JPH0345803B2 - - Google Patents

Info

Publication number
JPH0345803B2
JPH0345803B2 JP58064117A JP6411783A JPH0345803B2 JP H0345803 B2 JPH0345803 B2 JP H0345803B2 JP 58064117 A JP58064117 A JP 58064117A JP 6411783 A JP6411783 A JP 6411783A JP H0345803 B2 JPH0345803 B2 JP H0345803B2
Authority
JP
Japan
Prior art keywords
display device
water
soluble
manufacturing
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58064117A
Other languages
Japanese (ja)
Other versions
JPS59189318A (en
Inventor
Mitsuru Suginoya
Koji Iwasa
Hitoshi Kamamori
Yutaka Sano
Yumiko Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP58064117A priority Critical patent/JPS59189318A/en
Priority to EP19830307818 priority patent/EP0113237B1/en
Priority to US06/563,947 priority patent/US4522691A/en
Priority to DE8383307818T priority patent/DE3374726D1/en
Publication of JPS59189318A publication Critical patent/JPS59189318A/en
Publication of JPH0345803B2 publication Critical patent/JPH0345803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、カラーフイルターを応用した多色
表示装置の製造方法に関し、特に、電着によつて
形成される高分子層によつて製造されたカラーフ
イルターを有する多色表示装置の製造方法に関す
る。 従来技術 第1図に、カラーフイルターを応用した多色表
示装置の一例を示した。第1図において、1は透
明基板、2は任意の図形または文字をパターニン
グされた透明導電膜より成る表示極、3は表示極
2表面に密着して形成されたカラーフイルター、
4は透明な対向電極、5は透明な対向基板であ
る。2枚の基板1,5で挾まれた空間に、液晶ま
たはエレクトロクロミツク材料等の、電圧印加に
よつて開閉する光学シヤツターとして機能する物
質を満たし、カラーフイルター3,3′,3″を相
異なる色調に形成しておけば、表示極2,2′,
2″と対向電極4の間に選択的に電圧を印加する
ことにより、多色の表示が可能である。 カラーフイルターを用いる表示の多色化は、方
法が簡便であり、自由な色調が得られ易く、様々
な表示材料、方式と組み合せて用いることが可能
と考えられるから、実用的効果が極めて大きい。 しかし、カラーフイルターを用いる多色の表示
装置を製造しようとする場合には、表示極のパタ
ーンと、表示極表面に形成されるカラーフイルタ
ーのパターンとが、ズレを生じないように製造し
なければならない。特に、3原色の微細パターン
を用いるカラーグラフイツク表示を実現しようと
する場合には、表示極とカラーフイルターとのパ
ターンの一致は、製造上の困難が大きい重要な問
題である。また多色にするための色変えも工程を
複雑化する要因であり、特に着色を染料による染
色によつて実現しようとすると、すでに着色され
た部分が次の染色工程によつて二度染めされない
ように防染という工程が間に入り、さらに複雑化
する。さらに防染技術自体も染料によつて個々に
検討されなければならない困難な問題である。 一般的に、カラーフイルターを作成する方法と
しては、スクリーン印刷やフオトリソグラフイー
等の手段を利用するものが考えられている。スク
リーン印刷では防染の必要はないが、パターンの
微細化には限度があり、多色化が進むほど印刷位
置の精度は悪くなり、表示パターンとのずれが生
じる。フオトリソグラフイーでは微細パターンは
可能であるが、色変えの度にフオトリソグラフイ
ー工程を通す必要があり、染色の際に2度染めが
されないような防染法が必要となり、工程が極め
て複雑になり、簡便な多色化手段という利点は失
なわれてくる。 発明の目的 そこで本発明は簡便な方法で、表示パターンが
微細になつてもパターンずれが生じず、色変えが
特殊な防染をほどこさなくても可能であり、且
つ、堅牢なカラーフイルターを用いた多色表示装
置の製造方法を提案することを目的とし、そのた
めに基板上の導電性薄膜を電極とし、高分子と水
に難溶もしくは不溶の染料を分散させた溶液から
着色層を電着により形成する方法によつてカラー
フイルターを製造したものである。 この方法によれば導電性薄膜を、マスクを利用
した蒸着,スパツタリング、もしくはエツチング
等により所望のパターニングをほどこすことによ
り、高分子と染料が電圧を印加した導電部分に選
択的に電着し、パターン位置のずれのない着色層
を形成することが可能である。またこの操作を繰
り返すことにより、一度電着された部分には再度
着色層は形成されないので、多色化も容易に可能
である。この方法に用いられる基板は、表面が絶
縁性であれば、基板との密着性の良い導電性薄膜
層を選ぶことにより、その材質,形状については
制限はない。 発明の構成 以下、本発明の重要点である高分子の電着によ
る着色層の形成方法について述べる。高分子を電
極上に電着させる手段の1つとして、単量体を電
極上で電気化学的に重合させる方法がある。この
方法の一例として、鉄板上で種々のビニル化合物
を電気化学的に重合させ、高分子皮膜を得たとい
う報告がある(金属表面技術Vol.19,No.12,
1968)。また最近では、ピロール,チオフエン等
を電気化学的に重合させ、ポリピロール,ポリチ
エニレン等の導電性高分子を電極上に作成した研
究も盛んに行なわれている。しかし、このよう
な、直接単量体を電気化学的に重合させる手段
は、効率がまだ良くない、得られた膜がすでに着
色しており、着色の任意性に欠ける等、本発明に
用いるには問題点を有している。電極上に高分子
を電着させるもう1つの方法として、高分子溶液
より電極上に高分子を不溶化,析出させる方法が
ある。この一例としては、高分子水溶液に顔料を
分散させ、金属を浸漬し電極として用い、該金属
上に着色層を電着させる電着塗装と呼ばれる方法
が工業的に知られており、自動車ボデイのプレコ
ーテイング等に用いられている。この方法の原理
は、高分子に親水性基、例えばカルボキシル基を
導入し、そのカルボキシル基を無機アルカリ,有
機アミン等で中和,水溶化したものを用いる。そ
して水溶化した高分子の水溶液に電極を浸漬し、
電圧を印加すると、水溶液中で解離しているカル
ボキシルアニオンが陽極に向つて電気泳動し、電
極上で水の電気分解により生じたプロトンと反応
することによつて高分子が不溶化析出してくる。
すなわち、陽極上では次式に示す反応が起こり、
高分子の析出が見られることになる。 また、親水性基に塩基性基(例えばポリアミ
ン)を用い、酸により中和,水溶化すれば、逆に
陰極上で高分子の析出が見られることになる。 電着された高分子が電気絶縁性の場合、電極が
高分子で被覆されるとともに電流が減少し、それ
以上の被覆を妨げるため膜厚の増大は期待できな
いと考えられるが、実際は水の電気分解による発
生酸素の気泡のため初期の完全被覆は避けられ、
絶縁層となるまでにある程度の膜厚が得られるこ
ととなる。通常、電着塗装では100〜200Vの電圧
印加で10〜20μmの膜厚を得ているが、本発明に
よるカラーフイルターでは着色層は薄い方がよ
く、2μm以下が望ましい。そのため後の実施例で
述べるように、樹脂濃度,電圧,溶媒組成を最適
に設定する必要がある。また得られる高分子膜は
電気浸透の効果により水分含量が少なく、塗布法
等で作製した膜よりも密着性の良い均一な膜とな
る。 アニオン電着用の高分子としては、天然乾性油
とマレイン酸の付加物,カルボキシル基を導入し
たアルキド樹脂,エポキシ樹脂とマレイン酸の付
加物,カルボキシル基を導入したポリブタジエン
樹脂,アクリル酸またはメタクリル酸とそのエス
テルとの共重合体等が用いられ、電着皮膜の特性
により他の高分子または官能基を持つ有機化合物
を高分子骨格中に導入する場合もある。本発明の
ようにカラーフイルターを通した光を見る場合、
着色層に透明性が要求され、それにはアクリル系
もしくはポリエステル系の高分子が適している。
また高分子中のカルボキシル基,水酸基等の親水
性官能基の量は重要であり、親水性基が多すぎる
と電着層の不溶化が十分でなく不均一な膜とな
り、少なすぎると中和時の水溶性が不充分とな
る。高分子の溶媒としては水が主成分であるが、
イソプロパノール,n−ブチルアルコール,t−
ブチルアルコール,メチルセロソルブ,エチルセ
ロソルブ,イソプロピルセロソルブ,ブチルセロ
ソルブ,ジエチレングリコールメチルエーテル,
ジエチレングリコールエチルエーテル,ジアセト
ンアルコール等の親水性溶媒が高分子の重合用溶
媒として含まれる。含まれる親水性溶媒の種類,
量はやはり膜厚や電着層の均一性に大きく影響す
る。 着色する方法は、電着塗装では顔料が用いら
れ、帯電した顔料が高分子とともに電気泳動し、
膜中に取り込まれるが、本発明のように透明性の
あるカラーフイルターの場合は顔料の隠べい力は
必要なく、また膜厚が薄くなつた場合、着色度に
欠ける。そこで本発明では、染料を高分子ととも
に電着させる方法を考案した。染料を高分子とと
もに電着させるには染料分子が帯電し、電気泳動
することが必要であるが、水溶性染料の場合、解
離した染料イオンが支持塩を加えた効果をもたら
し、電流の増大,膜厚の増大,膜の不均一化とな
つて表われる。水に難溶もしくは不溶の染料は、
通常水中で凝集してしまうが、電着高分子は疎水
性基と親水性基がある一種のセツケンとみなすこ
とができ、有機染料分子に対してある程度、分散
作用を示し、適当な分散媒と組み合わせる事によ
り微粒子化でき、高分子と一緒に電着できる事を
見い出した。この場合、染料と高分子の電着速度
を同程度にする必要があるが、溶液組成により制
御することが可能である。 実施例 以下、カラーフイルターを用いた多色表示装置
の製造方法について実施例をもとに具体的に説明
する。 (実施例 1) 第2図は、本発明によるカラーフイルターの製
造方法を応用した多色表示装置の応用例である。 以下、第2図のような多色表示装置の製造方法
について具体的に述べる。 パターニング工程 6は透明材料よりなる表示基板で、該表示基
板上にスプレーコート法により酸化スズ透明導
電膜が形成される。該透明導電膜をエツチング
によりストライプ状にパターニングし、表示電
極7を得る。 電着工程 次に下記組成の塗料(エスビアED−3000神
東塗料製) エスビアED−3000 水溶性ポリエステル樹脂 水溶性メラミン樹脂 70wt% ブチルセロソルブ エチルセロソルブ n−ブタノール 30wt% を用い、以下の組成の電着浴を作る。
INDUSTRIAL APPLICATION FIELD This invention relates to a method for manufacturing a multicolor display device using a color filter, and particularly to a multicolor display device having a color filter manufactured from a polymer layer formed by electrodeposition. Relating to a manufacturing method. Prior Art FIG. 1 shows an example of a multicolor display device to which a color filter is applied. In FIG. 1, 1 is a transparent substrate, 2 is a display electrode made of a transparent conductive film patterned with arbitrary figures or characters, 3 is a color filter formed in close contact with the surface of the display electrode 2,
4 is a transparent counter electrode, and 5 is a transparent counter substrate. The space sandwiched between the two substrates 1 and 5 is filled with a substance, such as liquid crystal or electrochromic material, that functions as an optical shutter that opens and closes when voltage is applied, and the color filters 3, 3', 3'' are interposed therebetween. If they are formed in different colors, the display electrodes 2, 2',
Multicolor display is possible by selectively applying a voltage between 2'' and the counter electrode 4. Multicolor display using a color filter is simple and allows for free color tones. The practical effect is extremely large because it is easy to use and can be used in combination with various display materials and methods.However, when manufacturing a multicolor display device using color filters, the display electrode It must be manufactured so that there is no misalignment between the pattern of the color filter and the pattern of the color filter formed on the surface of the display electrode.Especially when trying to realize a color graphic display using fine patterns of three primary colors. Matching the pattern between the display electrode and the color filter is an important issue that is difficult to manufacture.Also, changing colors to create multiple colors is a factor that complicates the process, especially when coloring is done using dyes. If this were to be achieved through dyeing, a resist dyeing process would be required to prevent the already colored areas from being dyed twice in the next dyeing process, making the process even more complicated.Furthermore, the resist dyeing technique itself would also require dyeing. Therefore, it is a difficult problem that must be considered individually.Generally, methods of creating color filters are considered to use methods such as screen printing and photolithography.Screen printing Resist dyeing is not necessary, but there is a limit to how fine a pattern can be made, and the more colors there are, the worse the precision of the printing position becomes, resulting in misalignment with the displayed pattern.Fine patterns are possible with photolithography. However, it is necessary to go through a photolithography process every time the color is changed, and a resist dyeing method that prevents double dyeing is required, making the process extremely complicated. Purpose of the Invention The present invention provides a simple method that does not cause pattern shift even when the display pattern becomes fine and allows color changes without special resist dyeing. The purpose of this research is to propose a method for manufacturing a multicolor display device using a robust color filter, and for this purpose, a conductive thin film on a substrate is used as an electrode, and a polymer and a dye that is sparingly soluble or insoluble in water are dispersed. Color filters are manufactured by forming a colored layer from a solution by electrodeposition. According to this method, a conductive thin film is patterned in a desired manner by vapor deposition using a mask, sputtering, or etching. By applying this method, the polymer and the dye are selectively electrodeposited on the conductive parts to which a voltage is applied, and it is possible to form a colored layer without shifting the pattern position. Furthermore, by repeating this operation, a colored layer will not be formed again on the part that has been electrodeposited once, so it is possible to easily create multiple colors. As long as the surface of the substrate used in this method is insulating, a conductive thin film layer with good adhesion to the substrate is selected, and there are no restrictions on its material or shape. Structure of the Invention Hereinafter, a method for forming a colored layer by electrodeposition of a polymer, which is an important point of the present invention, will be described. One method for electrodepositing a polymer on an electrode is to electrochemically polymerize a monomer on the electrode. As an example of this method, there is a report that a polymer film was obtained by electrochemically polymerizing various vinyl compounds on an iron plate (Metal Surface Technology Vol. 19, No. 12,
1968). Recently, research has also been actively conducted in which conductive polymers such as polypyrrole and polythienylene are produced on electrodes by electrochemically polymerizing pyrrole, thiophene, and the like. However, such a method of directly electrochemically polymerizing monomers is not suitable for use in the present invention because the efficiency is still low, the obtained film is already colored, and the coloring is not arbitrary. has problems. Another method for electrodepositing a polymer on an electrode is to insolubilize and precipitate the polymer on the electrode from a polymer solution. One example of this is an industrially known method called electrocoating, in which a pigment is dispersed in an aqueous polymer solution, a metal is immersed, and used as an electrode, and a colored layer is electrodeposited on the metal. Used for pre-coating, etc. The principle of this method is to introduce a hydrophilic group, such as a carboxyl group, into a polymer, and then neutralize the carboxyl group with an inorganic alkali, organic amine, etc. to make it water-soluble. Then, the electrode is immersed in an aqueous solution of the water-soluble polymer,
When a voltage is applied, carboxyl anions dissociated in the aqueous solution electrophores toward the anode and react with protons generated by electrolysis of water on the electrode, thereby insolubilizing and precipitating the polymer.
In other words, the following reaction occurs on the anode,
Precipitation of polymers will be observed. Furthermore, if a basic group (for example, polyamine) is used as the hydrophilic group and is neutralized and water-solubilized with an acid, precipitation of the polymer will be observed on the cathode. If the electrodeposited polymer is electrically insulating, the current decreases as the electrode is coated with the polymer, preventing further coating, so an increase in film thickness cannot be expected; however, in reality, the electricity of water Initial complete coverage is avoided due to oxygen bubbles generated by decomposition;
A certain amount of film thickness can be obtained before it becomes an insulating layer. Usually, in electrodeposition coating, a film thickness of 10 to 20 μm is obtained by applying a voltage of 100 to 200 V, but in the color filter according to the present invention, the colored layer is preferably thinner, and preferably 2 μm or less. Therefore, as will be described later in Examples, it is necessary to optimally set the resin concentration, voltage, and solvent composition. Furthermore, the obtained polymer film has a low water content due to the effect of electroosmosis, and becomes a uniform film with better adhesion than a film produced by a coating method or the like. Polymers for anionic electrodeposition include adducts of natural drying oil and maleic acid, alkyd resins with carboxyl groups introduced, adducts of epoxy resins with maleic acid, polybutadiene resins with carboxyl groups, acrylic acid or methacrylic acid, etc. Copolymers with esters thereof are used, and other polymers or organic compounds having functional groups may be introduced into the polymer skeleton depending on the characteristics of the electrodeposited film. When viewing light through a color filter as in the present invention,
Transparency is required for the colored layer, and acrylic or polyester polymers are suitable for this purpose.
In addition, the amount of hydrophilic functional groups such as carboxyl groups and hydroxyl groups in the polymer is important; if there are too many hydrophilic groups, the electrodeposition layer will not be sufficiently insolubilized, resulting in an uneven film, and if there is too little, it will be difficult to neutralize. water solubility becomes insufficient. Water is the main component as a solvent for polymers, but
Isopropanol, n-butyl alcohol, t-
Butyl alcohol, methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, diethylene glycol methyl ether,
Hydrophilic solvents such as diethylene glycol ethyl ether and diacetone alcohol are included as polymerization solvents. Types of hydrophilic solvents included,
The amount also greatly affects the film thickness and uniformity of the electrodeposited layer. The method of coloring is that pigments are used in electrodeposition coating, and the charged pigments are electrophoresed together with polymers.
However, in the case of a transparent color filter like the one of the present invention, the hiding power of the pigment is not required, and when the film thickness becomes thin, the degree of coloring is lacking. Therefore, in the present invention, a method was devised in which a dye is electrodeposited together with a polymer. In order to electrodeposit a dye with a polymer, it is necessary for the dye molecules to be charged and electrophoresed, but in the case of water-soluble dyes, the dissociated dye ions have the effect of adding a supporting salt, increasing the current, This appears as an increase in film thickness and non-uniformity of the film. Dyes that are poorly soluble or insoluble in water are
Although it usually aggregates in water, electrodeposited polymers can be regarded as a type of polymer with hydrophobic groups and hydrophilic groups, and exhibit a certain degree of dispersion effect on organic dye molecules, and can be used with an appropriate dispersion medium. We discovered that by combining them, we can make them into fine particles and electrodeposit them together with polymers. In this case, it is necessary to make the electrodeposition rates of the dye and the polymer comparable, but this can be controlled by the solution composition. Examples Hereinafter, a method for manufacturing a multicolor display device using color filters will be specifically described based on examples. (Example 1) FIG. 2 is an application example of a multicolor display device to which the method of manufacturing a color filter according to the present invention is applied. Hereinafter, a method for manufacturing a multicolor display device as shown in FIG. 2 will be specifically described. Patterning step 6 is a display substrate made of a transparent material, and a tin oxide transparent conductive film is formed on the display substrate by a spray coating method. The transparent conductive film is patterned into stripes by etching to obtain display electrodes 7. Electrodeposition process Next, using a paint with the following composition (ESVIA ED-3000 manufactured by Shinto Paint Co., Ltd.) SVIER ED-3000 water-soluble polyester resin water-soluble melamine resin 70wt% butyl cellosolve ethyl cellosolve n-butanol 30wt%, the following composition was electrodeposited: make a bath

【表】 使用する油溶性染料は、親水性溶媒可溶型の
ものに限定され、耐光性が非常にすぐれている
金属錯塩構造のものが望ましい。例えば次式の
ような分子構造を持つものがある。(製品名で
はAizen Spilon,Oleosol Fast等) のCr錯塩 カラーインデツクス番号 Solvent Red 8 浴の作成手順はエスビアED−3000を水に溶
解させる。次に染料をメチルセロソルブに溶解
させる。このとき、染料重量比xはメチルセロ
ソルブに対する染料の溶解度を超えない範囲で
任意に選ばれる。染料を溶解させたメチルセロ
ソルブを前記水溶液に加え、染料を均一に分散
させる。このときメチルセロソルブは分散媒と
して働いているが、添加量が多くなつたり、セ
ロソルブのアルキル基の炭素数が増えると、膜
厚の増大,膜の不均一化をもたらす。 以上のように作製した電着浴中に、表示電極
7が形成された表示基板6を浸漬する。ストラ
イプ状にパターニングされた表示電極7の中で
同一色に着色したい電極を選択し、選択された
電極を陽極として10Vの電圧を3分間印加す
る。このとき電流は通電直後、大きな電流が流
れるが、しだいに減少し、ほとんど0に近づ
く。通電後、表示基板6を引き上げ充分に水洗
し、電圧が印加されていない部分に付着した溶
液を洗い流す。水洗後、乾燥させると、電圧を
印加した電極には透明性のよい着色層が形成さ
れている。 硬化工程 次に、電着により形成した着色層中のポリエ
ステル樹脂とメラミン樹脂を焼付けにより縮合
反応を行なわせ硬化させる。焼付けは空気中、
175℃で30分行なえば、着色層は完全に硬化す
る。このときの着色層の膜厚は1.5μmであつ
た。 硬化した着色層は完全な絶縁層となつてお
り、再び電着浴中に浸漬,通電しても再電着や
二度染めは起らないので、二度目以降の着色層
の形成については、再び他の同一色にする表示
電極を選択し、異なつた色調の染料を分散させ
た電着浴中で,硬化という工程を繰り返すこと
により実現される。 本実施例では、赤,青,緑の順の200μm幅のス
トライプ状カラーフイルター8を、パターニング
工程→赤電極の電着工程→硬化工程→青電極の電
着工程→硬化工程→緑電極の電着工程→硬化工
程、という方法で製造し、非常に簡便に行なわれ
た。得られたカラーフイルターは色ずれは見られ
ず、且つ均一で、酸,アルカリ,各種有機溶剤,
熱水等に犯されにくい性質を有していた。また、
使用した金属錯塩染料は、着色層中で極めて安定
で、カーボンアーク試験360時間を経た後も初期
光吸収率の95%以上の値を示し、すぐれた耐光性
を有していた。 このような方法でカラーフイルター8は表示電
極7上に形成され、表示基板6は透明な対向電極
9がストライプ状に形成された透明な対向基板1
0とスペーサー11を介して表示電極7と対向電
極9のストライプが直角に交叉するように一体化
され、セルを構成する。該セル中に、表示材料1
2としてTN−FEM液晶を充填し、多色液晶表
示装置を作製した。この場合、表示電極7と対向
電極9の間に電圧を印加し、セルを透過軸が平行
な偏光子と検光子で挾み、表示基板6もしくは対
向基板10の方向から見ると透明性のあるカラー
フイルター8の色が表示され、電圧印加を打ち切
ると黒色になる。対向基板10の方向から光を照
射すると、セルの透明性が良いため、カラーフイ
ルター8の色がより効果的に表示される。このよ
うに本実施例の多色表示装置の製造方法は、簡便
な製造方法にもかかわらず、表示品位を損う事な
く、微細なパターンのカラーフイルターが得ら
れ、しかも信頼性の高いマトリクス駆動のカラー
グラフイツク表示装置を提供するのに適したもの
であることが明らかになつた。 (実施例 2) 実施例1における表示材料12を、黒の二色性
色素を用いたネガタイプゲストホスト液晶、表示
基板6を白色材料(白色セラミツク)として、以
下、実施例1と同様に多色液晶表示装置を作成し
た。この場合、表示電極7と対向電極9の間に電
圧を印加し、偏向板を介し透明な対向基板10の
方向から見ると、カラーフイルター8の色が明る
く表示され、電圧印加を打ち切ると液晶中の二色
性色素の色である黒となる。本実施例において
も、実施例1と同様の効果が得られた。 (実施例 3) 実施例1における表示材料12をDSM液晶と
し、表示基板6中にマスク蒸着法によりアルミニ
ウムをパターニングして表示電極7とした。そし
て実施例1と同様に多色液晶表示装置を作成し
た。この場合、表示電極7と対向電極9の間に電
圧を印加し、透明な対向基板10の方向から見る
と、DSM液晶が光散乱状態となり、乳白色の中
にカラーフイルター8の色が表示される。電圧印
加を打ち切ると、光散乱状態が消滅するため、暗
色状態となる。なおDSM液晶の光散乱状態を効
率良く発生させるには、ある程度のイオン電流を
流す必要があり、カラーフイルター8の高抵抗性
はその妨げとなる。そのためカラーフイルター8
上にパターンを表示電極7と一致させた透明電極
を設け、該透明電極を電圧印加用電極とすること
により、駆動電圧を低減でき、実施例1と同様の
効果が得られた。 (実施例 4) 実施例1における電着浴を下記組成の塗料(パ
ワーマイト 3000−10 日本ペイント製) パワーマイト 3000−10 水溶性アクリル樹脂 水溶性メラミン樹脂 60wt% ブチルセロソルブ イソプロピルアルコール 40wt% を用い、以下の組成の電着浴を作る。
[Table] The oil-soluble dyes to be used are limited to those soluble in hydrophilic solvents, and those with a metal complex salt structure, which have excellent light resistance, are preferable. For example, some molecules have the following molecular structure: (Product names include Aizen Spilon, Oleosol Fast, etc.) Cr complex salt Color index number Solvent Red 8 The procedure for making the bath is to dissolve Esvir ED-3000 in water. The dye is then dissolved in methyl cellosolve. At this time, the dye weight ratio x is arbitrarily selected within a range that does not exceed the solubility of the dye in methyl cellosolve. Methyl cellosolve in which the dye has been dissolved is added to the aqueous solution to uniformly disperse the dye. At this time, methyl cellosolve acts as a dispersion medium, but as the amount added or the number of carbon atoms in the alkyl group of cellosolve increases, the film thickness increases and the film becomes non-uniform. The display substrate 6 on which the display electrodes 7 are formed is immersed in the electrodeposition bath prepared as described above. Among the display electrodes 7 patterned in stripes, electrodes to be colored in the same color are selected, and a voltage of 10 V is applied for 3 minutes using the selected electrodes as anodes. At this time, a large current flows immediately after the current is turned on, but it gradually decreases and approaches zero. After energizing, the display substrate 6 is pulled up and thoroughly washed with water to wash away the solution adhering to the areas to which no voltage is applied. After washing with water and drying, a highly transparent colored layer is formed on the electrode to which voltage has been applied. Curing Step Next, the polyester resin and melamine resin in the colored layer formed by electrodeposition are baked to undergo a condensation reaction and cured. Baking is done in the air.
The colored layer is completely cured by heating at 175°C for 30 minutes. The thickness of the colored layer at this time was 1.5 μm. The cured colored layer is a complete insulating layer, and even if it is immersed in the electrodeposition bath again and energized, no redeposition or double dyeing will occur. This is achieved by selecting another display electrode of the same color and repeating the curing process in an electrodeposition bath in which dyes of different colors are dispersed. In this example, a striped color filter 8 with a width of 200 μm in the order of red, blue, and green was formed in a patterning process → red electrode electrodeposition process → curing process → blue electrode electrodeposition process → curing process → green electrode electrodeposition process. It was manufactured using a method that included a coating process followed by a curing process, and was extremely simple. The obtained color filter shows no color shift, is uniform, and is resistant to acids, alkalis, various organic solvents,
It had the property of being difficult to be attacked by hot water, etc. Also,
The metal complex dye used was extremely stable in the colored layer, and even after 360 hours of carbon arc testing, it still showed a value of 95% or more of the initial light absorption rate, and had excellent light resistance. In this way, the color filter 8 is formed on the display electrode 7, and the display substrate 6 is a transparent counter substrate 1 on which transparent counter electrodes 9 are formed in stripes.
The stripes of the display electrode 7 and the counter electrode 9 are integrated with each other through the spacer 11 so as to intersect at right angles to form a cell. In the cell, display material 1
As No. 2, TN-FEM liquid crystal was filled to fabricate a multicolor liquid crystal display device. In this case, a voltage is applied between the display electrode 7 and the counter electrode 9, the cell is sandwiched between a polarizer and an analyzer whose transmission axes are parallel, and when viewed from the direction of the display substrate 6 or the counter substrate 10, the cell is transparent. The color of the color filter 8 is displayed and becomes black when the voltage application is stopped. When light is irradiated from the direction of the counter substrate 10, the color of the color filter 8 is displayed more effectively because the cell has good transparency. As described above, although the manufacturing method of the multicolor display device of this embodiment is simple, it is possible to obtain a color filter with a fine pattern without deteriorating the display quality, and also to use a highly reliable matrix drive. It has now become clear that the invention is suitable for providing color graphic display devices. (Example 2) The display material 12 in Example 1 is a negative type guest host liquid crystal using a black dichroic dye, and the display substrate 6 is a white material (white ceramic). Created a liquid crystal display device. In this case, a voltage is applied between the display electrode 7 and the counter electrode 9, and when viewed from the direction of the transparent counter substrate 10 through the polarizing plate, the color of the color filter 8 is displayed brightly, and when the voltage application is stopped, the color of the color filter 8 is bright. The color is black, which is the color of the dichroic pigment. In this example as well, the same effects as in Example 1 were obtained. (Example 3) DSM liquid crystal was used as the display material 12 in Example 1, and aluminum was patterned into the display substrate 6 by mask vapor deposition to form the display electrodes 7. A multicolor liquid crystal display device was then produced in the same manner as in Example 1. In this case, a voltage is applied between the display electrode 7 and the counter electrode 9, and when viewed from the direction of the transparent counter substrate 10, the DSM liquid crystal becomes a light scattering state, and the color of the color filter 8 is displayed in the milky white. . When the voltage application is stopped, the light scattering state disappears, resulting in a dark state. Note that in order to efficiently generate the light scattering state of the DSM liquid crystal, it is necessary to flow a certain amount of ion current, and the high resistance of the color filter 8 hinders this. Therefore, color filter 8
By providing a transparent electrode with a pattern matching the display electrode 7 on top and using the transparent electrode as a voltage applying electrode, the driving voltage could be reduced and the same effect as in Example 1 was obtained. (Example 4) The electrodeposition bath in Example 1 was replaced with a paint having the following composition (Powermite 3000-10 manufactured by Nippon Paint), Powermite 3000-10 water-soluble acrylic resin water-soluble melamine resin 60wt% butyl cellosolve isopropyl alcohol 40wt%, Prepare an electrodeposition bath with the following composition.

【表】 使用する分散染料は、通常、市販品にはアニオ
ン系の分散剤が含まれている場合が多く、この分
散剤が浴中でイオンとなり、電流値を増大させる
原因となるため、分散剤の含まれていないものが
望ましい。浴の調整法は、分散染料をx<1.5の
範囲でエチレングリコールに均一に分散させ、パ
ワーマイト3000−10を水に溶解させた溶液に添加
する。 以下、実施例1と同様に、多色液晶表示装置を
作成したところ、実施例1と同様の効果が得られ
た。しかし、カラーフイルターの耐光性は、金属
錯塩型油溶染料のようにすぐれた特性を持つもの
は限られた染料であることが明らかになつた。 (実施例 5) 実施例1における電着浴を下記の組成にした。
[Table] Commercially available disperse dyes often contain anionic dispersants, which become ions in the bath and cause an increase in current value. Preferably one that does not contain agents. To prepare the bath, disperse dye is uniformly dispersed in ethylene glycol in the range of x<1.5, and added to a solution of Powermite 3000-10 dissolved in water. Hereinafter, a multicolor liquid crystal display device was produced in the same manner as in Example 1, and the same effects as in Example 1 were obtained. However, it has become clear that there are only a limited number of dyes that have excellent light resistance properties for color filters, such as metal complex oil-soluble dyes. (Example 5) The electrodeposition bath in Example 1 had the following composition.

【表】 この場合の浴の調整法は、エスビアED−3000
に油溶染料をx<1.0の範囲で添加し、混練,超
音波等の方法で均一に分散させる。その後、水を
添加し、電着浴とした。以下、実施例1と同様に
多色表示装置を作成したところ、実施例1と同様
の効果が得られた。この場合、電着浴中の高分子
濃度が高いため、着色層は2.0μmの厚さどあつ
た。本実施例に使用する油溶染料は、親水性溶媒
可溶な染料には限定されないが、耐光性にすぐれ
たものが望ましいことは言うまでもない。 発明の効果 以上、実施例で具体的に述べたように、本発明
による多色表示装置の製造方法は簡便であり、多
色化のための色を分離させるための防染等の特別
な手段を用いずにカラーフイルターを製造するこ
とができる。また、そのカラーフイルターは堅牢
で、着色性が高く、かつ、透明性も優れており、
パターンずれのないものであり、液晶等の表示材
料と組み合わせても、高い表示品位と信頼性を実
現できるものである。
[Table] The bath adjustment method in this case is
An oil-soluble dye is added in a range of x<1.0 and uniformly dispersed by kneading, ultrasonication, etc. Thereafter, water was added to form an electrodeposition bath. Hereinafter, a multicolor display device was produced in the same manner as in Example 1, and the same effects as in Example 1 were obtained. In this case, due to the high polymer concentration in the electrodeposition bath, the colored layer had a thickness of 2.0 μm. The oil-soluble dye used in this example is not limited to dyes that are soluble in hydrophilic solvents, but it goes without saying that dyes with excellent light resistance are desirable. Effects of the Invention As specifically described in the examples above, the method for manufacturing a multicolor display device according to the present invention is simple and requires special means such as resist dyeing to separate colors for multicolorization. Color filters can be manufactured without using. In addition, the color filter is robust, has high colorability, and has excellent transparency.
There is no pattern shift, and high display quality and reliability can be achieved even when combined with display materials such as liquid crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカラーフイルターを応用した多色表示
装置の一例。第2図は本発明の製造方法による多
色表示装置の一例。 1,6……表示基板、2,7………表示電極、
3,8……カラーフイルター、4,9……対向電
極、5,10……対向基板、12……表示材料。
Figure 1 is an example of a multicolor display device that uses color filters. FIG. 2 is an example of a multicolor display device manufactured by the manufacturing method of the present invention. 1, 6... display substrate, 2, 7... display electrode,
3, 8... Color filter, 4, 9... Counter electrode, 5, 10... Counter substrate, 12... Display material.

Claims (1)

【特許請求の範囲】 1 カラーフイルターを応用した多色表示装置の
製造方法において、基板上に互いに絶縁されて配
置された複数の導電層を形成し、次に水に難溶性
の染料を有機溶媒に溶解させた状態で電着性高分
子と混合し、水に分散した溶液中に該基板を浸漬
し、選択的に該導電層に電圧を印加することによ
り、該溶液から着色層を導電層上に電着形成し、
以後その操作を異なる色の染料を含む溶液中にて
繰り返すことによつて、上記基板上にカラーフイ
ルターを形成して多色表示装置を製造することを
特徴とする多色表示装置の製造方法。 2 前記の基板上に互いに絶縁されて配置された
複数の導電層は、酸化スズ、酸化インジウム、ま
たは、酸化アンチモンを主成分とする透明導電層
であり、それらの透明導電層の形成は、基本的
に、アニオン電着性高分子を含む溶液中から陽極
電解によつて電解析出させた高分子層に基づく着
色層の形成であることを特徴とする特許請求の範
囲第1項記載の多色表示装置の製造方法。 3 前記アニオン電着性高分子は、カルボキシル
基を有するアクリル樹脂、もしくはカルボキシル
基を有するポリエステル樹脂をアルカリで中和し
水溶性にしたもの、またはそれらに水溶性メラミ
ン樹脂を混合したものであることを特徴とする特
許請求の範囲第2項記載の多色表示装置の製造方
法。 4 前記水に難溶もしくは不溶の染料が分散染料
または油溶性染料であることを特徴とする特許請
求の範囲第1項記載の多色表示装置の製造方法。 5 前記油溶性染料が金属錯塩構造をとり、親水
性溶媒に可溶なものであることを特徴とする特許
請求の範囲第4項記載の多色表示装置の製造方
法。
[Claims] 1. A method for manufacturing a multicolor display device using a color filter, in which a plurality of conductive layers arranged insulated from each other are formed on a substrate, and then a dye that is sparingly soluble in water is added to an organic solvent. The colored layer is mixed with an electrodepositable polymer in a state dissolved in water, the substrate is immersed in a solution dispersed in water, and a voltage is selectively applied to the conductive layer to remove the colored layer from the solution. Electrodeposited on top,
A method for manufacturing a multicolor display device, characterized in that the process is repeated in solutions containing dyes of different colors to form a color filter on the substrate to produce a multicolor display device. 2 The plurality of conductive layers arranged insulated from each other on the substrate are transparent conductive layers containing tin oxide, indium oxide, or antimony oxide as a main component, and the formation of these transparent conductive layers is basically Specifically, the colored layer is formed based on a polymer layer electrolytically deposited from a solution containing an anionic electrodepositable polymer by anodic electrolysis. A method of manufacturing a color display device. 3. The anionic electrodepositable polymer is an acrylic resin having a carboxyl group or a polyester resin having a carboxyl group that has been neutralized with an alkali to make it water-soluble, or a mixture thereof with a water-soluble melamine resin. A method for manufacturing a multicolor display device according to claim 2, characterized in that: 4. The method of manufacturing a multicolor display device according to claim 1, wherein the dye hardly soluble or insoluble in water is a disperse dye or an oil-soluble dye. 5. The method for manufacturing a multicolor display device according to claim 4, wherein the oil-soluble dye has a metal complex salt structure and is soluble in a hydrophilic solvent.
JP58064117A 1982-12-22 1983-04-12 Production of multicolor display device Granted JPS59189318A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58064117A JPS59189318A (en) 1983-04-12 1983-04-12 Production of multicolor display device
EP19830307818 EP0113237B1 (en) 1982-12-22 1983-12-21 Method for manufacturing a multicolour filter and a multicolour display device
US06/563,947 US4522691A (en) 1982-12-22 1983-12-21 Method for manufacturing a multicolor filter and a multicolor display device
DE8383307818T DE3374726D1 (en) 1982-12-22 1983-12-21 Method for manufacturing a multicolour filter and a multicolour display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064117A JPS59189318A (en) 1983-04-12 1983-04-12 Production of multicolor display device

Publications (2)

Publication Number Publication Date
JPS59189318A JPS59189318A (en) 1984-10-26
JPH0345803B2 true JPH0345803B2 (en) 1991-07-12

Family

ID=13248798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064117A Granted JPS59189318A (en) 1982-12-22 1983-04-12 Production of multicolor display device

Country Status (1)

Country Link
JP (1) JPS59189318A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023834A (en) * 1983-07-19 1985-02-06 Seiko Instr & Electronics Ltd Production of matrix type multicolor display device
JP2744950B2 (en) * 1989-01-27 1998-04-28 セイコーインスツルメンツ株式会社 Method for manufacturing multicolor display device
JP3113401B2 (en) * 1992-07-31 2000-11-27 リーダー電子株式会社 Broadband amplifier
US7980000B2 (en) 2006-12-29 2011-07-19 Applied Materials, Inc. Vapor dryer having hydrophilic end effector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817404A (en) * 1981-07-23 1983-02-01 Fuji Photo Film Co Ltd Multicolored optical filter and its manufacture
JPS5817405A (en) * 1981-07-23 1983-02-01 Fuji Photo Film Co Ltd Multicolored optical filter and its manufacture
JPH0259446A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817404A (en) * 1981-07-23 1983-02-01 Fuji Photo Film Co Ltd Multicolored optical filter and its manufacture
JPS5817405A (en) * 1981-07-23 1983-02-01 Fuji Photo Film Co Ltd Multicolored optical filter and its manufacture
JPH0259446A (en) * 1988-08-26 1990-02-28 Hitachi Chem Co Ltd Production of silica glass

Also Published As

Publication number Publication date
JPS59189318A (en) 1984-10-26

Similar Documents

Publication Publication Date Title
JPH0335648B2 (en)
EP0113237B1 (en) Method for manufacturing a multicolour filter and a multicolour display device
EP0134697B1 (en) Method of manufacturing a colour filter on a solid state colour imaging device and a solid state colour imaging device
JPS60179703A (en) Manufacture of multicolored display device
JPH0259966B2 (en)
US4999094A (en) Method for manufacturing a color member
US4781444A (en) Color member having electrodeposited color layer composed of polymer and coloring matter bonded to polymer and method for manufacturing same
JPH0259446B2 (en)
JPH03606B2 (en)
JPH0345803B2 (en)
JPH0345804B2 (en)
JPH0260164B2 (en)
JPH042161B2 (en)
JPS6023806A (en) Preparation of multicolor polarizing plate
JPS61210330A (en) Production of polychromatic display device
JPS6023805A (en) Preparation of colored layer
JP2893840B2 (en) Color filter manufacturing method and color liquid crystal panel
JPH0464875B2 (en)
JPS6023804A (en) Preparation of color filter
JPS6023803A (en) Preparation of color filter
JPS60186803A (en) Multi-color display device and its production
JPS60184841A (en) Manufacture of multi-color surface colored body
JPS60184201A (en) Production of multi-color display device
JPH0211030B2 (en)
JPS60184837A (en) Manufacture of multi-color surface colored body having conductivity