JPH0345864B2 - - Google Patents

Info

Publication number
JPH0345864B2
JPH0345864B2 JP56193791A JP19379181A JPH0345864B2 JP H0345864 B2 JPH0345864 B2 JP H0345864B2 JP 56193791 A JP56193791 A JP 56193791A JP 19379181 A JP19379181 A JP 19379181A JP H0345864 B2 JPH0345864 B2 JP H0345864B2
Authority
JP
Japan
Prior art keywords
ago
silver oxide
battery
silver
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56193791A
Other languages
Japanese (ja)
Other versions
JPS5894761A (en
Inventor
Kazutoshi Takeda
Toyoo Hayasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Seiko Epson Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Seiko Epson Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP56193791A priority Critical patent/JPS5894761A/en
Publication of JPS5894761A publication Critical patent/JPS5894761A/en
Publication of JPH0345864B2 publication Critical patent/JPH0345864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、過酸化銀電池に係り、酸化銀()
(AgO)を改良することにより電池の電気特性、
放電容量、保存特性、及び耐漏液性を著しく向上
させるものである。 一般に、酸化銀()(Ag2O)は、特開昭53
−126122に開示されているように、吸湿するとア
ルカリ性を帯び、このため炭酸ガスが酸化銀中へ
吸着され、酸化銀()中の炭酸根(O3 2-)の
重量百分率が増加する。 この炭酸根の生成反応は酸化銀()特有の反
応で次式で示される。 Ag2O+CO2→Ag2CO3 () ()式で生成した炭酸銀(Ag2CO3)はアル
カリ電解液と反応し、結晶水を有する炭酸カリウ
ムもしくは炭酸ナトリウムの結晶を生成する。 2KOH+CO3 2-+mH2O →K2CO3・mH2O+20H- (2) 2NaOH+CO3 2-+nH2O →Na2CO3・nH2O+20H- (3) (2)、(3)式のように、炭酸塩が結晶析出すると、
電極反応にあづかるアルカリ電解液量が減少し、
電池の内部抵抗が大きくなつたり、放電容量が小
さくなつたりする。 さらに、結晶析出量が多くなれば、電池貯蔵後
の電気特性や保存特性が一層劣化してくる。 一方、酸化銀()(AgO)は酸化銀()
(Ag2O)に比べてほとんど炭酸根を吸着したり
付着しないことが知られているが、本発明者が鋭
意詳細に研究した所、AgO含有量が98重量%未
満の酸化銀()に於ては、酸化銀()中の炭
酸根の含有率が電池の諸特性に悪影響を与える位
大きくなることを見出した。 酸化銀()であるにもかかわらず炭酸根を含
有する理由は、酸化銀()中に極く僅少量の酸
化銀()が含有されており、この酸化銀()
が炭酸根を吸着もしくは付着するのである。 このAgO含有量が98重量%未満の酸化銀()
を主体とした正極合剤を用いた過酸化銀電池は、
電気特性、放電容量及び容量及び貯蔵後の電気特
性が悪い欠点を有していた。 また、従来の安定化剤を添加していない酸化銀
()は、アルカリ液中で分解して酸素ガスを発
生する量が大きく、不安定なものであつた。 このために、従来の酸化銀()はアルカリ液
中にて自己分解して、酸化銀()としての電気
容量を滅ずる欠点があつた。さらに、酸化銀
()の分解により発生した酸素ガスは、セパレ
ータを酸化するため、セパレータが胞化したり、
セパレータとしての機能が低下し、電池の自己放
電が促進される欠点があつた。また、正極で発生
した酸素ガスは、セパレータを通して負極に拡
散・透過してゆき、亜鉛を酸化させて、亜鉛の電
気容量を低下せしめる欠点があつた。さらに、こ
の亜鉛の酸化現象が促進されると、亜鉛の表面が
酸化亜鉛などの不働態被膜で被覆されて、電池活
物質として未反応亜鉛が残存しているにもかかわ
らず、電池の放電が止つてしまう欠点があつた。 このように、従来の安定化剤を添加しない不安
定な酸化銀()を正極に用いた電池は、保存特
性が悪くなる欠点を有していた。 また、従来の酸化銀()は、アルカリ液中で
分解し易く、不安定であるため、この酸化銀
()を用いた電池は、徐々に電池内に酸素ガス
が蓄積されてくるため、電池内圧が高くなり、ア
ルカリ電解液の外部への漏出を促進する欠点を有
していた。 本発明は、上記欠点を除くもので、AgO含有
量が98重量%以上で、安定化剤として、カドミウ
ムとテルル、またはカドミウムとテルルおよび
鉛、水銀、タリウム、ゲルマニウム、イツトリウ
ム、錫、タングステン、ランタン、希土類、亜
鉛、セレン、アルミニウムから選ばれた少なくと
も1つの成分を含有する酸化銀()を主体とす
る正極合剤を用いることにより、電気特性、放電
容量、貯蔵後の電気特性、保存特性及び耐漏液性
に優れた過酸化銀電池を提供するものである。 以下、本発明を図面に基づいて説明する。 第1図は、本発明を適用した電池の一実施例を
示す断面図である。 電池寸法は、外径9.5mm、高さ2.7mmであり、公
称容量は52mAhである。 図中、1は正極缶で、銀層3で被われた本発明
に係る正極合剤2、セパレータ4及び電解液含浸
材5を収納している。 この正極合剤2は、酸化銀()粉末とフツ素
樹脂粉末の混合物からなり、加圧成形されてい
る。 本発明に係るAgO含有量が98重量%以上の酸
化銀()は次の様に化学的に製造される。 本発明の製造方法は、水酸化アルカリ溶液中で
硫酸銀を過硫酸カリウム(K2S2O8)にて酸化さ
せるもである。この反応式は次の通りである。 4AgNO3+2K2S2O8+8NaOH→4AgO+K2SO4+3Na2SO4+2NaN
O3+4H2O ここで、酸化銀()の純度、すなわちAgO
含有量を高めるために次の2つの方法が有効であ
る。 第1の方法は、酸化剤としての過硫酸カリウム
を2段階に分けて添加する方法である。 水酸化アルカリと硝酸銀の混合液に1度に酸化
剤である過硫酸カリウムを添加しない方法であ
る。すなわち、1回目の過硝酸カリウム添加で生
成した酸化不十分な銀化合物、例えばAg、
Ag2O、AgOより低次加工物等を2回目の添加で
十分酸化してやり、硫酸銀を完全にAgOに転化
する。 第2の方法は、Ag2Oaを完全に生成させてか
ら、そのAg2Oa()をAgO()まで酸化する
方法である。 反応式は次の通りである。 AgNO3 ――――→ NaOHAg2O ―――――→ K2S2O8AgO すなわち、アルカリと硫酸銀だけで、100%の
Ag2Oaを生成させて、その後に過硫酸カリウム
を添加して、Ag2OをAgOへ完全に酸化させる。 ここで、いきなりAgNO3をAgOまで酸化させ
ようとすると、酸化が不十分となり、Ag2Oや
Ag2OとAgOの中間酸化物がAgOと混在して生成
する。10%完全なAgOが生成したものと思つて
も、実際にこのAgO中のAgO含有量を分析する
と、60〜95重量%の低いものが出来てしまうこと
になる。 さらに、本発明の製法方法は、上記の第1の方
法と第2の方法を加えて、過硫酸カリウムの純度
を高めたり、反応中の加熱時間を適切にコントロ
ールするなどの工夫を併用している。 この反応中の加熱時間が短い場合には、Ag、
Ag2OおよびAgOの中間酸化物が混在し、逆に長
い場合にはAgOより高次の酸化物が混在したり
する。さらに長い場合には反応液中からO2ガス
が発生する。これはAgOより高次の酸化物や
AgOが分解している。これではAgO生成したと
思つても、実際に分析してみると、AgO含量の
低いものが得られることになる。 また、この銀層3は、正極合剤2の表面を適当
な還元手段にて還元することにより形成されてい
る。 7は負極缶で、汞化亜鉛粉末とカルボキシメチ
ルセルローズ、ポリアクリル酸ナトリウムなどの
ゲル化剤の一つもしくは二つとの混合物からなる
負極合剤6を収納している。この負極合剤6は、
このまま使用されたり、もしくはアルカリ電解液
と共にゲル状にされて使用される。 また、この負極合剤6を軽く加圧成形しても差
支えがない。 8は、負極と正極を電気的に絶縁する封口ガス
ケツトで、ポリアミド樹脂からなる。 次に、AgO含有量、安定化剤の有無、種類、
粗成を変えた酸化銀()粉末を用いて、過酸化
銀電池の低温特性、初期容量、保存特性、漏液発
生率について調べた。第1表に結果を示す。
The present invention relates to a silver peroxide battery, and includes silver oxide ()
By improving (AgO), the electrical properties of the battery,
This significantly improves discharge capacity, storage characteristics, and leakage resistance. Generally, silver oxide (Ag 2 O) is
-126122, when it absorbs moisture, it becomes alkaline, so that carbon dioxide gas is adsorbed into silver oxide, and the weight percentage of carbonate radicals (O 3 2- ) in silver oxide () increases. This carbonate radical formation reaction is a reaction specific to silver oxide () and is expressed by the following equation. Ag 2 O + CO 2 →Ag 2 CO 3 () Silver carbonate (Ag 2 CO 3 ) produced by the formula () reacts with an alkaline electrolyte to produce potassium carbonate or sodium carbonate crystals containing crystal water. 2KOH+CO 3 2- +mH 2 O →K 2 CO 3・mH 2 O+20H - (2) 2NaOH+CO 3 2- +nH 2 O →Na 2 CO 3・nH 2 O+20H - (3) As in equations (2) and (3) When carbonate crystals precipitate,
The amount of alkaline electrolyte involved in the electrode reaction decreases,
The internal resistance of the battery increases or the discharge capacity decreases. Furthermore, if the amount of crystal precipitation increases, the electrical characteristics and storage characteristics of the battery after storage will further deteriorate. On the other hand, silver oxide (AgO) is silver oxide ()
It is known that silver oxide () with an AgO content of less than 98% by weight is known to hardly adsorb or adhere to carbonate groups compared to silver oxide (Ag 2 O). It has been found that the content of carbonate radicals in silver oxide becomes large enough to adversely affect various characteristics of the battery. The reason why it contains carbonate radicals even though it is silver oxide () is that silver oxide () contains a very small amount of silver oxide (), and this silver oxide ()
adsorbs or attaches carbonate roots. Silver oxide () whose AgO content is less than 98% by weight
A silver peroxide battery using a positive electrode mixture mainly composed of
It had the disadvantage of poor electrical properties, discharge capacity and capacity, and electrical properties after storage. Further, conventional silver oxide (2) to which no stabilizer was added was unstable as it decomposed in an alkaline solution and generated a large amount of oxygen gas. For this reason, conventional silver oxide (2) has the disadvantage that it self-decomposes in an alkaline solution and loses its electrical capacity as silver oxide (2). Furthermore, the oxygen gas generated by the decomposition of silver oxide oxidizes the separator, causing the separator to become vesicular or
The problem was that the function as a separator deteriorated and self-discharge of the battery was accelerated. Additionally, oxygen gas generated at the positive electrode diffuses and permeates through the separator to the negative electrode, oxidizing the zinc and reducing the electrical capacity of the zinc. Furthermore, when this oxidation phenomenon of zinc is promoted, the surface of the zinc is coated with a passive film such as zinc oxide, and the battery discharge is inhibited even though unreacted zinc remains as a battery active material. It had the drawback of stopping. As described above, conventional batteries using unstable silver oxide (2) as a positive electrode without the addition of a stabilizer had the disadvantage of poor storage characteristics. In addition, conventional silver oxide () is easily decomposed in alkaline liquid and is unstable, so batteries using this silver oxide () gradually accumulate oxygen gas inside the battery. This has the drawback of increasing internal pressure and promoting leakage of alkaline electrolyte to the outside. The present invention eliminates the above-mentioned drawbacks, and has an AgO content of 98% by weight or more, and uses cadmium and tellurium, or cadmium and tellurium and lead, mercury, thallium, germanium, yttrium, tin, tungsten, and lanthanum as stabilizers. By using a positive electrode mixture mainly composed of silver oxide containing at least one component selected from rare earths, zinc, selenium, and aluminum, electrical properties, discharge capacity, electrical properties after storage, storage properties, and The present invention provides a silver peroxide battery with excellent leakage resistance. Hereinafter, the present invention will be explained based on the drawings. FIG. 1 is a sectional view showing an embodiment of a battery to which the present invention is applied. The battery dimensions are 9.5 mm in outer diameter and 2.7 mm in height, with a nominal capacity of 52 mAh. In the figure, 1 is a positive electrode can, which houses a positive electrode mixture 2 according to the present invention covered with a silver layer 3, a separator 4, and an electrolyte impregnated material 5. This positive electrode mixture 2 is made of a mixture of silver oxide powder and fluororesin powder, and is pressure-molded. Silver oxide () having an AgO content of 98% by weight or more according to the present invention is chemically produced as follows. The production method of the present invention involves oxidizing silver sulfate with potassium persulfate (K 2 S 2 O 8 ) in an alkaline hydroxide solution. The reaction formula is as follows. 4AgNO 3 +2K 2 S 2 O 8 +8NaOH→4AgO+K 2 SO 4 +3Na 2 SO 4 +2NaN
O 3 +4H 2 O Here, the purity of silver oxide (), i.e. AgO
The following two methods are effective for increasing the content. The first method is to add potassium persulfate as an oxidizing agent in two stages. This is a method in which potassium persulfate, which is an oxidizing agent, is not added at once to a mixed solution of alkali hydroxide and silver nitrate. That is, insufficiently oxidized silver compounds generated by the first addition of potassium pernitrate, such as Ag,
The second addition sufficiently oxidizes Ag 2 O, processed materials lower than AgO, and completely converts silver sulfate into AgO. The second method is to completely generate Ag 2 Oa and then oxidize the Ag 2 Oa () to AgO (). The reaction formula is as follows. AgNO 3 ――――→ NaOHAg 2 O ―――――→ K 2 S 2 O 8 AgO In other words, with just alkali and silver sulfate, 100%
Ag 2 Oa is generated and then potassium persulfate is added to completely oxidize the Ag 2 O to AgO. If you suddenly try to oxidize AgNO 3 to AgO, the oxidation will be insufficient and Ag 2 O and
Intermediate oxides of Ag 2 O and AgO are generated mixed with AgO. Even if you think that 10% complete AgO is produced, if you actually analyze the AgO content in this AgO, you will end up with a low content of 60 to 95% by weight. Furthermore, the production method of the present invention adds the above-mentioned first method and second method, and also uses measures such as increasing the purity of potassium persulfate and appropriately controlling the heating time during the reaction. There is. If the heating time during this reaction is short, Ag,
Intermediate oxides of Ag 2 O and AgO are mixed, and conversely, when the length is long, oxides higher than AgO are mixed. If it is longer, O 2 gas will be generated from the reaction solution. This is a higher order oxide than AgO.
AgO is decomposing. In this case, even if you think that AgO has been produced, when you actually analyze it, you will get something with a low AgO content. Further, this silver layer 3 is formed by reducing the surface of the positive electrode mixture 2 using an appropriate reducing means. A negative electrode can 7 contains a negative electrode mixture 6 made of a mixture of zinc hydride powder and one or two gelling agents such as carboxymethyl cellulose and sodium polyacrylate. This negative electrode mixture 6 is
It can be used as is, or it can be made into a gel with an alkaline electrolyte. Moreover, there is no problem even if this negative electrode mixture 6 is lightly pressure molded. 8 is a sealing gasket for electrically insulating the negative electrode and the positive electrode, and is made of polyamide resin. Next, the AgO content, presence or absence of stabilizer, type,
The low-temperature characteristics, initial capacity, storage characteristics, and leakage rate of silver peroxide batteries were investigated using silver oxide powders with different crude compositions. Table 1 shows the results.

【表】 AgO含有量の分析はヨウ化カリ還元滴定法を
用いた。データはn=5の平均値を示す。 AgO含有量が何故、分析できるかについて説
明する。これはヨウ化カリ還元滴定法がこの
AgO含有量の定量分析に応用されたためである。 この分析方法は、Ag+1(Ag2O)、Ag2+(AgO)
混合物中のAg2+の選択的分析方法である。 この分析方法は、酸化銀()試料をヨウ化カ
リウムで溶解し、水で希釈後、希硫酸を添加し、
I2を遊離させ、でんぷんを指示薬として、チオ硫
酸ナトリウム標準溶液で滴定する。 一方、Ag2Oはこの分析方法では分析出来な
い。すなわち、AgOもAg2Oもヨウ化カリウムで
溶解する。ここで、Ag2Oとヨウ化カリウムとで
生成したAgIは硫酸でヨウ素を遊離しない。AgO
とヨウ化カリウムとで生成したAgI2Kは硫酸でヨ
ウ素を遊離するので、AgOのみ選択的に分析で
きる。 また、分析に供せられる酸化銀()試料は
JISに基づいて十分乾燥される。分析値である
AgO含量は酸化銀()試料に対して重量%で
算出される。このAgO含量は100重量%が最も
AgO純度が高く、低くなるにつれてAgO以外の
銀化合物、不純物が混在していることになる。 低温特性の試験は第2図に示す回路によつて測
定した。第2図の測定回路において、Bは被測定
電池、Rは200Ωの負荷抵抗、Sはスイツチ、
は電圧計である。 製造直後及び製造後、室温下で3ケ月放置した
被測定電池Bを−10℃の恒温槽内に投入し、第2
図の測定回路にて、スイツチSを閉じたのち、5
秒間以内の閉路電圧最低値を電圧計にて読み取
る。 データはn=10の平均値を示す。 初期容量試験は、製造直後の電池を室温下、負
荷抵抗7.5Ωで放電し、終止電圧1.40Vまでの容量
を求める。 データはn=24の平均値を示す。 保存特性試験は、電池を60℃の恒温槽内に放置
し、40日後、電池を槽内より取出して、負荷抵抗
7.5Ωで放電して残存容量を測定した。 データはn=24の平均値を示す。 漏液試験方法は電池を60℃、相対湿度90〜95%
の恒温恒湿槽内に放置し、1000時間後、電池を槽
内より取出して漏液の有無を調べた。 漏液の判定は15倍の実体顕微鏡により観察し、
電池負極缶外面に漏液が認められたものを不良と
した。データはn=100の漏液発生率を示す。 第1表から明らかな様に、酸化銀()中に安
定化剤が添加されていない場合は、酸化銀()
中に安定化剤が添加されている場合に比べて、初
期での低温特性はほぼ同等であるが、3ケ月後で
の低温特性は低下している。 さらに、放電容量については、60℃、40日後の
保存容量が小さくなつている。すなわち、電池自
己放電率が大きくなつている。 また、漏液発生率については、安定化剤ありに
比べて、約3倍多くなつている。 この安定化剤の添加のない酸化銀()を用い
た電池の特性、性能が悪い理由は、安定化剤を含
有しない酸化銀()はアルカリ電解液に接触す
ると徐々に分解していくことによる。 この酸化銀()が分解すれば、 (1) アルカリ電解液中に酸化物質が溶解するの
で、アルカリ電解液が酸化能力を有する様にな
り、還元銀層3が酸化を受けて電気伝導性が悪
くなり、3ケ月後の低温特性が低下する。 (2) 酸化銀()の電気容量の減少 (3) 酸化銀()の分解酸素ガスによるセパレー
タの劣化及び亜鉛の消耗 (4) 酸化銀()の分解酸素ガスの蓄積による電
池内圧アツプ等が起生する。 一方、安定化剤を含有した酸化銀()を用い
た電池は、低温特性、放電容量、漏液発生率のい
づれの特性においても優れていることがわかる。 この理由は、酸化銀()に含有している安定
化剤の効果による。 酸化銀()を安定化させる反応機構は詳細に
は解明されていないが、安定化剤である金属化合
物がアルカリ電解液に溶出し、これら金属元素の
イオンが酸化銀()へ作用することにより、安
定化が行なわれるものと推定される。 また、AgO含有量によつて、安定化剤の有無
にかかわらず、低温特性、放電容量が影響を受け
る。 第1表から明らかな様に、AgO含有量が97.5重
量%以下では低温特性、放電容量の各特性が悪
く、一方、98.0重量%以上ではいずれの特性共に
良い結果を得ている。 この理由は、AgO含有量97.5%以下において
は、酸化銀()中に極く微少量含有している酸
化銀()が吸収もしくは吸着する炭酸根の電池
特性に及ぼす影響が無視できないことによる。 一方、98.0%以上のAgO含有量であれば、長期
間においては徐々に炭酸ガスを吸着したり、吸収
したりすると思われるが、実用的には十分使用が
可能である。 以上から、安定化剤を含有し、かつ98.0重量%
以上のAgO含有量を有する酸化銀()を用い
た本発明電池は、低温特性、保存特性及び耐漏液
性いづれの特性においても極めて優れていること
がわかる。 また、安定化剤の含有成分量はカドミウム0.03
%以上、テルル0.1%以上、その他の成分はその
合計量で0.01%以上であれば、十分効果がある。 さらに、この含有成分の上限含有量は、酸化銀
()の容量を必要以上低下させない範囲で設定
される。 また、安定化剤の形態は、酸化物、水酸化物、
金属粉、硫化物、各種塩類のいづれの場合でも酸
化銀()のアルカリ液中での安定性に大きな効
果がある。 以上詳述した様に、本発明は安定化剤を含有
し、かつ98.0重量%以上のAgO含有量を有する酸
化銀()を用いることにより、低温特性、保存
特性および耐漏液性に優れた電池を提供すること
ができ、工業的価値は極めて大なるものであり、
ペースメーカー、電子腕時計、カメラ、電卓、補
聴器などに最適である。
[Table] AgO content was analyzed using potassium iodide reduction titration method. Data represent average values of n=5. Explain why AgO content can be analyzed. This is because the potassium iodide reduction titration method
This is because it was applied to quantitative analysis of AgO content. This analytical method uses Ag +1 (Ag 2 O), Ag 2+ (AgO)
This is a selective analysis method for Ag 2+ in a mixture. This analytical method involves dissolving a silver oxide sample in potassium iodide, diluting it with water, and adding dilute sulfuric acid.
I2 is liberated and titrated with a standard sodium thiosulfate solution using starch as an indicator. On the other hand, Ag 2 O cannot be analyzed using this analytical method. That is, both AgO and Ag 2 O are dissolved in potassium iodide. Here, AgI generated from Ag 2 O and potassium iodide does not liberate iodine when treated with sulfuric acid. AgO
Since AgI 2 K, which is produced with sulfuric acid and potassium iodide, releases iodine with sulfuric acid, only AgO can be selectively analyzed. In addition, the silver oxide () sample submitted for analysis is
Dry thoroughly based on JIS. is an analytical value
The AgO content is calculated in weight percent relative to the silver oxide () sample. The highest AgO content is 100% by weight.
AgO purity is high, and as the purity decreases, silver compounds and impurities other than AgO are mixed. The low temperature characteristics were tested using the circuit shown in FIG. In the measurement circuit shown in Figure 2, B is the battery under test, R is the 200Ω load resistance, S is the switch,
is a voltmeter. Immediately after manufacture and after manufacture, test battery B, which had been left at room temperature for three months, was placed in a -10°C constant temperature oven.
In the measurement circuit shown in the figure, after closing switch S,
Read the lowest closed circuit voltage value within seconds using a voltmeter. Data represent average values of n=10. In the initial capacity test, the battery immediately after manufacture is discharged at room temperature with a load resistance of 7.5Ω, and the capacity up to a final voltage of 1.40V is determined. Data represent the average of n=24. For the storage characteristics test, the battery was left in a thermostatic chamber at 60°C, and after 40 days, the battery was removed from the chamber and the load resistance was measured.
The remaining capacity was measured by discharging at 7.5Ω. Data represent the average of n=24. The leakage test method is to test the battery at 60℃ and relative humidity 90-95%.
After 1000 hours, the battery was removed from the tank and checked for leakage. To determine leakage, observe with a stereomicroscope at 15x magnification.
A battery in which leakage was observed on the outer surface of the negative electrode can was judged to be defective. The data shows the leakage rate for n=100. As is clear from Table 1, if no stabilizer is added to silver oxide (), silver oxide ()
Compared to the case in which a stabilizer is added, the low-temperature properties at the initial stage are almost the same, but the low-temperature properties after 3 months have deteriorated. Furthermore, regarding the discharge capacity, the storage capacity after 40 days at 60°C is smaller. That is, the battery self-discharge rate is increasing. Furthermore, the leakage rate was approximately three times higher than with the stabilizer. The reason why the characteristics and performance of batteries using silver oxide (2) without the addition of a stabilizer is poor is that silver oxide (2) without a stabilizer gradually decomposes when it comes into contact with an alkaline electrolyte. . When this silver oxide (2) is decomposed, (1) the oxidized substance is dissolved in the alkaline electrolyte, so the alkaline electrolyte has oxidizing ability, and the reduced silver layer 3 is oxidized and becomes electrically conductive. The temperature deteriorates, and the low temperature characteristics deteriorate after 3 months. (2) Decrease in electrical capacity of silver oxide (3) Deterioration of the separator and consumption of zinc due to decomposition of silver oxide (2) and oxygen gas (4) Increase in battery internal pressure due to accumulation of decomposed oxygen gas (4) Decomposition of silver oxide (2) arise. On the other hand, it can be seen that batteries using silver oxide containing a stabilizer are excellent in all properties such as low temperature characteristics, discharge capacity, and leakage rate. The reason for this is due to the effect of the stabilizer contained in silver oxide (). Although the reaction mechanism that stabilizes silver oxide () has not been elucidated in detail, the metal compound that is the stabilizer is eluted into the alkaline electrolyte, and the ions of these metal elements act on silver oxide (). , it is presumed that stabilization will take place. Furthermore, the low temperature characteristics and discharge capacity are affected by the AgO content, regardless of the presence or absence of a stabilizer. As is clear from Table 1, when the AgO content is less than 97.5% by weight, the low temperature properties and discharge capacity are poor, while when it is 98.0% by weight or more, good results are obtained in both properties. The reason for this is that when the AgO content is 97.5% or less, the influence of the carbonate radicals absorbed or adsorbed by silver oxide (), which is contained in a very small amount in silver oxide (), on the battery characteristics cannot be ignored. On the other hand, if the AgO content is 98.0% or more, it is thought that carbon dioxide gas will be gradually adsorbed or absorbed over a long period of time, but it can be sufficiently used for practical purposes. From the above, it contains a stabilizer and is 98.0% by weight.
It can be seen that the battery of the present invention using silver oxide (2) having the above AgO content has extremely excellent low-temperature characteristics, storage characteristics, and leakage resistance. In addition, the content of the stabilizer is cadmium 0.03
% or more, tellurium is 0.1% or more, and other components are sufficiently effective if their total amount is 0.01% or more. Furthermore, the upper limit content of this component is set within a range that does not reduce the capacity of silver oxide (2) more than necessary. In addition, the form of the stabilizer is oxide, hydroxide,
Whether it is metal powder, sulfide, or various salts, it has a great effect on the stability of silver oxide in an alkaline solution. As detailed above, the present invention provides a battery with excellent low temperature characteristics, storage characteristics, and leakage resistance by using silver oxide containing a stabilizer and having an AgO content of 98.0% by weight or more. The industrial value is extremely large.
Ideal for pacemakers, electronic watches, cameras, calculators, hearing aids, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の一実施例を示す断面図、
第2図は低温特性の測定回路図である。 1……正極缶、2……正極合剤、3……還元銀
層、4……セパレータ、5……電解液含浸材、6
……負極合剤、7……負極缶、8……封口ガスケ
ツト、B……被測定電池、R……200Ωの負荷抵
抗、S……スイツチ、……電圧計。
FIG. 1 is a sectional view showing an embodiment of the battery of the present invention;
FIG. 2 is a circuit diagram for measuring low temperature characteristics. 1... Positive electrode can, 2... Positive electrode mixture, 3... Reduced silver layer, 4... Separator, 5... Electrolyte impregnated material, 6
...Negative electrode mixture, 7...Negative electrode can, 8...Sealing gasket, B...Battery to be measured, R...200Ω load resistance, S...Switch,...Voltmeter.

Claims (1)

【特許請求の範囲】[Claims] 1 AgO含有量が98重量%以上の酸化銀()
に、カドミウムとテルルまたはカドミウムとテル
ルおよび鉛、水銀、タリウム、ゲルマニウム、イ
ツトリウム、錫、タングステン、ランタン、希土
類、亜鉛、セレン及びアルミニウムから選ばれた
少なくとも1つの成分を安定化剤として含有した
正極合剤を用いることを特徴とする過酸化銀電
池。
1 Silver oxide with an AgO content of 98% by weight or more ()
A positive electrode composition containing cadmium and tellurium or cadmium and tellurium and at least one component selected from lead, mercury, thallium, germanium, yttrium, tin, tungsten, lanthanum, rare earths, zinc, selenium and aluminum as a stabilizer. A silver peroxide battery characterized by using a silver peroxide battery.
JP56193791A 1981-12-01 1981-12-01 Silver peroxide cell Granted JPS5894761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56193791A JPS5894761A (en) 1981-12-01 1981-12-01 Silver peroxide cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56193791A JPS5894761A (en) 1981-12-01 1981-12-01 Silver peroxide cell

Publications (2)

Publication Number Publication Date
JPS5894761A JPS5894761A (en) 1983-06-06
JPH0345864B2 true JPH0345864B2 (en) 1991-07-12

Family

ID=16313844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56193791A Granted JPS5894761A (en) 1981-12-01 1981-12-01 Silver peroxide cell

Country Status (1)

Country Link
JP (1) JPS5894761A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182923A (en) * 2014-03-25 2015-10-22 有限会社マイテック Silver oxide meso crystal containing silver peroxide and production method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132738A (en) * 1977-04-21 1978-11-18 Esb Int Corp Additive for alkaline battery
JPS54132733A (en) * 1978-03-30 1979-10-16 Union Carbide Corp Cadmium compound additive for cell employing vibalent silveroxide
JPS55104074A (en) * 1979-02-02 1980-08-09 Sumitomo Metal Mining Co Ltd Manufacturing method of silver peroxide
JPS5711823A (en) * 1980-06-23 1982-01-21 Sumitomo Metal Mining Co Ltd Preparation of silver peroxide
JPS57107563A (en) * 1980-12-25 1982-07-05 Sumitomo Metal Mining Co Ltd Silver peroxide for battery
JPS57111241A (en) * 1980-12-25 1982-07-10 Sumitomo Metal Mining Co Ltd Production of silver peroxide
JPS57136770A (en) * 1981-01-26 1982-08-23 Seiko Instr & Electronics Ltd Silver peroxide cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132738A (en) * 1977-04-21 1978-11-18 Esb Int Corp Additive for alkaline battery
JPS54132733A (en) * 1978-03-30 1979-10-16 Union Carbide Corp Cadmium compound additive for cell employing vibalent silveroxide
JPS55104074A (en) * 1979-02-02 1980-08-09 Sumitomo Metal Mining Co Ltd Manufacturing method of silver peroxide
JPS5711823A (en) * 1980-06-23 1982-01-21 Sumitomo Metal Mining Co Ltd Preparation of silver peroxide
JPS57107563A (en) * 1980-12-25 1982-07-05 Sumitomo Metal Mining Co Ltd Silver peroxide for battery
JPS57111241A (en) * 1980-12-25 1982-07-10 Sumitomo Metal Mining Co Ltd Production of silver peroxide
JPS57136770A (en) * 1981-01-26 1982-08-23 Seiko Instr & Electronics Ltd Silver peroxide cell

Also Published As

Publication number Publication date
JPS5894761A (en) 1983-06-06

Similar Documents

Publication Publication Date Title
US4209574A (en) Long-life alkaline primary cell having low water content
US4078127A (en) Additive for an alkaline battery employing divalent silver oxide positive active material
WO2010144268A1 (en) Magnesium cell with improved electrolyte
US5034291A (en) Aluminum compound additives to reduce zinc corrosion in anodes of electrochemical cells
JPWO2008018455A1 (en) Alkaline battery
US4520087A (en) Divalent silver oxide cell including cadmium and tellunium
US4812374A (en) Anode active material and alkaline cells containing same, and method for the production thereof
JPH0684521A (en) Alkaline battery
JPS58131660A (en) Reducing agent in alkali battery electrolyte
JPH05242881A (en) Manufacture of zinc alkaline battery
US3288643A (en) Process for making charged cadmium electrodes
JPH0345864B2 (en)
US3650832A (en) Active material electrode and cell comprising improved battery grade divalent silver oxide
US3269869A (en) Inter-electrode separator
JPS59132567A (en) Silver peroxide battery
DE2437183B2 (en) Alkaline galvanic element and process for its manufacture
US4250234A (en) Divalent silver oxide cell
JPS61135056A (en) Manufacture of organic electrolyte cell
JPH0750612B2 (en) Zinc alkaline battery
JPH0338702B2 (en)
JP4431736B2 (en) Positive electrode active material for batteries
JP3178160B2 (en) Method for producing negative electrode for button-type alkaline battery and button-type alkaline battery
JPH028418B2 (en)
JPH01320769A (en) Manufacture of organic electrolyte battery
GB2119160A (en) Divalent silver oxide cell