JPH034574A - Superconductive electromagnetic wave sensor and manufacture thereof - Google Patents

Superconductive electromagnetic wave sensor and manufacture thereof

Info

Publication number
JPH034574A
JPH034574A JP1140301A JP14030189A JPH034574A JP H034574 A JPH034574 A JP H034574A JP 1140301 A JP1140301 A JP 1140301A JP 14030189 A JP14030189 A JP 14030189A JP H034574 A JPH034574 A JP H034574A
Authority
JP
Japan
Prior art keywords
superconducting
superconductive
electromagnetic wave
detection part
grain boundaries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1140301A
Other languages
Japanese (ja)
Inventor
Toshiaki Yokoo
横尾 敏昭
Takaaki Ikeda
隆明 池田
Teruhiko Ienaga
照彦 家永
Masanobu Yoshisato
善里 順信
Akio Takeoka
武岡 明夫
Shoichi Nakano
中野 昭一
Yukinori Kuwano
桑野 幸徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1140301A priority Critical patent/JPH034574A/en
Publication of JPH034574A publication Critical patent/JPH034574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve an electromagnetic wave sensor in reproducibility and electromagnetic wave detection sensitivity by a method wherein a detection section formed through the sintering of superconductive microparticles is irradiated with supersonic to make the detection part higher than an electrode section in the ratio of the grain boundaries of non-superconductive phase between the superconductive microparticles. CONSTITUTION:A superconductor formed of sintered superconductive microparticles is composed of an electromagnetic wave detection part 4 and electrodes 5 and 5 provided at both ends. The detection part 4 constitutes a bridge section and is as large in size as 10mum wide, 50mum thick, and 3mm long. In succession, the superconductor concerned is irradiated with supersonic to be changed in grain boundary structure to form a damaged layer 6 where grain boundaries 2 of non-superconductive phase increases in ratio. The modified part concerned extends 50mum or so from the processing start end. By this setup, a modified part 7 of the detection part 4 shown by a broken line becomes higher than the end electrodes 5 and 5 in the ratio of the grain boundaries 2 of non-superconductive phase between superconductive microparticles 1 and 1, so that an electromagnetic sensor of this design can be improved in resproducibility and sensitivity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は超電導電磁波センサー及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a superconducting electromagnetic wave sensor and a method for manufacturing the same.

(ロ) 従来の技術 高温超電導体の発見以来、これを用いた電子デバイスが
種々検討されており、その1つに電磁波センサーがある
(b) Prior Art Since the discovery of high-temperature superconductors, various electronic devices using them have been studied, one of which is an electromagnetic wave sensor.

超電導電磁波センサーとしては、スパッタ法等により得
られる高温超電導薄膜を用いるものと、高温超電導焼結
体を用いるものが考えられ、高温超電導薄膜を用いる電
子デバイスについては、いくつかの報告がなされている
(たとえば、J、 Koa。
As superconducting electromagnetic wave sensors, there are two types of sensors: those using high-temperature superconducting thin films obtained by sputtering, etc., and those using high-temperature superconducting sintered bodies, and several reports have been made regarding electronic devices using high-temperature superconducting thin films. (For example, J. Koa.

pka、 R,Sobolcwski、^1osopk
a、alld S、J、Lcwasdowski;^p
p1. Phys、 Lett、 53 (91、29
(1988) 796参照)。
pka, R, Sobolczewski, ^1osopk
a, alld S, J, Lcwasdowski; ^p
p1. Phys, Lett, 53 (91, 29
(1988) 796).

(ハ) 発明が解決しようとする課題 超電導電磁波センサーが超電導層、絶縁層及び超電導層
の積層によるトンネル接合を形成せずに、超電導の粒界
の接合を利用する場合、従来の高温超電導薄膜を用いる
ものでは、薄膜における検出部の粒界間結合の制御が難
しく、再現性が悪い。
(c) Problems to be Solved by the Invention When a superconducting electromagnetic wave sensor utilizes superconducting grain boundary junctions without forming a tunnel junction by laminating a superconducting layer, an insulating layer, and a superconducting layer, it is necessary to use a conventional high-temperature superconducting thin film. With the method used, it is difficult to control the intergrain boundary bonding of the detection part in a thin film, and the reproducibility is poor.

また、従来考えられて6tた高温超電導焼結体を用いる
ものでは、焼結体が一般に脆性であるため、検出部の加
工が困難であり、検出部の加工が行われていなく、電磁
波の検出6度が悪いものであった。
In addition, in the previously considered 6-ton high-temperature superconducting sintered body, the sintered body is generally brittle, making it difficult to process the detection part. 6 degrees was bad.

本発明はかかる点に鑑み発明されたものにして、高温超
電導焼結体を用い、焼結体の加工技術の確立に基づいて
、再現性よく、又電磁波の検出感度を向上した超電導電
磁波センサー及びその製造方法を提供せんとするもので
ある。
The present invention was invented in view of the above points, and is a superconducting electromagnetic wave sensor and a superconducting electromagnetic wave sensor that uses a high-temperature superconducting sintered body and has improved electromagnetic wave detection sensitivity with good reproducibility based on the established processing technology of the sintered body. The present invention aims to provide a method for producing the same.

(ニ)課題を解決するための手段 かかる課題を解決するため、本発明による超電導電磁波
センサーは、超電導微粒子の焼結によって形成される検
出部とその両端電極部とからなり、検出部は電極部に比
して、超電導微粒子相互間の非超電導相からなる粒界の
割合が多いことを特徴とするものである。
(d) Means for Solving the Problems In order to solve the problems, the superconducting electromagnetic wave sensor according to the present invention consists of a detection section formed by sintering superconducting fine particles and electrode sections at both ends thereof, and the detection section is an electrode section. It is characterized by a large proportion of grain boundaries consisting of non-superconducting phases between superconducting fine particles compared to the above.

エフ、また、本発明によるその製造方法は、超電導機、
粒子の焼結によって形成される検出部に超音波を照射す
ることにより、検出部における超電導微粒子相互間の非
超電導相からなる粒界の割合を電極部に比し多くしたこ
とを特徴とするものである。
F. Also, the manufacturing method according to the present invention is a superconducting machine,
By irradiating ultrasonic waves to the detection part formed by sintering particles, the proportion of grain boundaries consisting of non-superconducting phases between superconducting fine particles in the detection part is increased compared to that in the electrode part. It is.

(ホ)作 用 本発明による超電導電磁波センサーは、その検出部が両
端電極部に比して超電導微粒子相互間の非超電導相から
なる粒界の割合を多くしているため検出部における粒界
に制限されずに流れる超電導電流が、非超電導相からな
る粒界の割合が少ないものに比し少なくなり、電磁波の
検出感度が高くなる。
(E) Function The superconducting electromagnetic wave sensor according to the present invention has a larger proportion of grain boundaries consisting of non-superconducting phases between superconducting fine particles in the detection part than in the electrode parts at both ends. The amount of superconducting current that flows unrestricted is reduced compared to the case where the proportion of grain boundaries made of non-superconducting phases is small, and the detection sensitivity of electromagnetic waves is increased.

また、本発明による製造方法は、超電導微粒子の焼結に
よって形成される検出部に超音波を照射することにより
検出部における超電導微粒子相互間の非超電導相からな
る粒界の割合を電極部に比し多くするものであるから、
検出部における粒界の結合の制御が容易となり、再現性
を高めることができる。
In addition, in the manufacturing method according to the present invention, the ratio of grain boundaries consisting of non-superconducting phases between superconducting particles in the detection area is compared to that in the electrode area by irradiating the detection area formed by sintering the superconducting particles with ultrasonic waves. Because it is something that increases
It becomes easy to control the bonding of grain boundaries in the detection part, and reproducibility can be improved.

ここで超電導体を用いた電磁波センサーの原理を説明す
る。
Here we will explain the principle of an electromagnetic wave sensor using superconductors.

一般に超電導弱結合素子の電流fI)−電圧(V)特性
は、第3図に示す実線特性となり、この素子に電磁波が
照射されると、電磁波の吸収による準粒子の発生により
、I −V特性が同図破線特性の如く変化する。このと
き、バイアス電流(工8)を流すことにより電圧変化(
δ■)が生じ、電磁波を検出する。この場合に素子の検
出部に流れる電流(I)は 1=I。+16 として表わされる。ここで、工、は粒界に制限されずに
流れる超電導電流であり、■。は粒界に制限される超電
導電流(ジョセフソン電流)であり、これらの超電導電
流を超電導粒子及びその粒界との関係で第4図に示す。
In general, the current fI)-voltage (V) characteristic of a superconducting weakly coupled device becomes the solid line characteristic shown in Figure 3. When this device is irradiated with electromagnetic waves, quasiparticles are generated due to the absorption of the electromagnetic waves, resulting in the I - V characteristic. changes as shown by the broken line characteristic in the figure. At this time, the voltage change (
δ■) is generated and electromagnetic waves are detected. In this case, the current (I) flowing through the detection part of the element is 1=I. +16. Here, Δ is a superconducting current that flows without being restricted by grain boundaries, and ■. are superconducting currents (Josephson currents) limited by grain boundaries, and these superconducting currents are shown in FIG. 4 in relation to superconducting particles and their grain boundaries.

この図は電磁波検出部における粒界の構造図であり、1
は超電導粒子、2は非超電導相からなる粒界である。
This figure shows the structure of grain boundaries in the electromagnetic wave detection section.
is a superconducting particle, and 2 is a grain boundary consisting of a non-superconducting phase.

超電導電流1.は、SIS、SNS等(Sは超電導体、
■は絶縁体、Nは常電導体)の接合による電流の総和で
ある。この超電導電流工。が粒界2に制限されるもので
あり、粒界の適当な接合構造をもったものが第3図に示
すジョセフソン接合を形成し、この接合部に電磁波が照
射されると、準粒子3が発生し、検出電流(△I)が流
れる。
Superconducting current 1. is SIS, SNS, etc. (S is superconductor,
(2) is an insulator, and N is a normal conductor). This superconducting electrician. is restricted to grain boundaries 2, and those with an appropriate grain boundary junction structure form the Josephson junction shown in Figure 3, and when this junction is irradiated with electromagnetic waves, quasiparticles 3 occurs, and a detection current (ΔI) flows.

超電導電流工。を、電磁波の影響を受けない超電導電流
Ia。と電磁波の影響を受ける超電導電流Ia、に分け
ると、 ■。=工G。+1゜。
Superconducting electrician. is a superconducting current Ia that is not affected by electromagnetic waves. and the superconducting current Ia, which is affected by electromagnetic waves. ■. = Engineering G. +1°.

で示され、前述の検出電流(Δ工)はΔ■=α工6、(
αは比例定数)で示される。従って超電導電流の変化率
は、 となり、電磁波の検出感度を高めるには、この式におけ
る工、を小さくすればよいことになる。
The above-mentioned detection current (Δwork) is expressed as Δ■=αwork6, (
α is a constant of proportionality). Therefore, the rate of change of the superconducting current is as follows, and in order to increase the detection sensitivity of electromagnetic waves, it is sufficient to reduce the factor in this equation.

本発明はこのIsを小さくするために、検出部組 における超電導微粒子相互間の非超電導零からなる粒界
の割合を、検出部の両端電極部に比してグくしたこと、
あるいは多くする方法を特徴とするものである。
In order to reduce this Is, the present invention increases the ratio of grain boundaries consisting of non-superconducting zeros between superconducting fine particles in the detection unit set compared to the electrode portions at both ends of the detection unit,
Or, it is characterized by a method of increasing the amount.

(へ)実施例 本発明の一実施例を、超電導材料として77に級の代表
としてY−Ba−Cu−0の場合を例にとって説明する
(F) Embodiment An embodiment of the present invention will be described by taking Y-Ba-Cu-0 as a representative superconducting material of class 77 as an example.

硝酸イツトlJウムY (NO3) 3−3.5820
と、硝酸バリウムBa(No:s)2と、硝酸銅Cu(
NOv) 2・3H20とを夫々水に溶かしてY、Ba
、Cuがモル比で1:2:3になるように混合する。
Nitrate lJium Y (NO3) 3-3.5820
, barium nitrate Ba (No:s)2, and copper nitrate Cu (
NOv) 2 and 3H20 are dissolved in water respectively to make Y and Ba.
, Cu are mixed in a molar ratio of 1:2:3.

ついで蓚酸H2C204・2 H20をBa元素2モル
に対し7モル加えてアンモニア水でpH1II整を行な
いpH=4〜7とし、蓚酸塩として共沈させる。
Next, 7 moles of oxalic acid H2C204.2H20 are added to 2 moles of Ba element, and the pH is adjusted to pH 1II with aqueous ammonia to a pH of 4 to 7, and oxalate is coprecipitated.

沈殿物をろ過し水洗した後、十分乾燥し、空気中におい
て850℃で9時間仮焼成する。次に、仮焼成の粉末を
1〜2トン/Cl112の圧力で成形後、920°Cで
酸素雰囲気中で12時間本焼成を行ない、YBaCuO
超電導体を得た。
After the precipitate is filtered and washed with water, it is sufficiently dried and calcined in air at 850° C. for 9 hours. Next, after molding the pre-fired powder at a pressure of 1 to 2 tons/Cl112, main firing was performed at 920°C in an oxygen atmosphere for 12 hours, and YBaCuO
A superconductor was obtained.

このようにして得られる超電導体は、焼成条件等の作製
条件で組成、粒径を制御することが可能であり、この実
施例で得られた超電導体は、粉末固相法等の他法で得ら
れるYBaCuO系焼結体に比べ粒径が0.5〜1gm
と小さく、均質な焼結体となった。
The composition and particle size of the superconductor obtained in this way can be controlled by the production conditions such as firing conditions, and the superconductor obtained in this example can be obtained by other methods such as the powder solid phase method. The particle size is 0.5 to 1 gm compared to the YBaCuO-based sintered body obtained.
The result was a small, homogeneous sintered body.

この超電導体をスライスした後、結晶化ガラス基板に酸
素雰囲気中で480℃の温度で0.4時間かけてフリッ
トガラスで接合した。この場合の温度としては、オルソ
−テトラ相転移温度以下である400〜500℃であれ
ばよい、この接合断面を光学顕微鏡で見たところ、均質
でクラックがない良好な接合が得られていることがわか
った。
After slicing this superconductor, it was bonded to a crystallized glass substrate using frit glass at a temperature of 480° C. for 0.4 hours in an oxygen atmosphere. In this case, the temperature should be 400 to 500°C, which is below the ortho-tetra phase transition temperature. When the cross section of this bond was viewed with an optical microscope, a good bond was obtained that was homogeneous and free of cracks. I understand.

その後スライス表面を50711程度の厚みにまで研磨
し、続いて研磨した超電導体を第1図に示す形状に16
に1Ix25〜50Wの超音波で加工した。第1図にお
いて、4は電磁波の検出部であり、両端電極部5.5を
有する。この検出部4はブリッジ部を構成し、その大き
さはおおよそ幅1100a、厚み50jIm、長さ3I
である。
The slice surface was then polished to a thickness of approximately 50,711 mm, and the polished superconductor was then shaped into the shape shown in Figure 1 by 16 mm.
It was processed using 1I x 25-50W ultrasonic waves. In FIG. 1, reference numeral 4 denotes an electromagnetic wave detection section, which has electrode sections 5.5 at both ends. This detection part 4 constitutes a bridge part, and its size is approximately 1100a in width, 50m in thickness, and 3I in length.
It is.

続いて第1図に示す形状の超電導体に、164Hx15
0W〜250Wの超音波を照射して検出部4の改質を行
なった。この超音波照射により、第4図に示した粒界構
造のものが、第2図に示す如く変化して、ダメージ層6
が形成され、非超電導相からなる粒界2の割合が多くな
り、改質される。この改質は加工端から約50μ■程度
であり、検出部4を改質する場合には、検出部4の幅を
約100μm以下とし、厚みを約50um以下とすれば
よい。第1図で改質部7を破線部により示す。この図面
から明らかなように検出部4における超電導微粒子1.
1間の非超電導相からなる粒界2の割合が、両端電極部
5.5に比し多くなる。
Next, 164H x 15
The detection part 4 was modified by irradiating ultrasonic waves of 0W to 250W. Due to this ultrasonic irradiation, the grain boundary structure shown in FIG. 4 changes as shown in FIG. 2, and the damaged layer 6
is formed, and the proportion of grain boundaries 2 made of non-superconducting phases increases, resulting in modification. This modification is about 50 μm from the processed end, and when modifying the detection portion 4, the width of the detection portion 4 should be about 100 μm or less and the thickness should be about 50 μm or less. In FIG. 1, the reforming section 7 is indicated by a broken line. As is clear from this drawing, superconducting fine particles 1.
The ratio of the grain boundaries 2 made of the non-superconducting phase between 1 and 1 is larger than that of the both-end electrode portions 5.5.

この構成により、前述の(1)式おける、粒界に制限さ
れず流れる超電導電漆工、を小さくすることができ、電
磁波の検出感度が高くなる。尚、前述の如く、一般にY
BaCuO系焼結体は脆性があり、@紺パターンの加工
が困難であるとされていたが、本発明の実施例では、基
板とYB aCuO系焼結体とが機械的に一体化されて
いるため、超音波加工時に接合部に加工時の歪みが集中
せず、微細加工が可能となった。加工前後の臨界温度T
ct(e口d point)は変化がなくいずれもTC
E=89にであった。
With this configuration, the superconducting electric lacquer flowing without being restricted by grain boundaries in the above-mentioned equation (1) can be reduced, and the detection sensitivity of electromagnetic waves is increased. Furthermore, as mentioned above, generally Y
It was believed that the BaCuO-based sintered body is brittle and difficult to process into the @dark blue pattern, but in the embodiment of the present invention, the substrate and the YB aCuO-based sintered body are mechanically integrated. Therefore, during ultrasonic processing, distortion during processing does not concentrate at the joint, making micro processing possible. Critical temperature T before and after processing
ct (e mouth d point) does not change and both are TC
E=89.

(ト)発明の効果 本発明による超電導電磁波センサーは、超電導微粒子の
焼結によって形成される検出部とその両部に比し多いか
ら、再現性がよく、また超電導微粒子相互間の非超電導
相からなる粒界の割合が、検出部とその両端電極部とで
ほぼ同じものに比して、電磁波の検出感度を高めること
ができる。本弁明による超電導電磁波センサーの製造法
は、超電導微粒子の焼結によって形成される検出部とそ
の両端電極部とを備え、検出部に超音波を照射す電磁波
センサーの製造が簡単である。
(G) Effects of the Invention The superconducting electromagnetic wave sensor according to the present invention has a detection part formed by sintering superconducting fine particles and a large number of both parts, so it has good reproducibility and is free from non-superconducting phases between superconducting fine particles. The detection sensitivity of electromagnetic waves can be improved compared to a case where the ratio of grain boundaries is almost the same in the detection part and the electrode parts at both ends thereof. The method for manufacturing a superconducting electromagnetic wave sensor according to the present invention is simple in manufacturing an electromagnetic wave sensor that includes a detecting section formed by sintering superconducting fine particles and electrode sections at both ends thereof, and irradiates the detecting section with ultrasonic waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示し、第1図は
検出部及び両端電極部の拡大平面図、第2図は検出部に
おける粒界構造模式図、第3図は超電導弱結合素子の電
流−電圧特性図、第4図は従来の検出部における粒界構
造模式図、第5図はジョセフソン結合のバンド構造図で
ある。 1・・・超電導微粒子、2・・・非超電導相からなる粒
界、3・・・準粒子、4・・・検出部、5・・・電極部
、6・・・ダメージ層、7・・・改質部。
Figures 1 and 2 show an embodiment of the present invention. Figure 1 is an enlarged plan view of the detection part and both end electrode parts, Figure 2 is a schematic diagram of the grain boundary structure in the detection part, and Figure 3 is a superconducting A current-voltage characteristic diagram of a weakly coupled element, FIG. 4 is a schematic diagram of a grain boundary structure in a conventional detection section, and FIG. 5 is a diagram of a band structure of Josephson coupling. DESCRIPTION OF SYMBOLS 1... Superconducting fine particle, 2... Grain boundary consisting of a non-superconducting phase, 3... Quasiparticle, 4... Detection part, 5... Electrode part, 6... Damage layer, 7...・Reforming section.

Claims (2)

【特許請求の範囲】[Claims] (1)超電導微粒子の焼結によって形成される検出部と
その両端電極部とからなり、 検出部は電極部に比して超電導微粒子相互間の非超電導
相からなる粒界の割合が多いことを特徴とする超電導電
磁波センサー。
(1) It consists of a detection part formed by sintering superconducting fine particles and electrode parts at both ends thereof, and the detection part has a larger proportion of grain boundaries consisting of non-superconducting phases between superconducting fine particles than the electrode part. Features a superconducting electromagnetic wave sensor.
(2)超電導微粒子の焼結によって形成される検出部と
その両端電極部とを備え、 検出部に超音波を照射することにより、検出部における
超電導微粒子相互間の非超電導相からなる粒界の割合を
電極部に比し多くしたことを特徴とする超電導電磁波セ
ンサーの製造方法。
(2) Equipped with a detection part formed by sintering superconducting fine particles and electrode parts at both ends thereof, and by irradiating the detection part with ultrasonic waves, it is possible to detect grain boundaries consisting of non-superconducting phases between superconducting fine particles in the detection part. A method for manufacturing a superconducting electromagnetic wave sensor, characterized in that the proportion is larger than that of an electrode part.
JP1140301A 1989-06-01 1989-06-01 Superconductive electromagnetic wave sensor and manufacture thereof Pending JPH034574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140301A JPH034574A (en) 1989-06-01 1989-06-01 Superconductive electromagnetic wave sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140301A JPH034574A (en) 1989-06-01 1989-06-01 Superconductive electromagnetic wave sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH034574A true JPH034574A (en) 1991-01-10

Family

ID=15265603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140301A Pending JPH034574A (en) 1989-06-01 1989-06-01 Superconductive electromagnetic wave sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH034574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130040019A1 (en) * 2010-04-23 2013-02-14 Spotless Tea Bag Oy Package for a beverage preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130040019A1 (en) * 2010-04-23 2013-02-14 Spotless Tea Bag Oy Package for a beverage preparation
US10793348B2 (en) * 2010-04-23 2020-10-06 Spotless Tea Bag Oy Package for a beverage preparation

Similar Documents

Publication Publication Date Title
EP0329603B1 (en) Grain boundary junction devices using high-tc superconductors
EP0482777B1 (en) Method for fabricating oxide superconducting coatings
JPH034574A (en) Superconductive electromagnetic wave sensor and manufacture thereof
JP2641447B2 (en) Superconducting switching element
JP2698642B2 (en) Superconducting magnetoresistive element
JPH0319290A (en) Electromagnetic wave sensor
JPH07113663B2 (en) Characteristic control circuit for superconducting magnetic sensor
JP2524421B2 (en) Manufacturing method of patterned superconducting film
JPH03142887A (en) Manufacture of patterned superconducting film
JP2529746B2 (en) Method for manufacturing superconducting film
JPS63276812A (en) Oxide superconductor
JP2889595B2 (en) Method for forming electrode of oxide superconductor film
JP3016566B2 (en) Superconducting switch element
JP4092393B2 (en) High temperature superconducting Josephson junction forming method and high temperature superconducting Josephson device comprising Josephson junction formed thereby
JPH0341332A (en) Superconducting pressure sensor
JPS63299010A (en) Ceramic superconductive material
JPH03249571A (en) Electromagnetic wave detecting element
JPH01138770A (en) Superconducting magnetoresistance element system
JPH01173765A (en) Superconductor film magnetic sensor
Scolnik et al. Electrochemical room temperature reduction and reoxydation of thin films and pellets of YBa2Cu3O7− x
Yen et al. High Tc Superconducting Y-Ba-Cu-O Thick Fim by Screen Printing
JPH02260472A (en) Josephson junction element
JPH0570104A (en) Production of oxide superconducting film
JPH0461177A (en) Superconducting tunnel junction
JPH02114575A (en) Magnetoresistance element of superconducting laminated film