JPH0346481B2 - - Google Patents

Info

Publication number
JPH0346481B2
JPH0346481B2 JP57019683A JP1968382A JPH0346481B2 JP H0346481 B2 JPH0346481 B2 JP H0346481B2 JP 57019683 A JP57019683 A JP 57019683A JP 1968382 A JP1968382 A JP 1968382A JP H0346481 B2 JPH0346481 B2 JP H0346481B2
Authority
JP
Japan
Prior art keywords
titanium
catalyst component
compound
magnesium
electron donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57019683A
Other languages
Japanese (ja)
Other versions
JPS58138708A (en
Inventor
Mamoru Kioka
Norio Kashiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP1968382A priority Critical patent/JPS58138708A/en
Publication of JPS58138708A publication Critical patent/JPS58138708A/en
Publication of JPH0346481B2 publication Critical patent/JPH0346481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、オレフインの重合(以下、オレフイ
ンの共重合をも包含して用いることがある)によ
つて、オレフイン重合体(以下、オレフイン共重
合体を包含して用いることがある)を製造する方
法に関する。とくには、炭素数3以上のα−オレ
フインの重合に適用した場合、高立体規則性重合
体を高収量で得ることのできるオレフイン重合体
の製造方法に関する。さらには、炭素数3以上の
α−オレフインの重合において、重合に際して水
素等の分子量調節剤を用いて重合体のメルトイン
デツクスを変えても、重合体の立体規則性の低下
が少ないオレフインの重合が可能な方法に関す
る。 マグネシウム、チタン、ハロゲンおよび電子供
与体を必須成分とする固体触媒成分の製造方法に
ついてはすでに多くの提案があり、該固体触媒成
分を炭素数3以上のα−オレフインの重合に利用
するときに、高立体規則性重合体を高い触媒活性
で得ることが可能であることも知られている。し
かしながらその多くは、さらに活性や重合体の立
体規則性などにおいて一層の改良が望まれてい
る。 例えば重合後の後処理操作を施さずに高品質の
オレフイン重合体を得るためには、立体規則性重
合体の生成比率が非常に高く、しかも遷移金属当
たりの重合体収率が充分に大きくなくてはならな
い。従来諸提案の技術は、目的とする重合体の種
類によつては、上記観点において可成の水準にあ
ると言えるものもあるが、成形機の発錆に係わる
重合体中の残存ハロゲン含有量の点から見れば、
充分な性能を有していると言えるものは数少な
い。しかもその多くは、メルトインデツクスの大
きい重合体を製造するときには、収率や立体規則
性などの少なからざる低下をひき起こすという欠
点を有している。 本発明の目的とするところは、触媒活性の持続
性が優れ、単位触媒当りの重合活性や立体規則性
重合能の一層優れたオレフインの重合方法を提供
するにある。本発明の他の目的は高メルトインデ
ツクスの重合体の製造においても立体規則性指数
の低下傾向の少ない重合方法を提供するにある。
本発明の他の目的ならびに効果は以下の記載によ
り一層明らかとなろう。 本発明によれば、 〔A〕 少なくとも(a)実質的に還元能を有しない
マグネシウム化合物、(b)チタン化合物及び(c)電
子供与体の三成分の相互反応によつて得られる
チタン、マグネシウム、ハロゲン及び電子供与
体を必須成分とするチタン触媒成分であつて、
該電子供与体が、マレイン酸及び置換マレイン
酸よりなる群から選ばれる不飽和カルボン酸と
直鎖脂肪族アルコールとのエステル又は炭素数
2ないし5の飽和直鎖ジカルボン酸のエステル
であるチタン触媒成分、 〔B〕 有機アルミニウム化合物触媒成分、及び 〔C〕 Si−O−C結合を有する有機ケイ素化合
物触媒成分 とから形成される触媒の存在下に、オレフイン
を重合もしくは共重合することを特徴とするオ
レフインの重合方法が提供される。 本発明で用いるチタン触媒成分(A)は、マグネシ
ウム、チタン、ハロゲン及び後記する特定の電子
供与体を必須成分とする高活性触媒成分である。
このチタン触媒成分(A)は、市販のハロゲン化マグ
ネシウムに比し、結晶性の低いハロゲン化マグネ
シウムを含み、その比表面積は、通常は約50m2
g以上、好適には約60ないし約800m2/g、より
好ましくは約100ないし約400m2/g程度のものが
よく、室温におけるヘキサン洗浄によつて実質的
にその組成が変ることがない。該チタン触媒成分
(A)において、ハロゲン/チタン(原子比)が約5
ないし約200、とくには約5ないし約100、後記電
子供与体/チタン(モル比)が約0.1ないし約10、
とくに約0.2ないし約6、マグネシウム/チタン
(原子比)が約2ないし約100、とくには約4ない
し約50程度のものが好ましい。該成分(A)はまた、
他の電子供与体、金属、元素、官能基などを含ん
でいてもよい。 このようなチタン触媒成分(A)は、例えばマグネ
シウム化合物(もしくはマグネシウム金属)、電
子供与体及びチタン化合物の相互接触によつて得
られるが、場合によつては、他の反応試剤、例え
ばケイ素、リン、アルミニウムなどの化合物を使
用することができる。 かかるチタン触媒成分(A)を製造する方法として
は、例えば、特開昭50−108385号、同50−126590
号、同51−20297号、同51−28189号、同51−
64586号、同51−92885号、同51−136625号、同52
−87489号、同52−100596号、同52−147688号、
同52−104593号、同53−2580号、同53−40093号、
同53−43094号、同55−135102号、同55−135103
号、同56−811号、同56−11908号、同56−18606
号などに開示された方法に準じて製造することが
できる。 これらチタン触媒成分(A)の製造方法の数例につ
いて、以下に簡単に述べる。 (1) マグネシウム化合物あるいはマグネシウム化
合物と電子供与体の錯化合物を、電子供与体、
粉砕助剤等の存在下又は不存在下、粉砕し又は
粉砕することなく、電子供与体及び/又は有機
アルミニウム化合物やハロゲン含有ケイ素化合
物のような反応助剤で予備処理し、又は予備処
理せずに得た固体と反応条件下に液相をなすチ
タン化合物と反応させる。但し、上記電子供与
体を少なくとも一回は使用する。 (2) 還元能を有しないマグネシウム化合物の液状
物と、液状チタン化合物を電子供与体の存在下
で反応させて固体状のチタン複合体を析出させ
る。 (3) (2)で得られるものに、チタン化合物を反応さ
せる。 (4) (1)や(2)で得られるものに電子供与体及びチタ
ン化合物を反応させる。 (5) マグネシウム化合物あるいはマグネシウム化
合物と電子供与体の錯化合物を、電子供与体、
粉砕助剤等の存在下又は不存在及びチタン化合
物の存在下に粉砕し、電子供与体及び/又は有
機アルミニウム化合物やハロゲン含有ケイ素化
合物のような反応助剤で予備処理し、又は予備
処理せずに得た固体をハロゲン又はハロゲン化
合物又は芳香族炭化水素で処理する。但し、上
記電子供与体を少なくとも一回は使用する。 (6) 前記化合物をハロゲン又はハロゲン化合物で
処理する。 これらの触媒成分の中では、触媒調製におい
て、液状のハロゲン化チタンを使用したものあ
るいはチタン化合物の作用時又は作用後におい
てハロゲン化炭化水素を使用したものがとくに
好ましい。 本発明のチタン触媒成分〔A〕に含有されるべ
き電子供与体は、マレイン酸及び置換マレイン酸
から選ばれる不飽和ジカルボン酸、すなわち式
HOOCR1=CR2COOH(R1,R2は水素又は置換基
を有する又は有しない任意の炭化水素基)で表わ
される不飽和ジカルボン酸と置換基を有する又は
有しない任意の直鎖脂肪族アルコールとのエステ
ルである。より具体的には、マレイン酸モノエチ
ル、マレイン酸ジエチル、マレイン酸ジn−プロ
ピル、マレイン酸モノn−ブチル、マレイン酸ジ
n−ブチル、マレイン酸ジn−ヘキシル、マレイ
ン酸ジn−オクチル、マレイン酸ジn−デシル、
マレイン酸ジn−クロルブチル、シトラコン酸ジ
メチル、シトラコン酸ジエチル、シトラコン酸ジ
n−プロピル、シトラコン酸ジn−ブチル、シト
ラコン酸モノn−ブチル、シトラコン酸ジn−ヘ
キシル、シトラコン酸ジn−オクチル、シトラコ
ン酸ジn−デシル、エチルマレイン酸ジエチル、
エチルマレイン酸ジn−プロピル、エチルマレイ
ン酸ジn−ブチル、エチルマレイン酸ジn−オク
チル、ジエチルマレイン酸ブチル、プロピルマレ
イン酸ジエチル、プロピルマレイン酸ジn−プロ
ピル、プロピルマレイン酸ジn−ブチル、プロピ
ルマレイン酸ジn−ヘキシル、プロピルマレイン
酸ジn−オクチル、ブチルマレイン酸ジエチル、
ブチルマレイン酸ジn−プロピル、ブチルマレイ
ン酸ジn−ブチルなどのエステルを挙げることが
できる。 これらの中では、マレイン酸及び置換マレイン
酸と炭素数2ないし10程度の直鎖アルコールとの
ジエステルが好ましく、とくにマレイン酸及び炭
素数1ないし4のアルキル基置換マレイン酸と炭
素数2ないし8の直鎖アルコールとのジエステル
が特に好ましい。 チタン触媒成分(A)に含有されるべき電子供与体
としてはまたは炭素数2ないし5の飽和直鎖ジカ
ルボン酸のエステルから選択することもできる。
このような化合物はシユウ酸、マロン酸、コハク
酸又はグルタル酸のエステルであつて、例えば、
シユウ酸ジメチル、シユウ酸ジメチル、シユウ酸
ジn−プロピル、シユウ酸ジiso−プロピル、シ
ユウ酸ジn−ブチル、シユウ酸モノiso−ブチル、
シユウ酸ジiso−ブチル、シユウ酸ジn−ヘキシ
ル、シユウ酸ジn−オクチル、シユウ酸ジiso−
オクチル、シユウ酸ジiso−デシル、マロン酸ジ
n−プロピル、マロン酸ジiso−プロピル、マロ
ン酸ジn−ブチル、マロン酸ジiso−ブチル、マ
ロン酸ジtert−ブチル、マロン酸ジn−ヘキシ
ル、マロン酸ジn−オクチル、マロン酸ジiso−
オクチル、マロン酸ジiso−デシル、グルタル酸
ジメチル、グルタル酸ジエチル、グルタル酸ジn
−プロピル、グルタル酸ジiso−プロピル、グル
タル酸ジn−ブチル、グルタル酸ジiso−ブチル、
グルタル酸ジn−オクチル、グルタル酸ジiso−
オクチル、グルタル酸ジデシル、コハク酸ジエチ
ル、コハク酸ジエチル、コハク酸ジn−プロピ
ル、コハク酸ジiso−プロピル、コハク酸ジn−
ブチル、コハク酸ジiso−ブチル、コハク酸モノ
iso−ブチル、コハク酸ジn−オクチル、コハク
酸ジiso−オクチル、コハク酸ジn−ヘキシル、
コハク酸ジn−デシルなどのエステルを例示する
ことができる。これらの中では、前記飽和直鎖ジ
カルボン酸と炭素数3以上のアルコールのエステ
ル、中でも炭素数3ないし5の飽和直鎖ジカルボ
ン酸と炭素数3ないし10のアルコールのジエステ
ルを使用せるのが好ましい。 前記エステルは一種又は二種以上含有させるこ
とができる。 更に上記エステルをチタン触媒成分(A)に含有さ
せるに際し、必らずしも出発原料として、これら
を使用する必要はなく、チタン触媒成分(A)の調製
過程でこれら化合物に変化しうる化合物を用いて
該調製段階でこれら化合物に変換させてもよい。 又、上記化合物は、他の化合物、例えばアルミ
ニウム化合物、リン化合物、アミン化合物などと
の付加化合物の形で使用することもできる。 本発明において、前記〔A〕固体チタン触媒成
分の調製に用いられるマグネシウム化合物は、還
元能を有しないマグネシウム化合物、すなわちマ
グネシウム−炭素結合やマグネシウム−水素結合
を有しないマグネシウム化合物が好ましく、これ
らは還元能を有するマグネシウム化合物から誘導
されたものであつてもよい。このような還元能を
有しないマグネシウム化合物としては、塩化マグ
ネシウム、臭化マグネシウム、沃化マグネシウ
ム、弗化マグネシウムのようなハロゲン化マグネ
シウム;メトキシ塩化マグネシウム、エトキシ塩
化マグネシウム、イソプロポキシ塩化マグネシウ
ム、ブトキシ塩化マグネシウム、オクトキシ塩化
マグネシウムのようなアルコキシマグネシウムハ
ライド;フエノキシ塩化マグネシウム、メチルフ
エノキシ塩化マグネシウムのようなアリロキシマ
グネシウムハライド;エトキシマグネシウム、イ
ソプロポキシマグネシウム、ブトキシマグネシウ
ム、n−オクトキシマグネシウム、2−エチルヘ
キソキシマグネシウムのようなアルコキシマグネ
シウム;フエノキシマグネシウム、ジメチルフエ
ノキシマグネシウムのようなアリロキシマグネシ
ウム;ラウリン酸マグネシウム、ステアリン酸マ
グネシウムのようなマグネシウムのカルボン酸塩
などを例示することができる。また、該マグネシ
ウム化合物は他の金属との錯化合物、複化合物あ
るいは他の金属化合物との混合物であつてもよ
い。さらにこれらの化合物の2種以上の混合物で
あつてもよい。これらの中でとくに好ましいマグ
ネシウム化合物は、ハロゲン含有マグネシウム化
合物、とりわけ塩化マグネシウム、アルコキシ塩
化マグネシウム、アリロキシ塩化マグネシウムで
ある。 本発明において、固体チタン触媒成分〔A〕の
調製に用いられる(ii)チタン化合物としては種々あ
るが、通常Ti(OR)gX4-g(Rは炭化水素基、Xは
ハロゲン、0≦g≦4)で示される4価のチタン
化合物が好適である。より具体的には、TiCl4
TiBr4、TiI4などのテトラハロゲン化チタン;Ti
(OCH3)Cl3、Ti(OC2H5)Cl3、Ti(On−C4H9
Cl3、Ti(OC2H5)Br3、Ti(OisoC4H9)Br3など
のトリハロゲン化アルコキシチタン;Ti
(OCH32Cl2、Ti(OC2H52Cl2、Ti(On−
C4H92Cl2、Ti(OC2H52Br2などのジハロゲン化
アルコキシチタン;Ti(OCH33Cl、Ti
(OC2H53Cl、Ti(On−C4H93Cl、Ti
(OC2H53Brなどのモノハロゲン化トリアルコキ
シチタン;Ti(OCH34、Ti(OC2H54、T(On−
C4H94などのテトラアルコキシチタンなどを例
示することができる。これらの中で好ましいもの
はハロゲン含有チタン化合物、とくにテトラハロ
ゲン化チタンであり、とくに好ましいのは四塩化
チタンである。 これらチタン化合物は単味で用いてよいし、混
合物の形で用いてもよい。あるいは炭化水素やハ
ロゲン化炭化水素などに希釈して用いてもよい。 チタン触媒成分(A)の調製において、チタン化合
物、マグネシウム化合物及び担持すべき電子供与
体、さらに必要に応じて使用されることのある他
の電子供与体、例えばアルコール、フエノール、
モノカルボン酸エステルなど、ケイ素化合物、ア
ルミニウム化合物などの使用量は、調製方法によ
つて異なり一概に規定できないが、例えばマグネ
シウム化合物1モル当り、担持すべき電子供与体
0.05ないし5モル、チタン化合物0.05ないし1000
モル程度の割合とすることができる。 本発明においては、以上のようにして得られる
固体触媒成分〔A〕と、有機アルミニウム化合物
触媒成分〔B〕及びケイ素化合物〔C〕の組合せ
触媒を用いてオレフインの重合または共重合を行
う。 上記〔B〕成分としては、(i)少なくとも分子内
に1個のAl−炭素結合を有する有機アルミニウ
ム化合物、例えば一般式 R1mAl(OR2)nHpXq (ここでR1およびR2は炭素原子、通常1ない
し15個、好ましくは1ないし4個を含む炭化水素
基で互いに同一でも異なつてもよい。Xはハロゲ
ン、mは0<m≦3、0≦n<3、pは0≦p<
3、qは0≦q<3の数であつて、しかもm+n
+p+q=3である)で表わされる有機アルミニ
ウム化合物、 (ii) 一般式 M1AlR1 4 (ここでM1はLi,Na,Kであり、R1は前記と
同じ)で表わされる第族金属とアルミニウムと
の錯アルキル化物などを挙げることができる。 前記の(i)に属する有機アルミニウム化合物とし
ては、次のものを例示できる。一般式 R1mAl(OR23-n (ここでR1およびR2は前記と同じ。mは好ま
しくは1.5≦m≦3の数である。)、一般式 R1mAlX3-n ここでR1は前記と同じ。Xはハロゲン、mは
好ましくは0<m<3である。)、一般式 R1mAlH3-n (ここでR1は前記と同じ。mは好ましくは2
≦m<3である。)、一般式 R1mAl(OR2)nXq (ここでR1およびR2は前記と同じ。Xはハロ
ゲン、0<m≦3、0≦n<3、0≦q<3で、
m+n+q=である)で表わされるものなどを例
示できる。 (i)に属するアルミニウム化合物において、より
具体的にはトリエチルアルミニウム、トリブチル
アルミニウムなどのトリアルキルアルミニウム、
トリイソプレニルアルミニウムのようなトリアル
ケニルアルミニウム、ジエチルアルミニウムエト
キシド、ジブチルアルミニウムブトキシドなどの
ジアルキルアルミニウムアルコキシド、エチルア
ルミニウムセスキエトキシド、ブチルアルミニウ
ムセスキブトキシドなどのアルキルアルミニウム
セスキアルコキシドのほかに、R1 2.5Al(OR20.5
などで表わされる平均組成を有する部分的にアル
コキシ化されたアルキルアルミニウム、ジエチル
アルミニウムクロリド、ジブチルアルミニウムク
ロリド、ジエチルアルミニウムブロミドのような
ジアルキルアルミニウムハライド、エチルアルミ
ニウムセスキクロリド、ブチルアルミニウムセス
キクロリド、エチルアルミニウムセスキブロミド
のようなアルキルアルミニウムセスキハライド、
エチルアルミニウムジクロリド、プロピルアルミ
ニウムジクロリド、ブチルアルミニウムジブロミ
ドなどのようなアルキルアルミニウムジハライド
などの部分的にハロゲン化されたアルキルアルミ
ニウム、ジエチルアルミニウムヒドリド、ジブチ
ルアルミニウムヒドリドなどのジアルキルアルミ
ニウムヒドリド、エチルアルミニウムジヒドリ
ド、プロピルアルミニウムジヒドリドなどのアル
キルアルミニウムジヒドリドなどの部分的に水素
化されたアルキルアルミニウム、エチルアルミニ
ウムエトキシクロリド、ブチルアルミニウムブト
キシクロリド、エチルアルミニウムエトキシブロ
ミドなどの部分的にアルコキシ化およびハロゲン
化されたアルキルアルミニウムである。 前記(ii)に属する化合物としては、LiAl
(C2H54、LiAl(C7H154などを例示できる。 また(i)に類似する化合物として酸素原子や窒素
原子を介して2以上のアルミニウムが結合した有
機アルミニウム化合物であつてもよい。このよう
な化合物として、例えば(C2H52AlOAl
(C2H52、(C4H92AlOAl(C4H92
The present invention relates to the production of olefin polymers (hereinafter, the use may include olefin copolymers) by polymerization of olefins (hereinafter, the use may include olefin copolymerization). Regarding the method. In particular, the present invention relates to a method for producing an olefin polymer that can yield a highly stereoregular polymer in high yield when applied to the polymerization of an α-olefin having 3 or more carbon atoms. Furthermore, in the polymerization of α-olefins having 3 or more carbon atoms, even if the melt index of the polymer is changed using a molecular weight regulator such as hydrogen during polymerization, the stereoregularity of the polymer is not significantly reduced. Regarding the possible methods. There have already been many proposals regarding methods for producing solid catalyst components containing magnesium, titanium, halogen, and electron donors as essential components. It is also known that highly stereoregular polymers can be obtained with high catalytic activity. However, many of them require further improvement in terms of activity, stereoregularity, etc. of the polymer. For example, in order to obtain high-quality olefin polymers without post-polymerization post-treatment operations, the formation ratio of stereoregular polymers must be extremely high, and the polymer yield per transition metal must be sufficiently high. must not. Depending on the type of target polymer, some of the conventionally proposed technologies can be said to be at an acceptable level from the above viewpoint, but the residual halogen content in the polymer, which is related to rusting in molding machines, is From the point of view of
There are only a few that can be said to have sufficient performance. Moreover, most of them have the disadvantage that when producing a polymer with a large melt index, the yield and stereoregularity are considerably reduced. An object of the present invention is to provide a method for polymerizing olefins which has excellent sustainability of catalytic activity, and even better polymerization activity per unit catalyst and stereoregular polymerization ability. Another object of the present invention is to provide a polymerization method in which the stereoregularity index does not tend to decrease even in the production of high melt index polymers.
Other objects and effects of the present invention will become more apparent from the following description. According to the present invention, [A] titanium and magnesium obtained by the mutual reaction of at least three components: (a) a magnesium compound having substantially no reducing ability, (b) a titanium compound, and (c) an electron donor; , a titanium catalyst component containing a halogen and an electron donor as essential components,
A titanium catalyst component in which the electron donor is an ester of an unsaturated carboxylic acid selected from the group consisting of maleic acid and substituted maleic acid and a linear aliphatic alcohol, or an ester of a saturated linear dicarboxylic acid having 2 to 5 carbon atoms. , characterized in that the olefin is polymerized or copolymerized in the presence of a catalyst formed from [B] an organoaluminum compound catalyst component and [C] an organosilicon compound catalyst component having a Si-O-C bond. A method for polymerizing olefins is provided. The titanium catalyst component (A) used in the present invention is a highly active catalyst component containing magnesium, titanium, halogen, and a specific electron donor described below as essential components.
This titanium catalyst component (A) contains magnesium halide with lower crystallinity than commercially available magnesium halides, and its specific surface area is usually about 50 m 2 /
It is preferably about 60 to about 800 m 2 /g, more preferably about 100 to about 400 m 2 /g, and its composition is not substantially changed by washing with hexane at room temperature. The titanium catalyst component
In (A), halogen/titanium (atomic ratio) is approximately 5
from about 200, particularly from about 5 to about 100, with an electron donor/titanium (molar ratio) of from about 0.1 to about 10,
In particular, those having a magnesium/titanium (atomic ratio) of about 0.2 to about 6, about 2 to about 100, particularly about 4 to about 50 are preferred. The component (A) also includes:
It may also contain other electron donors, metals, elements, functional groups, etc. Such a titanium catalyst component (A) can be obtained, for example, by mutual contact of a magnesium compound (or magnesium metal), an electron donor and a titanium compound, but optionally with other reactants, such as silicon, Compounds such as phosphorus and aluminum can be used. As a method for producing such a titanium catalyst component (A), for example, JP-A-50-108385 and JP-A-50-126590 are used.
No. 51-20297, No. 51-28189, No. 51-
No. 64586, No. 51-92885, No. 51-136625, No. 52
-87489, 52-100596, 52-147688,
No. 52-104593, No. 53-2580, No. 53-40093,
No. 53-43094, No. 55-135102, No. 55-135103
No. 56-811, No. 56-11908, No. 56-18606
It can be manufactured according to the method disclosed in No. Some examples of methods for producing these titanium catalyst components (A) will be briefly described below. (1) A magnesium compound or a complex compound of a magnesium compound and an electron donor,
Grinding or not grinding, with or without grinding aids, pretreated with electron donors and/or reaction aids such as organoaluminum compounds and halogen-containing silicon compounds, or without pretreatment. The solid obtained is reacted with a titanium compound that forms a liquid phase under reaction conditions. However, the above electron donor is used at least once. (2) A liquid magnesium compound that does not have reducing ability and a liquid titanium compound are reacted in the presence of an electron donor to precipitate a solid titanium complex. (3) React the material obtained in (2) with a titanium compound. (4) React the material obtained in (1) or (2) with an electron donor and a titanium compound. (5) A magnesium compound or a complex compound of a magnesium compound and an electron donor,
Grinding in the presence or absence of grinding aids etc. and in the presence of titanium compounds, pre-treated with electron donors and/or reaction aids such as organoaluminum compounds and halogen-containing silicon compounds, or without pre-treatment. The solid obtained is treated with a halogen or a halogen compound or an aromatic hydrocarbon. However, the above electron donor is used at least once. (6) Treating the compound with a halogen or a halogen compound. Among these catalyst components, those using liquid titanium halides or those using halogenated hydrocarbons during or after the action of the titanium compound in catalyst preparation are particularly preferred. The electron donor to be contained in the titanium catalyst component [A] of the present invention is an unsaturated dicarboxylic acid selected from maleic acid and substituted maleic acid, that is, an unsaturated dicarboxylic acid of the formula
HOOCR 1 = CR 2 COOH (R 1 and R 2 are hydrogen or any hydrocarbon group with or without a substituent) and any linear aliphatic alcohol with or without a substituent It is an ester of More specifically, monoethyl maleate, diethyl maleate, di-n-propyl maleate, mono-n-butyl maleate, di-n-butyl maleate, di-n-hexyl maleate, di-n-octyl maleate, maleic acid. acid di-n-decyl,
Di-n-chlorobutyl maleate, dimethyl citraconate, diethyl citraconate, di-n-propyl citraconate, di-n-butyl citraconate, mono-n-butyl citraconate, di-n-hexyl citraconate, di-n-octyl citraconate, di-n-decyl citraconate, diethyl ethyl maleate,
Di-n-propyl ethyl maleate, di-n-butyl ethyl maleate, di-n-octyl ethyl maleate, butyl diethyl maleate, diethyl propyl maleate, di-n-propyl propyl maleate, di-n-butyl propyl maleate, Di-n-hexyl propyl maleate, di-n-octyl propyl maleate, diethyl butyl maleate,
Esters such as di-n-propyl butyl maleate and di-n-butyl butyl maleate can be mentioned. Among these, diesters of maleic acid and substituted maleic acid with linear alcohols having about 2 to 10 carbon atoms are preferred, and in particular maleic acid and diesters of substituted maleic acid and substituted maleic acids with alkyl groups having 1 to 4 carbon atoms and linear alcohols having about 2 to 8 carbon atoms are preferable. Particular preference is given to diesters with straight-chain alcohols. The electron donor to be contained in the titanium catalyst component (A) can also be selected from esters of saturated linear dicarboxylic acids having 2 to 5 carbon atoms.
Such compounds are esters of oxalic acid, malonic acid, succinic acid or glutaric acid, e.g.
Dimethyl oxalate, dimethyl oxalate, di-n-propyl oxalate, diiso-propyl oxalate, di-n-butyl oxalate, monoiso-butyl oxalate,
Diiso-butyl oxalate, di-n-hexyl oxalate, di-n-octyl oxalate, diiso- oxalate
Octyl, diiso-decyl oxalate, di-n-propyl malonate, diiso-propyl malonate, di-n-butyl malonate, diiso-butyl malonate, di-tert-butyl malonate, di-n-hexyl malonate , di-n-octyl malonate, di-iso- malonate
Octyl, diisodecyl malonate, dimethyl glutarate, diethyl glutarate, di-glutarate
-propyl, diiso-propyl glutarate, di-n-butyl glutarate, diiso-butyl glutarate,
Di-n-octyl glutarate, di-iso- glutarate
Octyl, didecyl glutarate, diethyl succinate, diethyl succinate, di-n-propyl succinate, diiso-propyl succinate, di-n-succinate
Butyl, diisobutyl succinate, monosuccinate
iso-butyl, di-n-octyl succinate, diiso-octyl succinate, di-n-hexyl succinate,
Examples include esters such as di-n-decyl succinate. Among these, it is preferable to use an ester of the saturated linear dicarboxylic acid and an alcohol having 3 or more carbon atoms, especially a diester of a saturated linear dicarboxylic acid having 3 to 5 carbon atoms and an alcohol having 3 to 10 carbon atoms. One or more types of the above esters can be contained. Furthermore, when incorporating the above-mentioned esters into the titanium catalyst component (A), it is not necessary to use them as starting materials, and compounds that can be converted into these compounds during the preparation process of the titanium catalyst component (A) are not necessarily used as starting materials. may be used to convert these compounds during the preparation step. The above compounds can also be used in the form of addition compounds with other compounds such as aluminum compounds, phosphorus compounds, and amine compounds. In the present invention, the magnesium compound used in the preparation of the solid titanium catalyst component [A] is preferably a magnesium compound that does not have reducing ability, that is, a magnesium compound that does not have a magnesium-carbon bond or a magnesium-hydrogen bond. It may be derived from a magnesium compound having the ability. Magnesium compounds without such reducing ability include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, and magnesium fluoride; methoxymagnesium chloride, ethoxymagnesium chloride, isopropoxymagnesium chloride, and butoxymagnesium chloride. , alkoxymagnesium halides such as octoxymagnesium chloride; allyloxymagnesium halides such as phenoxymagnesium chloride, methylphenoxymagnesium chloride; such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, n-octoxymagnesium, 2-ethylhexoxymagnesium Examples include alkoxymagnesium such as phenoxymagnesium, allyloxymagnesium such as dimethylphenoxymagnesium, and magnesium carboxylate such as magnesium laurate and magnesium stearate. Further, the magnesium compound may be a complex compound with other metals, a composite compound, or a mixture with other metal compounds. Furthermore, it may be a mixture of two or more of these compounds. Among these, particularly preferred magnesium compounds are halogen-containing magnesium compounds, particularly magnesium chloride, alkoxymagnesium chloride, and allyloxymagnesium chloride. In the present invention, there are various titanium compounds (ii) used for preparing the solid titanium catalyst component [A], but usually Ti(OR) g X 4-g (R is a hydrocarbon group, X is a halogen, 0≦ A tetravalent titanium compound represented by g≦4) is suitable. More specifically, TiCl4 ,
Titanium tetrahalides such as TiBr4 , TiI4 ; Ti
( OCH3 ) Cl3 , Ti ( OC2H5 ) Cl3 , Ti(On− C4H9 )
Trihalogenated alkoxytitanium such as Cl3 , Ti( OC2H5 ) Br3 , Ti( OisoC4H9 ) Br3 ; Ti
(OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 , Ti (On−
Dihalogenated alkoxy titanium such as C4H9 ) 2Cl2 , Ti( OC2H5 ) 2Br2 ; Ti( OCH3 ) 3Cl , Ti
(OC 2 H 5 ) 3 Cl, Ti (On−C 4 H 9 ) 3 Cl, Ti
Monohalogenated trialkoxytitanium such as (OC 2 H 5 ) 3 Br; Ti(OCH 3 ) 4 , Ti(OC 2 H 5 ) 4 , T(On−
Examples include tetraalkoxytitanium such as C 4 H 9 ) 4 . Preferred among these are halogen-containing titanium compounds, particularly titanium tetrahalide, and particularly preferred is titanium tetrachloride. These titanium compounds may be used alone or in the form of a mixture. Alternatively, it may be used after being diluted with a hydrocarbon or halogenated hydrocarbon. In preparing the titanium catalyst component (A), a titanium compound, a magnesium compound, an electron donor to be supported, and other electron donors that may be used as necessary, such as alcohol, phenol,
The amount of monocarboxylic acid ester, silicon compound, aluminum compound, etc. to be used varies depending on the preparation method and cannot be unconditionally specified, but for example, the amount of the electron donor to be supported per 1 mole of magnesium compound
0.05 to 5 mol, titanium compound 0.05 to 1000
The proportion can be on the order of moles. In the present invention, olefin polymerization or copolymerization is carried out using a combination catalyst of the solid catalyst component [A] obtained as described above, an organoaluminum compound catalyst component [B], and a silicon compound [C]. As the above [B] component, (i) an organoaluminum compound having at least one Al-carbon bond in the molecule, for example, a compound having the general formula R 1 mAl(OR 2 )nHpXq (where R 1 and R 2 are carbon atoms , usually 1 to 15 hydrocarbon groups, preferably 1 to 4 hydrocarbon groups, which may be the same or different from each other. X is halogen, m is 0<m≦3, 0≦n<3, p is 0≦p <
3. q is a number of 0≦q<3, and m+n
+p+q=3); (ii) Group metals represented by the general formula M 1 AlR 1 4 (where M 1 is Li, Na, K, and R 1 is the same as above); Examples include complex alkylated products of aluminum and aluminum. Examples of the organoaluminum compounds that belong to (i) above include the following. General formula R 1 mAl(OR 2 ) 3-n (where R 1 and R 2 are the same as above. m is preferably a number of 1.5≦m≦3), general formula R 1 mAlX 3-n where and R 1 is the same as above. X is halogen, and m is preferably 0<m<3. ), general formula R 1 mAlH 3-n (where R 1 is the same as above, m is preferably 2
≦m<3. ), general formula R 1 mAl(OR 2 )nXq (where R 1 and R 2 are the same as above, X is halogen, 0<m≦3, 0≦n<3, 0≦q<3,
Examples include those represented by m+n+q=. Among the aluminum compounds belonging to (i), more specifically, trialkyl aluminum such as triethyl aluminum and tributyl aluminum,
Besides trialkenylaluminum such as triisoprenylaluminum, dialkylaluminum alkoxide such as diethylaluminum ethoxide, dibutylaluminum butoxide, alkylaluminum sesquialkoxide such as ethylaluminum sesquiethoxide, butylaluminum sesquibutoxide, R 1 2 . 5 Al( OR2 ) 0.5
Partially alkoxylated alkyl aluminum halides, such as diethylaluminum chloride, dibutyl aluminum chloride, diethylaluminium bromide, ethyl aluminum sesquichloride, butyl aluminum sesquichloride, ethyl aluminum sesquibromide, etc., with an average composition of alkyl aluminum sesquihalides, such as
Partially halogenated alkylaluminiums such as alkylaluminum dihalides such as ethylaluminum dichloride, propylaluminum dichloride, butylaluminum dibromide etc., dialkylaluminum hydrides such as diethylaluminum hydride, dibutylaluminum hydride, ethylaluminum dihydride, Partially hydrogenated alkyl aluminums such as alkyl aluminum dihydrides such as propyl aluminum dihydride, partially alkoxylated and halogenated alkyl aluminums such as ethyl aluminum ethoxy chloride, butyl aluminum butoxy chloride, ethyl aluminum ethoxy bromide It is. Compounds belonging to (ii) above include LiAl
Examples include (C 2 H 5 ) 4 and LiAl(C 7 H 15 ) 4 . Further, as a compound similar to (i), it may be an organic aluminum compound in which two or more aluminum atoms are bonded via an oxygen atom or a nitrogen atom. Examples of such compounds include (C 2 H 5 ) 2 AlOAl
(C 2 H 5 ) 2 , (C 4 H 9 ) 2 AlOAl(C 4 H 9 ) 2 ,

〔プロピレン重合〕[Propylene polymerization]

内容積2のオートクレーブに精製ヘキサン
750mlを装入し、室温プロピレン雰囲気下トリエ
チルアルミニウム0.75mmol、ジフエニルジメト
キシシラン0.075mmol及び前記触媒成分〔A〕を
チタン原子換算で0.015mmol装入した、水素200
mlを導入した後70℃に昇温し、2時間重合を行つ
た。重合中の圧力は7Kg/cm2Gに保つた。重合終
了後、生成重合体を含むスラリーを過し、白色
粉末状重合体と液相部に分離した。乾燥後の白色
粉末状重合体の収量は190gであり、沸とうn−
ヘプタンによる抽出残率は96.7%、MIは11、そ
の見掛密度は0.36g/mlであつた。一方、液相部
の濃縮により溶媒可溶性重合体3.3gを得た。し
たがつて活性は12900g−PP/mmol−Tiであ
り、トータルIIは95.1%であつた。 実施例 2,3,4,5,6,7,8,9 〔触媒成分〔A〕の調製〕 実施例1において、マレイン酸ジnブチル6.9
mlを表1に示す化合物及び量に変えた以外は実施
例1に示した方法に従い触媒成分〔A〕を調製し
た。該触媒成分の組成及び比表面積を表1に示し
た。 〔プロピレン重合〕 実施例1において、トリエチルアルミニウム
0.75mmol及びジフエニルジメトキシシラン
0.075mmolをそれぞれトリエチルアルミニウム
2.5mmol及びジフエニルジメトキシシラン
0.25mmolに変え、更に重合時間を2時間から4
時間に変えた以外は実施例1に示した方法に従い
プロピレンの重合を行なつた。結果を表1に示し
た。 実施例 10 〔触媒成分〔A〕の調製〕 無水塩化マグネシウム20g、マレイン酸ジn−
ブチル6.9mlおよび粉砕助剤としてシリコン油
(信越化学社製TSS−451、20cs)を窒素雰囲気中
直径15mmのステンレス鋼(SUS−32)製ボール
2.8Kgを収容した内容積800ml、内直径100mmのス
テンレス鋼(SUS−32)製ボールミル容器に装
入し、衝撃の加速度7Gで24時間接触させる。得
られた共粉砕物15gを四塩化チタン150ml中に懸
濁させ、110℃で2時間撹拌下に接触した後、固
体部を過によつて採取し、洗液中に遊離の四塩
化チタンが検出されなくなるまで精製ヘキサンで
充分洗浄後乾燥し、触媒成分〔A〕を得る。該成
分は原子換算でチタン2.4重量%、塩素62.0重量
%、マグネシウム20.0重量%であり、また、その
比表面積は192m2/gであつた。 〔プロピレン重合〕 実施例2と同様な方法によりプロピレン重合を
行なつた。結果を表1に示した。 実施例 11 〔触媒成分〔A〕の精製〕 内容積2の高速撹拌装置(特殊機化工業製)
を十分N2置換したのち、精製灯油700ml、市販
MgCl210g、エタノール24.2gおよび商品名エマ
ゾール20(花王アトラス社製、ソルビタンジステ
アレート)3gを入れ、系を撹拌下に昇温し、
120℃にて800rpmで30分撹拌した。高速撹拌下、
内径5mmのテフロン製チユーブを用いて、あらか
じめ−10℃に冷却された精製灯油1を張り込ん
で2ガラスフラスコ(撹拌機付)に移液した。
生成固体を過により採取し、ヘキサンで十分洗
浄したのち担体を得た。 該担体7.5gを室温で150mlの四塩化チタン中に
懸濁させた後120℃に撹拌下昇温した。昇温途中
80℃でコハク酸ジnブチル1.5mlを添加した。120
℃2時間の撹拌混合の後、固体部を過により採
取し、再び150mlの四塩化チタンに懸濁させ、再
度120℃2時間の撹拌混合を行なつた。更に該反
応物より反応固体物を過にて採取し、十分な量
の精製ヘキサンにて洗浄する事により、固体触媒
成分〔A〕を得た。該成分は原子換算でチタン
2.0重量%、塩素66.0重量%、マグネシウム21.0重
量%であり、またその比表面積は240m2/gであ
つた。 〔プロピレン重合〕 実施例2と同様な方法によりプロピレン重合を
行なつた。結果を表1に示した。 実施例 12 〔触媒成分〔A〕の調製〕 実施例11において、コハク酸ジn−ブチルをコ
ハク酸ジiso−ブチルに変えた以外は実施例11と
同様な方法で触媒成分〔A〕を調製した。該触媒
成分の組成及び比表面積を表1に示した。 〔プロピレン重合〕 実施例2と同様な方法によりプロピレン重合を
行なつた。結果を表1に示した。
Purified hexane in an autoclave with an internal volume of 2
750 ml of hydrogen was charged, 0.75 mmol of triethylaluminum, 0.075 mmol of diphenyldimethoxysilane, and 0.015 mmol of the catalyst component [A] in terms of titanium atoms were charged under a propylene atmosphere at room temperature.
ml was introduced, the temperature was raised to 70°C, and polymerization was carried out for 2 hours. The pressure during polymerization was maintained at 7 kg/cm 2 G. After the polymerization was completed, the slurry containing the produced polymer was filtered and separated into a white powdery polymer and a liquid phase. The yield of white powdered polymer after drying was 190 g, and the yield was 190 g.
The extraction residue rate with heptane was 96.7%, the MI was 11, and the apparent density was 0.36 g/ml. On the other hand, 3.3 g of a solvent-soluble polymer was obtained by concentrating the liquid phase. Therefore, the activity was 12900 g-PP/mmol-Ti and the total II was 95.1%. Example 2, 3, 4, 5, 6, 7, 8, 9 [Preparation of catalyst component [A]] In Example 1, di-n-butyl maleate 6.9
Catalyst component [A] was prepared according to the method shown in Example 1, except that ml was changed to the compound and amount shown in Table 1. The composition and specific surface area of the catalyst components are shown in Table 1. [Propylene polymerization] In Example 1, triethylaluminum
0.75mmol and diphenyldimethoxysilane
0.075mmol each of triethylaluminum
2.5mmol and diphenyldimethoxysilane
Change the amount to 0.25 mmol and further increase the polymerization time from 2 hours to 4 hours.
Polymerization of propylene was carried out according to the method shown in Example 1, except that the time was changed. The results are shown in Table 1. Example 10 [Preparation of catalyst component [A]] 20 g of anhydrous magnesium chloride, di-maleic acid
Add 6.9 ml of butyl and silicone oil (TSS-451, 20 cs, manufactured by Shin-Etsu Chemical Co., Ltd.) as a grinding aid to a stainless steel (SUS-32) ball with a diameter of 15 mm in a nitrogen atmosphere.
The product was placed in a stainless steel (SUS-32) ball mill container with an internal volume of 800 ml and an internal diameter of 100 mm containing 2.8 kg, and was left in contact for 24 hours with an impact acceleration of 7 G. 15 g of the obtained co-pulverized material was suspended in 150 ml of titanium tetrachloride, and after contacting with stirring at 110°C for 2 hours, the solid part was collected by filtration, and free titanium tetrachloride was found in the washing liquid. The catalyst component [A] is obtained by thoroughly washing with purified hexane until it is no longer detected and then drying. The components were 2.4% by weight of titanium, 62.0% by weight of chlorine, and 20.0% by weight of magnesium in terms of atoms, and the specific surface area was 192 m 2 /g. [Propylene Polymerization] Propylene polymerization was carried out in the same manner as in Example 2. The results are shown in Table 1. Example 11 [Purification of catalyst component [A]] High-speed stirring device with internal volume 2 (manufactured by Tokushu Kika Kogyo)
After sufficiently replacing with N 2 , 700ml of refined kerosene, commercially available.
10 g of MgCl 2 , 24.2 g of ethanol, and 3 g of Emazol 20 (trade name, manufactured by Kao Atlas Co., Ltd., sorbitan distearate) were added, and the temperature of the system was raised while stirring.
The mixture was stirred at 120° C. and 800 rpm for 30 minutes. Under high speed stirring,
Using a Teflon tube with an inner diameter of 5 mm, refined kerosene 1 previously cooled to -10°C was charged and transferred to a 2-glass flask (equipped with a stirrer).
The produced solid was collected by filtration and thoroughly washed with hexane to obtain a carrier. After suspending 7.5 g of the carrier in 150 ml of titanium tetrachloride at room temperature, the temperature was raised to 120° C. with stirring. During temperature rise
At 80° C. 1.5 ml of di-n-butyl succinate was added. 120
After stirring and mixing for 2 hours at 120°C, the solid portion was collected by filtration, suspended again in 150 ml of titanium tetrachloride, and stirring and mixing was performed again at 120°C for 2 hours. Further, a reaction solid was collected from the reaction product by filtration and washed with a sufficient amount of purified hexane to obtain a solid catalyst component [A]. The component is titanium in terms of atoms.
2.0% by weight, 66.0% by weight of chlorine, and 21.0% by weight of magnesium, and its specific surface area was 240m 2 /g. [Propylene Polymerization] Propylene polymerization was carried out in the same manner as in Example 2. The results are shown in Table 1. Example 12 [Preparation of catalyst component [A]] Catalyst component [A] was prepared in the same manner as in Example 11 except that di-n-butyl succinate was changed to diiso-butyl succinate. did. The composition and specific surface area of the catalyst components are shown in Table 1. [Propylene Polymerization] Propylene polymerization was carried out in the same manner as in Example 2. The results are shown in Table 1.

【表】【table】

【表】 実施例 13,14,15,16,17,18,19 実施例1に記載の固体触媒成分〔A〕を用い、
重合時に添加するトリエチルアルミニウム
0.75mmolを2.51mmolに、又ジフエニルジメトキ
シシラン0.075mmolをフエニルトリエトキシシラ
ン0.25mmol、ビニルトリメトキシシラン
0.30mmolメチルトリメトキシシラン0.45mmol、
テトラエトキシシラン0.30mmol、エチルトリエ
トキシシラン0.25mmol、ビニルトリエトキシシ
ラン0.25mmol、メチルフエニルジメトキシシラ
ン0.25mmolに更に重合時間2時間を4時間に変
えた以外は実施例1と同様にしてプロピレン重合
を行なつた。重合結果を表2に示した。
[Table] Examples 13, 14, 15, 16, 17, 18, 19 Using the solid catalyst component [A] described in Example 1,
Triethylaluminum added during polymerization
0.75mmol to 2.51mmol, and 0.075mmol of diphenyldimethoxysilane to 0.25mmol of phenyltriethoxysilane, vinyltrimethoxysilane
0.30mmol methyltrimethoxysilane 0.45mmol,
Propylene polymerization was carried out in the same manner as in Example 1, except that 0.30 mmol of tetraethoxysilane, 0.25 mmol of ethyltriethoxysilane, 0.25 mmol of vinyltriethoxysilane, and 0.25 mmol of methylphenyldimethoxysilane were added, and the polymerization time was changed from 2 hours to 4 hours. I did this. The polymerization results are shown in Table 2.

【表】【table】

【表】 実施例 20,21,22 実施例1に記載の固体触媒成分〔A〕を用い、
重合時添加する水素量を400ml、800ml、1600mlに
変えた以外は実施例13と同様にしてプロピレン重
合を行なつた。重合結果は表3に示した。
[Table] Examples 20, 21, 22 Using the solid catalyst component [A] described in Example 1,
Propylene polymerization was carried out in the same manner as in Example 13, except that the amount of hydrogen added during polymerization was changed to 400 ml, 800 ml, and 1600 ml. The polymerization results are shown in Table 3.

【表】 比較例 特開昭55−36203号公報に記載の実施例1に従
いチタン触媒成分を調製した。このチタン触媒成
分を使用し、ジフエニルジメトキシシランをメチ
ルトリエトキシシランに代えた以外は実施例1に
示した方法に従いプロピレンの重合を行つた。重
合結果を表4に示す。
[Table] Comparative Example A titanium catalyst component was prepared according to Example 1 described in JP-A-55-36203. Using this titanium catalyst component, propylene was polymerized according to the method shown in Example 1, except that diphenyldimethoxysilane was replaced with methyltriethoxysilane. The polymerization results are shown in Table 4.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図1は、本発明の方法に使用する触媒の調製工
程を示すフローチヤートである。
FIG. 1 is a flowchart showing the steps for preparing a catalyst used in the method of the present invention.

Claims (1)

【特許請求の範囲】 1 〔A〕 少なくとも(a)実質的に還元能を有し
ないマグネシウム化合物、(b)チタン化合物及び
(c)電子供与体の三成分の相互反応によつて得ら
れるチタン、マグネシウム、ハロゲン及び電子
供与体を必須成分とするチタン触媒成分であつ
て、該電子供与体が、マレイン酸及び置換マレ
イン酸よりなる群から選ばれる不飽和カルボン
酸と直鎖脂肪族アルコールとのエステル又は炭
素数2ないし5の飽和直鎖ジカルボン酸のエス
テルであるチタン触媒成分、 〔B〕 有機アルミニウム化合物触媒成分、 及び 〔C〕 Si−O−C結合を有する有機ケイ素化合
物触媒成分、 とから形成される触媒の存在下に、オレフイン
を重合もしくは共重合することを特徴とするオ
レフイン系重合体(ただし、プロピレン含有率
40ないし90モル%、結晶化度40重量%以下のプ
ロピレンと炭素数4以上のα−オレフインとの
ランダム共重合体を除く)の製造方法。
[Scope of Claims] 1 [A] At least (a) a magnesium compound having substantially no reducing ability, (b) a titanium compound, and
(c) A titanium catalyst component containing titanium, magnesium, halogen, and an electron donor as essential components obtained by mutual reaction of three components of an electron donor, wherein the electron donor is maleic acid and substituted maleic acid. a titanium catalyst component which is an ester of an unsaturated carboxylic acid and a linear aliphatic alcohol selected from the group consisting of, or an ester of a saturated linear dicarboxylic acid having 2 to 5 carbon atoms; [B] an organoaluminum compound catalyst component; C] An olefin-based polymer characterized by polymerizing or copolymerizing an olefin in the presence of a catalyst formed from an organosilicon compound catalyst component having a Si-O-C bond (however, the propylene content
(excluding random copolymers of propylene with a crystallinity of 40 to 90 mol% and a crystallinity of 40% by weight or less and an α-olefin having 4 or more carbon atoms).
JP1968382A 1982-02-12 1982-02-12 Polymerization of olefin Granted JPS58138708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1968382A JPS58138708A (en) 1982-02-12 1982-02-12 Polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1968382A JPS58138708A (en) 1982-02-12 1982-02-12 Polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS58138708A JPS58138708A (en) 1983-08-17
JPH0346481B2 true JPH0346481B2 (en) 1991-07-16

Family

ID=12006028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1968382A Granted JPS58138708A (en) 1982-02-12 1982-02-12 Polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS58138708A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100341040B1 (en) * 1994-08-18 2002-11-23 칫소가부시키가이샤 High Rigidity Propylene-Ethylene Block Copolymer Composition and Its Manufacturing Method
US6071846A (en) * 1995-04-24 2000-06-06 Tokuyama Corporation Olefin polymerization catalyst and a polyolefin production method
JP3355864B2 (en) * 1995-04-24 2002-12-09 チッソ株式会社 Continuous production of high-rigidity propylene / ethylene block copolymer
JP4970653B2 (en) * 1998-12-25 2012-07-11 東邦チタニウム株式会社 Solid catalyst component and catalyst for propylene polymerization
CN100415778C (en) 2001-09-13 2008-09-03 巴塞尔聚烯烃意大利有限公司 Components and catalysts for the polymerization of olefins
JP4031656B2 (en) 2002-03-14 2008-01-09 バセル ポリオレフィン イタリア エス.アール.エル. Polypropylene resin composition and film thereof
US9562119B2 (en) * 2010-05-25 2017-02-07 W. R. Grace & Co.-Conn. Ethylene polymerization catalysts
US11162050B2 (en) 2016-12-27 2021-11-02 Mitsui Chemicals, Inc. Lubricating oil composition, viscosity modifier for lubricating oil, and additive composition for lubricating oil
EP4023737A4 (en) 2019-08-29 2023-08-30 Mitsui Chemicals, Inc. Lubricating oil composition
WO2023171433A1 (en) * 2022-03-11 2023-09-14 東邦チタニウム株式会社 Solid catalyst ingredient for olefin polymerization, method for producing solid catalyst ingredient for olefin polymerization, catalyst for olefin polymerization, method for producing olefin polymer, and olefin polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151691A (en) * 1975-11-21 1977-12-16 Montedison Spa #-olefin polymerization catalyst
JPS53104687A (en) * 1977-02-25 1978-09-12 Mitsui Petrochem Ind Ltd Preparation of propylene-ethylene elastic copolymer
JPS5536203A (en) * 1978-09-05 1980-03-13 Asahi Chem Ind Co Ltd Catalyst for polymerization of olefin
JPS58138720A (en) * 1982-02-12 1983-08-17 Mitsui Petrochem Ind Ltd Preparation of propylene random copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151691A (en) * 1975-11-21 1977-12-16 Montedison Spa #-olefin polymerization catalyst
JPS53104687A (en) * 1977-02-25 1978-09-12 Mitsui Petrochem Ind Ltd Preparation of propylene-ethylene elastic copolymer
JPS5536203A (en) * 1978-09-05 1980-03-13 Asahi Chem Ind Co Ltd Catalyst for polymerization of olefin
JPS58138720A (en) * 1982-02-12 1983-08-17 Mitsui Petrochem Ind Ltd Preparation of propylene random copolymer

Also Published As

Publication number Publication date
JPS58138708A (en) 1983-08-17

Similar Documents

Publication Publication Date Title
JPH0363565B2 (en)
US4659792A (en) Process for production of 4-methyl-1-pentene polymer or copolymer
JPH0354122B2 (en)
KR860001806B1 (en) Process for producing olefin polymers or copolymers catalyst components used therefor
KR920001318B1 (en) Process for polymerizing olefin
US5055528A (en) Process for producing propylene copolymers
JPH0372091B2 (en)
KR860001910B1 (en) Process for producing olefin polymers or copolymers used therefor
JPH0335322B2 (en)
JPH0346481B2 (en)
JPH0575763B2 (en)
JP2537506B2 (en) Olefin Polymerization Method
EP0086643B1 (en) Catalyst composition and process for polymerizing olefins
JPH0348210B2 (en)
JPH0354123B2 (en)
SE411906B (en) PROCEDURE FOR POLYMERIZATION OF ONE OR PROPEN OR COPOLYMERIZATION OF ONE AND CATALYST FOR IMPLEMENTATION OF THE PROCEDURE
JPH0354686B2 (en)
EP0565173B1 (en) Process for preparing polyolefins with broad molecular-weight distribution
JPH02229805A (en) Method for polymerizing of olefin and catalyst therefor
JPH0446286B2 (en)
JPH08509263A (en) Method for polymerizing or copolymerizing propylene in liquid propylene, solid catalyst component and method for producing the same
JPH0571602B2 (en)
JPH0367083B2 (en)
JPS64409B2 (en)
KR920001355B1 (en) Process for preparing propylene copolymer