated compounds represented by as a vehicle.The above organotin ester group is hydrolyzed in seawater, and the released tin compound acts as an antifouling agent. In addition, the resin itself is soluble in seawater, making it a soluble matrix type antifouling paint. However, these organotin compound polymers have problems such as difficulty in synthesizing organotin compound monomers with unsaturated groups, poor storage stability, tendency to thicken, strong toxicity, and inconvenience in handling. There were practical difficulties. Therefore, as a result of intensive research, the present inventors have found a method for obtaining a soluble matrix type resin without using the above-mentioned organic tin compound polymer, using a resin normally used as the above-mentioned insoluble matrix type antifouling paint and a general paint. The present invention was based on the discovery that a mixed resin obtained by mixing a specific resin that is decomposed by water with a specific resin that is decomposed by water is excellent as a vehicle for a soluble matrix type antifouling paint. That is, the present invention comprises 1 to 99% by weight of a water-insoluble resin and the following general formula (). [However, n represents an integer from 1 to 5, and R 1 ,
R2 each represents hydrogen, a straight chain or branched alkyl group having 1 to 5 carbon atoms, halogen, phenyl group or nitrile group. ] The present invention provides an antifouling paint characterized by using as a vehicle a mixed resin consisting of 99 to 1% by weight of a water-soluble resin having repeating units represented by the following in its main chain. Examples of repeating units represented by the general formula () used in the present invention include glycolic acid residues,
dl, or l-lactic acid residue, α-oxyisobutyric acid residue, α-oxy-n-butyric acid residue, β-oxypropionic acid residue, α-chloropropionic acid residue, α
- Cyanopropionic acid residues, β-oxypivalic acid residues, ε-oxycaproic acid residues, etc.
One or more types of these may be included. The general method for synthesizing water-soluble resins having these repeating units in their main chains is to use cyclic lactones of the corresponding oxyacids as monomers and ring-opening polymerize one or more of them using Lewis acids or metal catalysts. It is being carried out according to Examples of cyclic lactones include glycolide,
lactide, β-propiolactone, pivalolactone, γ-butyrolactone, δ-valerolactone,
Examples include ε-caprolactone. The ring-opening polymerization method for these cyclic lactones is as follows:
For example, according to US Pat. No. 2,668,162 (1954).
In the case of glycolide and lactide, a method is described in which antimony trifluoride, antimony trichloride, antimony trioxide, etc. are added in an amount of 0.01 to 0.1% by weight based on the monomer. Furthermore, as an example of ring-opening polymerization of ε-caprolactone, JP-A No. 56-49728
The issue describes a method using a molybdenum compound as a catalyst. However, the method for synthesizing the polymer is not limited to ring-opening polymerization of cyclic lactones, and dehydration polycondensation of oxyacids can also be used. In the present invention, there is no particular restriction on the molecular weight of the resin obtained as described above, but from the viewpoint of maintaining strength as a coating film and workability of the paint, the weight average molecular weight is 1,000 to 100,000, particularly preferably 5,000 to 100,000.
50000 is appropriate. The water-soluble resin used in the present invention is a self-condensing polyester of oxycarboxylic acid, and is structurally different from ordinary polyesters obtained from polybasic acids and polyhydric alcohols. Polyester is generally considered to have poor hydrolysis resistance, but normal polyester has a slow hydrolysis rate,
It cannot be used as a dissolution matrix type vehicle. On the other hand, self-condensing polyesters of oxycarboxylic acids have a fast hydrolysis rate, and in particular, water-soluble resins with repeating units represented by the general formula () in the main chain are gradually hydrolyzed in seawater, and small molecules are Since it dissolves or disperses in pieces, it can be used as a vehicle for dissolving matrix type antifouling paints. As the water-insoluble resin used in the present invention, most resins for insoluble matrix type antifouling paints and general organic polymers can be used. Examples of the former include conventionally known oil-based varnishes, vinyl chloride, chlorinated rubber, resins such as styrene-butadiene, and examples of the latter include various acrylic or methacrylic esters, styrene, vinyl acetate, ethylene, Includes mono- or copolymers of monoethylenically unsaturated compounds such as propylene, polyesters, polyurethanes, alkyd resins, melamine resins, urea resins, ketone resins, epoxy resins, polyethers, petroleum resins, and modified derivatives thereof. . The molecular weight, monomer composition, modification method, etc. of these resins are not particularly limited;
It is necessary that the molecular weight is such that the strength of the coating film can be maintained. The resin used as a vehicle in the present invention is
It is a mixed resin consisting of 1 to 99% by weight of the above-mentioned water-insoluble resin and 99 to 1% by weight of a water-soluble resin, and particularly preferably a mixed resin containing 5% by weight or more of a water-soluble resin. If the amount of water-soluble resin is less than 1% by weight, the desired dissolution matrix type vehicle will not be obtained, and if this amount exceeds 99% by weight, the effect will not change. The mixed resin obtained by the present invention can become a soluble matrix because the water-soluble resin is hydrolyzed by seawater and oligomerized by cutting the main chain. ()
In the case of resins with repeating units in the main chain, even oligomers with a degree of polymerization of 20 or higher have high water solubility and high dispersibility, and when this oligomer is eluted, it becomes water soluble in water. It is thought that the mixed resin is entrained and eluted, and as a result, the entire mixed resin becomes a soluble matrix. The reason why conventional resins with added rosin cannot become a soluble matrix is because the molecular size of rosin is smaller than that of the water-soluble resins added, and because it is not chain-like, it does not absorb the surrounding insoluble resin. This is because they lack the ability to accompany and elute. The antifouling paint of the present invention is prepared by dispersing coloring pigments, extender pigments, antifouling agents, solvents, etc. in the mixed resin obtained as described above as a vehicle. As the antifouling agent used in the antifouling paint of the present invention, all conventionally known antifouling agents can be used, including cuprous oxide, tributyltin compounds, triphenyltin compounds, and thiuram compounds. In addition, conventionally known pigments, additives, etc. can be used. Moreover, any known method may be used to form the antifouling paint of the present invention into a paint. The coating film obtained from the antifouling paint of the present invention has superior coating strength to conventional coatings using low-molecular compounds such as rosin, and also maintains a suitable elution rate of the antifouling agent stably for a long period of time. For example, a coating with a dry coating thickness of 150 μm retains excellent antifouling performance even after 36 months. In the present invention, a soluble matrix type can be obtained by simply mixing the above-mentioned water-soluble resin with a water-soluble resin, so the overall cost can be reduced compared to the conventional one by using a large amount of inexpensive general resin. Furthermore, it has the great advantage of being able to change the solubility of the coating as a whole as desired by simply changing the mixing ratio, and being much easier to manufacture than conventional dissolution matrix types. There is. Next, a detailed explanation will be given using manufacturing examples and examples. In the examples, parts are parts by weight, viscosity is a value measured at 25°C, and molecular weight is a weight average molecular weight determined by GPC method. Production example 1 46.4 parts of glycolide in a flask with a stirrer, L
- 230.4 parts of lactide and 0.08 parts of SbF 3 were charged and heated at 195° C. for 2 hours under a nitrogen stream. then 230
After heating at that temperature for 1 hour, heating was stopped and the contents of the flask were emptied into an open vat to cool, and the solidified material was crushed. The resulting polymer had a melting point of 207-215°C and a molecular weight of 15,000.
This resin is designated as B-1. 5.0 g of B-1 and vinyl chloride-vinyl acetate copolymer resin (Sekisui Chemical Co., Ltd.)
A transparent liquid having a viscosity of 5 poise at 25° C. was obtained by heating and dissolving 100 g of xylene-MIBK (manufactured by ESLETSUKU CL, MW43000) using 105 g of a mixed solution of equal amounts of xylene and MIBK. This is referred to as resin solution W-1. Production Example 2 12.0 g of Resin B-1 obtained in Production Example 1 and 100 g of chlorinated rubber (manufactured by Asahi Denka Kogyo, CR-5) were mixed in xylene.
Heat and melt using 112g, the viscosity at 25℃ is 3.5
A transparent liquid that is poise was obtained. Add this to the resin solution W
-2. Production Example 3 288 parts of L-lactide in a flask equipped with a stirrer,
0.086 part of SbF 3 was charged and heated in the same manner as in Production Example 1 under a nitrogen stream to obtain a colorless and transparent glassy solid.
The pour point of the obtained polymer was 150℃, and the molecular weight was
It was 19,000. This resin is designated as B-2. B-2
and 100 g of the vinyl chloride-vinyl acetate copolymer resin used in Production Example 1 were heated and dissolved using 104.5 g of a xylene-MIBK equivalent mixture to form a transparent liquid with a viscosity of 5.2 poise at 25°C. I got it. This is referred to as resin solution W-3. Production Example 4 16.0 g of Resin B-2 obtained in Production Example 3, vinyl acetate, homopolymer, 200 g of 50% toluene solution (Gosenil T-50 manufactured by Nippon Gosei Kagaku Co., Ltd.) and 16.0 g of xylene were heated and mixed. The solution was dissolved to obtain a transparent liquid with a viscosity of 7.0 poise at 25°C. This is referred to as resin solution W-4. Production Example 5 13.0g of Resin B-2 obtained in Production Example 3 and 100g of styrene-butadiene resin (Bryolite S5B manufactured by Gutdeyer) were heated and dissolved using 113g of xylene, and the viscosity at 25°C was 4.5. A transparent liquid that is poise was obtained. This is referred to as resin solution W-5. Production Example 6 50 parts of xylene was placed in a flask equipped with a stirrer and heated to reflux, followed by adding 10 parts of 2-ethylhexyl acrylate, 25 parts of methyl methacrylate, 10 parts of styrene, 5 parts of butyl acrylate, and 0.5 parts of t-butyl peroxybenzoate. The mixture was added dropwise over 1 hour, and heating and refluxing was continued for an additional 3 hours.
This resin solution had a nonvolatile content of 50% and a molecular weight of 70,000. This is referred to as resin solution A-1.
200g of resin solution A-1 and resin B obtained in Production Example 3
-2 and 8.6 g of xylene were heated and mixed to obtain a transparent liquid having a viscosity of 6.0 poise at 25°C. A resin solution was obtained from this. Add this to the resin solution W-
Set it to 6. Production Example 7 200 g of resin solution A-1 obtained in Production Example 6, 30 g of poly(ε-caprolactone) [Plaxel H-1 (number average molecular weight 10,000) manufactured by Daicel Chemical Industries, Ltd.] and 30 g of xylene were added. By heating and mixing, a transparent liquid having a viscosity of 6.5 poise at 25°C was obtained. This is referred to as resin solution W-7. Production Example 8 Poly(ε-caprolactone) used in Production Example 7
, 100 g of epoxy resin (Epicoat 1007, manufactured by Yuka Ciel Epoxy Co., Ltd.), 100 g of ethyl cellosolve, and 25 g of ethylene glycol monoethyl ether acetate were heated and mixed to obtain a transparent liquid with a viscosity of 17.0 poise at 25°C. This is referred to as resin solution W-8. Example Paint Formation Using the resin solutions W-1 to W-8 obtained in Production Examples 1 to 8, kneading and dispersion were carried out according to the paint formulation shown in Table 1 to form the antifouling paints of Examples 1 to 9. Manufactured. In addition, Comparative Example 1 was produced as an example of a typical commercially available soluble matrix type antifouling paint, and Comparative Example 2 was produced as an example of an insoluble matrix type. Preparation of painted test plates The antifouling paints of Examples 1 to 9 and Comparative Examples 1 and 2 were applied twice with a brush to a sandblasted steel plate, which had been previously coated with antirust paint, to a dry film thickness of 150μ. An antifouling performance test board was created. Similarly, a test plate for measuring the elution rate of the antifouling agent was prepared by applying the antifouling paint only to a fixed area of 10 cm x 20 cm. Similarly, a rotary drum for measuring the wear film thickness was prepared by wrapping an 11 cm x 157 cm aluminum plate coated with antifouling paint over a 4 cm x 2 cm area around a circular drum. Immersion test In Yura Bay, Sumoto City, Hyogo Prefecture, the antifouling performance test plate and the test plate for elution rate measurement were immersed in the sea for 36 months, and the rotary drum for measuring the wear film thickness was rotated in the sea for 2 months. Immersion test results Table 2 shows the antifouling performance test results from the immersion test.
The results of measuring the elution rate of copper are shown in Table 3, the results of measuring the elution rate of tin are shown in Table 4, and the results of measuring the ablated film thickness are shown in Table 5. In general, the minimum antifouling limit concentration of each antifouling agent alone in seawater is 10γ/cm 2 /
In tin compounds, the amount of tin is said to be 1γ/cm 2 /day.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 注 *印は生物付着等により測定不能のため
0と表示する。
[Table] Note: * indicates 0 because measurement is impossible due to biofouling, etc.

【表】 注 *印は生物付着により測定不能のため0
と表示する。
[Table] Note: * indicates 0 because measurement is impossible due to biofouling.
is displayed.

【表】【table】

【表】【table】

【表】 第2表の防汚性能試験については実施例のすべ
てと、比較例1は36カ月経過後においても生物の
付着は0%であるが、比較例2においては12カ月
以後著しい生物の付着がみられる。第3表、第4
表の銅、錫の溶出速度試験については、実施例は
比較例1と同様36カ月経過後も最低防汚限界以上
の溶出速度をもつていることを示している。ま
た、第5表の消耗膜厚測定結果においては実施例
のすべては、有機錫重合体を用いた比較例1と同
様徐々に膜厚の減つていくのがみられるが、比較
例2では膜厚の消耗はみられない。 塗膜の物理性能試験 実施例1〜9および比較例1、2の防汚塗料を
用い、塗膜の耐衝撃性および耐屈曲曲性につい
て、JIS−K−5400.6・13およびJIS−K−5400・
6.15の方法にしたがつて試験をした。その結果実
施例のすべてと、比較例1については耐衝撃性、
耐屈曲性の両試験ともいずれも合格し、比較例2
については耐衝撃性についてのみ不合格となり、
耐屈曲性については合格した。 以上のことから本発明の混合樹脂をビヒクルと
した防汚塗料は、溶解マトリクス型防汚塗料とし
て長期間にわたり、優れた防汚能力を発揮するも
のであることが明らかである。 比較例1は、防汚性能は良好であるが、前述の
ように有機錫化合物重合体を用いているので、そ
の合成がむずかしく、貯蔵安定性が悪く、また毒
性が強すぎるなど実用上の難点が多い。
[Table] Regarding the antifouling performance test in Table 2, all of the Examples and Comparative Example 1 showed 0% biological adhesion even after 36 months, but in Comparative Example 2, there was a significant amount of biological adhesion after 12 months. Adhesion is seen. Table 3, 4
Regarding the elution rate test of copper and tin in the table, the Example shows that, like Comparative Example 1, the elution rate is higher than the minimum antifouling limit even after 36 months. In addition, in Table 5, the film thickness measurement results show that in all of the Examples, the film thickness gradually decreases as in Comparative Example 1 using an organic tin polymer, but in Comparative Example 2, the film thickness decreases gradually. There is no visible loss of thickness. Physical performance test of paint film Using the antifouling paints of Examples 1 to 9 and Comparative Examples 1 and 2, the impact resistance and bending resistance of the paint film were tested according to JIS-K-5400.6/13 and JIS-K-5400.・
The test was conducted according to method 6.15. As a result, all of the examples and Comparative Example 1 had impact resistance,
Comparative Example 2 passed both bending resistance tests.
It was rejected only for impact resistance.
It passed the bending resistance test. From the above, it is clear that the antifouling paint using the mixed resin of the present invention as a vehicle exhibits excellent antifouling ability over a long period of time as a dissolved matrix type antifouling paint. Comparative Example 1 has good antifouling performance, but as mentioned above, since it uses an organic tin compound polymer, it has practical difficulties such as difficult synthesis, poor storage stability, and excessive toxicity. There are many.

Claims (1)

【特許請求の範囲】 1 水に不溶性の樹脂1〜99重量%と下記一般式
() 〔ただし、nは1〜5の整数を表わし、R1
R2はそれぞれ、水素、炭素数1〜5の直鎖又は
分枝アルキル基、ハロゲン、フエニル基又はニト
リル基を示す。〕 で表わされるくりかえし単位を主鎖にもつ水可溶
性樹脂99〜1重量%とからなる混合樹脂をビヒク
ルとして含有することを特徴とする防汚塗料。 2 一般式()が、n=1、R1=H、R2=H
で示されるグリコール酸残基であある特許請求の
範囲第1項記載の防汚塗料。 3 一般式()が、n=1、R1=H、R2
CH3で示される乳酸残基である特許請求の範囲第
1項記載の防汚塗料。 4 一般式()が、n=2、R1=H、R2=H
で示されるβ−オキシプロピオン酸残基である特
許請求の範囲第1項記載の防汚塗料。 5 一般式()が、n=3、R1=H、R2=H
で示されるγ−オキシ酪酸残基である特許請求の
範囲第1項記載の防汚塗料。 6 一般式()が、n=5、R1=H、R2=H
で示されるε−オキシカプロン酸残基である特許
請求の範囲第1項記載の防汚塗料。
[Claims] 1 1 to 99% by weight of a water-insoluble resin and the following general formula () [However, n represents an integer from 1 to 5, and R 1 ,
R 2 each represents hydrogen, a linear or branched alkyl group having 1 to 5 carbon atoms, halogen, phenyl group or nitrile group. ] An antifouling paint characterized by containing as a vehicle a mixed resin consisting of 99 to 1% by weight of a water-soluble resin having repeating units represented by the following in its main chain. 2 General formula () is n=1, R 1 = H, R 2 = H
The antifouling paint according to claim 1, which is a glycolic acid residue represented by: 3 General formula () is n=1, R 1 = H, R 2 =
The antifouling paint according to claim 1, which is a lactic acid residue represented by CH3 . 4 General formula () is n = 2, R 1 = H, R 2 = H
The antifouling paint according to claim 1, which is a β-oxypropionic acid residue represented by: 5 General formula () is n = 3, R 1 = H, R 2 = H
The antifouling paint according to claim 1, which is a γ-oxybutyric acid residue represented by: 6 General formula () is n=5, R 1 = H, R 2 = H
The antifouling paint according to claim 1, which is an ε-oxycaproic acid residue represented by:
JP14625882A 1982-08-25 1982-08-25 Antifouling coating Granted JPS5936167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14625882A JPS5936167A (en) 1982-08-25 1982-08-25 Antifouling coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14625882A JPS5936167A (en) 1982-08-25 1982-08-25 Antifouling coating

Publications (2)

Publication Number Publication Date
JPS5936167A JPS5936167A (en) 1984-02-28
JPH0346501B2 true JPH0346501B2 (en) 1991-07-16

Family

ID=15403664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14625882A Granted JPS5936167A (en) 1982-08-25 1982-08-25 Antifouling coating

Country Status (1)

Country Link
JP (1) JPS5936167A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709816B2 (en) * 1987-01-16 1998-02-04 中国塗料株式会社 Underwater paint-curable antifouling paint composition
CN102702977A (en) * 2012-06-12 2012-10-03 天长市巨龙车船涂料有限公司 Anti-fouling paint
CN105778583B (en) * 2016-03-21 2018-05-11 苏州天键衡电子信息科技有限公司 A kind of ship antifouling paint
CN111138958A (en) * 2020-01-10 2020-05-12 中国科学院海洋研究所 Gel coat coating material with antifouling property and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347379A (en) * 1976-10-13 1978-04-27 Idemitsu Kosan Co Ltd Oil-water separating membrane with excellent water selective permeability
JPS55164261A (en) * 1979-06-08 1980-12-20 Chugoku Toryo Kk Antifouling coating material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347379A (en) * 1976-10-13 1978-04-27 Idemitsu Kosan Co Ltd Oil-water separating membrane with excellent water selective permeability
JPS55164261A (en) * 1979-06-08 1980-12-20 Chugoku Toryo Kk Antifouling coating material

Also Published As

Publication number Publication date
JPS5936167A (en) 1984-02-28

Similar Documents

Publication Publication Date Title
KR101751142B1 (en) Polyester resin for antifouling coating materials, method for producing same, antifouling coating material composition, antifouling coating film, and antifouling base
US4270953A (en) Two component antifouling paint
JPS6361989B2 (en)
JP2000129168A (en) Corrosion-resisting coating composition, corrosion- resisting coating film and corrosion-resisting method for metal base surface
JPH0346501B2 (en)
GB2084167A (en) Antifouling paint compositions
JP3924372B2 (en) Hydrolyzed polyester and antifouling coating composition containing the same
US4383053A (en) Antifouling paints having fumaric acid ester polymer
JPH0119430B2 (en)
JPH059415A (en) Antifouling coating composition
JP2004307764A (en) Coating material composition, antifouling coating film, underwater structure and method for forming antifouling coating film for underwater structure
JPH0119431B2 (en)
JPH0524187B2 (en)
EP0327021B1 (en) Coating compositions for preventing adhesion of aquatic organisms
JPH0299567A (en) Formation of antifouling coating film
JPS638996B2 (en)
JPS5867767A (en) Antifouling paint
JPH042632B2 (en)
JP2001146570A (en) Polyester resin for antifouling coating material and antifouling coating material using the same
JPS59147062A (en) Antifouling paint
JPH06279710A (en) Antifouling coating composition
JPS6361988B2 (en)
JPH0119429B2 (en)
JP3507134B2 (en) Paint composition
JP2691964B2 (en) Antifouling paint composition