JPH02260472A - Josephson junction element - Google Patents

Josephson junction element

Info

Publication number
JPH02260472A
JPH02260472A JP1078178A JP7817889A JPH02260472A JP H02260472 A JPH02260472 A JP H02260472A JP 1078178 A JP1078178 A JP 1078178A JP 7817889 A JP7817889 A JP 7817889A JP H02260472 A JPH02260472 A JP H02260472A
Authority
JP
Japan
Prior art keywords
josephson junction
link
thin film
superconductor
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1078178A
Other languages
Japanese (ja)
Inventor
Takayuki Yagi
隆行 八木
Katsuhiko Shinjo
新圧 克彦
Atsuko Tanaka
温子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1078178A priority Critical patent/JPH02260472A/en
Publication of JPH02260472A publication Critical patent/JPH02260472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve sensitivity as an electromagnetic wave detector by specifying the link length of a link part in a bridge type grain boundary Josephson junction using a superconductor polycrystalline thin film with respect to the width of the link. CONSTITUTION:A superconductor polycrystalline thin film 2 is provided on a substrate 1, and a bridge type Josephson junction using crystalline grain boundary 4 of the film 2 is formed. The length L of a link 5 for coupling between superconducting electrodes 6 and 6' in the junction is so set as to become L>=2w to the width (w) of the link. Thus, a superconducting normal resistance RN is increased, and the product of a critical current IC and RN can be increased. As a result, a high sensitivity bridge type Josephson junction element having high upper frequency limit of a Josephson mixer can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野] 本発明は、マイクロ波から赤外光にかけての電磁波の検
出に使用されるジョセフソン接合素子に関する。 〔従来の技術] ジョセフソン接合素子を用いた電磁波検出器は、マイク
ロ波、ミリ波、赤外領域で最も感度が良く、応答の速い
広帯域検出器である。従来の検出器に用いられるジョセ
フソン接合の形式として、ポイントコンタクト型、サン
ドウィッチ型(S I S型)、準平面型、ブリッジ型
等の様々な形態が提案されている。中でも、ブリッジ型
ジョセフソン接合素子は、素子形態が単純な構造である
ために、各種の金属超伝導薄膜及びB1PbBaO酸化
物超伝導膜において、様々な形態の検討がなされてきて
いる(Japn、 J、 Appl、 Phys、、2
2,544(1983)、特開昭59−210678)
。 し発明が解決すべき課題) しかしながら、近年発見されたセラミックス超伝導薄膜
、例えば、YBazCuJt−δ、 ErBazCu3
0t−6(0〈δ<+)、 BizSrzCazCus
Ox等の多結晶薄膜を用いたブリッジ型粒界ジョセフソ
ン接合素子のミリ波応答性の検討はなされているものの
(Japn、 J。 Appl、 Phys、、Llllo (1988))
 、電磁波検出器として感度向上を目的とした素子形態
の検討には未だ至っていない。
[Industrial Application Field] The present invention relates to a Josephson junction device used for detecting electromagnetic waves ranging from microwaves to infrared light. [Prior Art] An electromagnetic wave detector using a Josephson junction element is a broadband detector with the highest sensitivity and quick response in the microwave, millimeter wave, and infrared regions. Various types of Josephson junctions used in conventional detectors have been proposed, such as a point contact type, a sandwich type (SIS type), a quasi-plane type, and a bridge type. Among them, the bridge type Josephson junction device has a simple structure, so various forms have been investigated in various metal superconducting thin films and B1PbBaO oxide superconducting films (Japan, J. , Appl, Phys., 2
2,544 (1983), Japanese Patent Publication No. 59-210678)
. However, recently discovered ceramic superconducting thin films such as YBazCuJt-δ and ErBazCu3
0t-6(0<δ<+), BizSrzCazCus
Although studies have been conducted on the millimeter wave response of bridge-type grain boundary Josephson junction devices using polycrystalline thin films such as Ox (Japan, J. Appl, Phys, Llllo (1988)).
However, studies have not yet been conducted on the element form for the purpose of improving sensitivity as an electromagnetic wave detector.

【課題を解決するための手段1 本発明は、上記点に鑑みなされたものであり、電磁波検
出器に用いられる高感度なブリッジ型ジョセッフソン接
合素子を提供するものである。 即ち、本発明は、基板上に超伝導体多結晶薄膜を備え、
該7I膜の結晶粒界を用いたブリッジ型ジョセフソン接
合が形成され、前記ジョセフソン接合における超伝導電
橋間を連結するリンクにおけるリンク長りがリンク幅W
に対しL≧2Wとなる粒界ジョセフソン接合を形成する
ことにより超伝導ノーマル抵抗RNを大きくし、IcR
,積を大きくでき、その結果としてジョセフソンミキサ
の周波数上限(fc・2eRslc/h)を挙げること
が可能となる(「超電導エレクトロニクス」、オーム社
刊P93〜)。これにより、ジョセフソンミキサの周波
数上限の高い高感度ブリッジ型ジョセフソン接合素子を
提供することができる。 また、基板上に成膜される超伝導体多結晶薄膜とは、粒
界ジョセフソン接合を構成する超伝導体の組成をA−B
−C−Dと表わすとき、AがLa、Ce、Pr、Pm、
Sm、Eu、Gd。 Tb、Dy、Ho、Er、Tm、Yb、Lu。 Sc、Y、Bi、Tlよりなる群より選ばれた一種以上
の元素、BはCa、Sr、Ba、Pbよりなる群より選
ばれた一種以上の元素、CはV。 Ti、Cr、Mn、Fe、Ni、Co、Ag。 Cd、Cu、Zn、Hg、Ruよりなる群より選ばれた
一種以上の元素、DはO19からなる群より選ばれた一
種以上の元素であるような組成を有する超伝導体が最も
好ましい。 以下図面により本発明の詳細な説明する。 第1図は本発明の特徴を最も良く表わす図であり、ブリ
ッジ型粒界ジョセフソン結合の構造を示し、1は基板、
2は超伝導体多結晶薄膜、3は超伝導体結晶粒、4は結
晶粒界、 6.6゛は超伝導電極、5は電極間を連結す
るリンク部であり、その部分には粒界ジョセフソン接合
が形成されている。リンク長、リンク幅は第1図(C)
に示す通り、各々L、wで表わす、ブリッジ型ジョセフ
ソン接合の典型的なt−V特性曲線を第2図に示す。図
中、破線から得られる抵抗を超伝導ノーマル抵抗Rs、
電圧がゼロの時の電流を臨界電流1cと定義する。リン
ク長を長くすることで超伝導ノーマル抵抗RNが大きく
なり、リンク幅を広くすることで臨界電流Icを大きく
取れる。 しかしながら、リンク幅Wは超伝導体結晶粒の大きさに
制限を受ける。近年発見されたセラミ・ソクス超伝導薄
膜において、粒界ジョセフソン接合は、超伝導薄膜の作
製方法により決定されるものであり、接合特性を制御し
つるためには、特別な方法を考えなければならない。本
発明は、マグネトロンスパッタ法、クラスクーイオンビ
ーム法。 レーザー蒸着、CVD法、電子ビーム加熱蒸着法等の適
当な成膜方法にて作製した超伝導体多結晶薄膜を用いた
ブリッジ型粒界ジョセフソン接合に関するものであり、
結晶粒の大きさに比較し、リンク幅を極めて大きくした
場合、リンク部内にジョセフソン接合が存在するものの
、接合とはならずに超伝導電極として作用する部分の存
在確立が増し、電磁波検出用素子としての性能を著しく
低下せしめることがある。このためブリッジ型粒界ジョ
セフソン接合に用いる適当なリンク幅としては、平均的
結晶粒の大きさの8倍以下程度にする必要がある。また
、リンク幅を結晶粒と同等もしくはそれ以下とした時に
は、リンク部内にジョセフソン接合が存在しない場合も
起こりうることはいうまでもない0以上よりリンク幅と
しては結晶粒の2倍から8倍程度に抑えておく必要があ
る。 本発明においては、基板上に形成した超伝導体多結晶薄
膜に対して第1図(C)に示すバターン、即ち、ジョセ
フソン接合となるリンク部5とその両側に形成された1
対の電極部6.6°をフォトエツチング等により形成す
る。 〔実施例1 以下実施例により本発明を具体的に説明する。 夫癒■ユ YrBatCusOt−6(0<δ〈1)なる組成のセ
ラミックスを5インチφターゲットとしてマグネトロン
スパッタで、アルゴン気体のガス圧0.5Pa 、スパ
ッタパワー200Wにおいて20℃の温度に保持したマ
グネシア基板上に厚さ5000人のY+Bat、 ea
cus、 4907−X(0<X<1)なる組成の薄膜
を形成し、その後酸素雰囲気中で940℃において3時
間熱処理を行なった。こうして薄膜はTc75にの超伝
導体多結晶薄膜となり、結晶粒1〜3μ程度の粒界ジョ
セフソン接合を有するものができる。その後、フォトレ
ジストOMR−83(商標、東京応化工業株式会社製)
を用いバターニングした後、アルゴンイオンミーリング
装置によりエツチングし、第1図(C)のパターンを形
成した。こうして形成したジョセフソン接合素子の特性
を4.5Kに冷却したクライオスタット中にて50GH
zのミリ波を照射して得られるI−V特性上のシャピロ
ステップの次数により評価した。第1表にリンク長及び
リンク幅を変えた時のIcR5積とミリ波応答性の評価
結果を示す、ミリ波応答性の評価に当っては、5次以上
のステップが得られたものについて0,2〜4次のステ
ップが得られたものをΔ、1次以下のものをXとした。 第1表 B15Sr*Ca*CLlsOxなる組成のセラミック
スを5インチφターゲットとして、実施例1と同様のス
パッタ条件にてマグネシア基板上に厚さ4000人のB
izSrz、 oscaa、 4ocuz、 atOx
なる組成の薄膜を形成し、その後酸素雰囲気中で850
℃において1時間熱処理を行なった。こうして薄膜はT
c 65にの超伝導体多結晶薄膜となり、結晶粒0.8
〜1.5鱗程度の粒界ジョセフソン接合を有するものが
できた。 実施例1と同様の方法でバターニングした後に同様にミ
リ波応答性の評価を行なった。結果を第2表に示す。 第1表 り及びリンク幅Wの比L / wが2以上となる時、比
較的ICRN積が大きく、50GHzのミリ波照射によ
り5次以上のシャピロステップが現われる高感度なジョ
セフソン接合素子を得ることができた。 【発明の効果】 以上説明したように、超伝導体多結晶薄膜を用いたブリ
ッジ型粒界ジョセフソン接合におけるリンク部のリンク
長りがリンク幅Wに対しL≧2Wとなるようにすること
で、ジョセフソン接合素子のICRN積が大きくとれ、
ジョセフソンミキサとしての周波数上限を上げることと
なり、電磁波検出素子としての高感度が図られる。
[Means for Solving the Problems 1] The present invention has been made in view of the above points, and provides a highly sensitive bridge-type Josephson junction element used in an electromagnetic wave detector. That is, the present invention includes a superconductor polycrystalline thin film on a substrate,
A bridge-type Josephson junction is formed using the grain boundaries of the 7I film, and the length of the link connecting the superconducting bridges in the Josephson junction is the link width W.
By forming a grain boundary Josephson junction where L≧2W, the superconducting normal resistance RN is increased, and IcR
, product can be increased, and as a result, it becomes possible to raise the upper frequency limit (fc·2eRslc/h) of the Josephson mixer ("Superconducting Electronics", published by Ohmsha, p. 93~). This makes it possible to provide a highly sensitive bridge-type Josephson junction element with a high frequency upper limit for the Josephson mixer. In addition, the superconductor polycrystalline thin film formed on the substrate has a composition of A-B that constitutes the grain boundary Josephson junction.
- When expressed as CD, A is La, Ce, Pr, Pm,
Sm, Eu, Gd. Tb, Dy, Ho, Er, Tm, Yb, Lu. One or more elements selected from the group consisting of Sc, Y, Bi, and Tl; B is one or more elements selected from the group consisting of Ca, Sr, Ba, and Pb; and C is V. Ti, Cr, Mn, Fe, Ni, Co, Ag. Most preferably, the superconductor has a composition in which D is one or more elements selected from the group consisting of Cd, Cu, Zn, Hg, and Ru, and D is one or more elements selected from the group consisting of O19. The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a diagram that best represents the features of the present invention, and shows the structure of a bridge type grain boundary Josephson bond, where 1 is a substrate,
2 is a superconductor polycrystalline thin film, 3 is a superconductor crystal grain, 4 is a grain boundary, 6.6゛ is a superconducting electrode, and 5 is a link connecting the electrodes, and there are grain boundaries in that part. A Josephson junction is formed. The link length and link width are shown in Figure 1 (C).
FIG. 2 shows a typical t-V characteristic curve of a bridge type Josephson junction, denoted by L and w, respectively. In the figure, the resistance obtained from the broken line is superconducting normal resistance Rs,
The current when the voltage is zero is defined as critical current 1c. By increasing the link length, the superconducting normal resistance RN increases, and by increasing the link width, the critical current Ic can be increased. However, the link width W is limited by the size of superconductor crystal grains. In the Cerami-Sox superconducting thin films discovered in recent years, the grain boundary Josephson junction is determined by the method of manufacturing the superconducting thin film, and special methods must be devised to control the bonding properties. No. The present invention is a magnetron sputtering method and a Claskoo ion beam method. It relates to a bridge type grain boundary Josephson junction using a superconductor polycrystalline thin film produced by an appropriate film formation method such as laser deposition, CVD method, electron beam heating evaporation method, etc.
If the link width is made extremely large compared to the size of the crystal grains, although a Josephson junction exists within the link, there is an increased possibility of the existence of a portion that does not act as a junction but acts as a superconducting electrode, which is useful for detecting electromagnetic waves. The performance of the device may be significantly degraded. Therefore, an appropriate link width for use in a bridge type grain boundary Josephson junction needs to be approximately 8 times or less the average crystal grain size. In addition, when the link width is equal to or smaller than the crystal grain, it goes without saying that this can occur even if there is no Josephson junction in the link part, and the link width is from 2 times to 8 times the crystal grain from 0 or more. It is necessary to keep it to a certain extent. In the present invention, the superconductor polycrystalline thin film formed on the substrate is patterned as shown in FIG.
A pair of electrode portions of 6.6° are formed by photoetching or the like. [Example 1] The present invention will be specifically explained below with reference to Examples. A magnesia substrate was prepared by magnetron sputtering using ceramics having a composition of YrBatCusOt-6 (0<δ<1) at a temperature of 20°C using an argon gas pressure of 0.5Pa and a sputtering power of 200W using a 5-inch diameter target. 5000 thick Y+Bat on top, ea
A thin film having a composition of C.cus, 4907-X (0<X<1) was formed, and then heat treatment was performed at 940° C. for 3 hours in an oxygen atmosphere. In this way, the thin film becomes a superconductor polycrystalline thin film of Tc75, and has grain boundary Josephson junctions with crystal grains of about 1 to 3 μm. After that, photoresist OMR-83 (trademark, manufactured by Tokyo Ohka Kogyo Co., Ltd.)
After patterning using an argon ion milling device, the pattern shown in FIG. 1(C) was formed. The characteristics of the Josephson junction device thus formed were tested at 50GH in a cryostat cooled to 4.5K.
Evaluation was made based on the order of the Shapiro step on the IV characteristic obtained by irradiating the millimeter wave of z. Table 1 shows the evaluation results of the IcR5 product and millimeter wave responsiveness when changing the link length and link width. , 2nd to 4th order steps were obtained as Δ, and those of 1st order or less were set as X. Table 1 Using ceramics with the composition B15Sr*Ca*CLlsOx as a 5-inch diameter target, a B of 4000 mm thick was sputtered on a magnesia substrate under the same sputtering conditions as in Example 1.
izSrz, oscaa, 4ocuz, atOx
A thin film with a composition of
Heat treatment was performed at ℃ for 1 hour. In this way, the thin film is T
c 65 superconductor polycrystalline thin film with crystal grains of 0.8
A material having a grain boundary Josephson junction of about 1.5 scales was obtained. After patterning was performed in the same manner as in Example 1, the millimeter wave response was evaluated in the same manner. The results are shown in Table 2. When the ratio L/w of the first surface and the link width W is 2 or more, a highly sensitive Josephson junction element with a relatively large ICRN product and a fifth-order or higher Shapiro step appearing by 50 GHz millimeter wave irradiation is obtained. I was able to do that. [Effects of the Invention] As explained above, by making the link length of the link part in a bridge type grain boundary Josephson junction using a superconductor polycrystalline thin film satisfy L≧2W with respect to the link width W. , the ICRN product of the Josephson junction element can be large,
This increases the upper limit of the frequency of the Josephson mixer, and increases the sensitivity of the electromagnetic wave detection element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はブリッジ型粒界ジョセフソン結合の構造を示し
、(a)は上面図、(b)は断面図、(C)はジョセフ
ソン接合素子のパターン図であり、第2図はブリッジ型
ジョセフソン接合のI−V特性曲線を示す。 第1表及び第2表からも分るように、リンク長・・・基
板 ・・・超伝導体多結晶薄膜 ・・・超伝導体結晶粒 ・・・結晶粒界 ・・・リンク部 、6°・・・超伝導電極
Figure 1 shows the structure of a bridge type grain boundary Josephson bond, (a) is a top view, (b) is a cross-sectional view, (C) is a pattern diagram of a Josephson junction element, and Figure 2 is a bridge type 1 shows an IV characteristic curve of a Josephson junction. As can be seen from Tables 1 and 2, link length...substrate...superconductor polycrystalline thin film...superconductor crystal grain...crystal grain boundary...link part, 6 °・・・Superconducting electrode

Claims (1)

【特許請求の範囲】 1、基板上に超伝導体多結晶薄膜を備え、該薄膜の結晶
粒界を用いたブリッジ型ジョセフソン接合が形成され、
前記ジョセフソン接合における超伝導電極間を連結する
リンクにおけるリンク長Lがリンク幅wに対しL≧2w
となる粒界ジョセフソン接合を形成されたジョセフソン
接合素子。 2、超伝導体多結晶薄膜の組成をA−B−C−Dと表わ
すとき、AがLa、Ce、Pr、Pm、Sm、Eu、G
d、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc
、Y、Bi、Tlよりなる群より選ばれた一種以上の元
素、BはCa、Sr、Ba、Pbよりなる群より選ばれ
た一種以上の元素、CはV、Ti、Cr、Mn、Fe、
Ni、Co、Ag、Cd、Cu、Zn、Hg、Ruより
なる群より選ばれた一種以上の元素、Dは0.5からな
る群より選ばれた一種以上の元素であることを特徴とす
る請求項1記載のジョセフソン接合素子。
[Claims] 1. A superconductor polycrystalline thin film is provided on a substrate, and a bridge-type Josephson junction is formed using the crystal grain boundaries of the thin film,
The link length L of the link connecting the superconducting electrodes in the Josephson junction is L≧2w with respect to the link width w.
A Josephson junction element with a grain boundary Josephson junction formed. 2. When the composition of a superconductor polycrystalline thin film is expressed as A-B-C-D, A is La, Ce, Pr, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc
, Y, Bi, Tl, B is one or more elements selected from the group consisting of Ca, Sr, Ba, Pb, C is V, Ti, Cr, Mn, Fe ,
One or more elements selected from the group consisting of Ni, Co, Ag, Cd, Cu, Zn, Hg, Ru, and D is one or more elements selected from the group consisting of 0.5. The Josephson junction device according to claim 1.
JP1078178A 1989-03-31 1989-03-31 Josephson junction element Pending JPH02260472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078178A JPH02260472A (en) 1989-03-31 1989-03-31 Josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078178A JPH02260472A (en) 1989-03-31 1989-03-31 Josephson junction element

Publications (1)

Publication Number Publication Date
JPH02260472A true JPH02260472A (en) 1990-10-23

Family

ID=13654711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078178A Pending JPH02260472A (en) 1989-03-31 1989-03-31 Josephson junction element

Country Status (1)

Country Link
JP (1) JPH02260472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244870A (en) * 1990-05-11 1993-09-14 The University Of Tokyo Superconductive optoelectronic device with the basic substance Cu2 O of superconductive-conjugate photoconductivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244870A (en) * 1990-05-11 1993-09-14 The University Of Tokyo Superconductive optoelectronic device with the basic substance Cu2 O of superconductive-conjugate photoconductivity

Similar Documents

Publication Publication Date Title
JPH03270280A (en) Microelectron circuit element having superconductive crosspath and manu- facture thereof
JPH03228384A (en) Superconducting element
JPH02260472A (en) Josephson junction element
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP3059806B2 (en) Superconducting element and manufacturing method thereof
JPH0272685A (en) Method for forming weakly coupled superconductor part
JP3016566B2 (en) Superconducting switch element
JP3075788B2 (en) Manufacturing method of weakly coupled superconducting thin film
JPS63259980A (en) Oxide superconductor film
JPH02264486A (en) Superconductive film weakly coupled element
JPH031583A (en) Method for forming josephson junction element
RU2298260C1 (en) Method for manufacturing superconducting device
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JPH06120574A (en) Superconductive element and manufacture thereof
JPH0196582A (en) Signal detector
JPH02184087A (en) Superconducting weakly-coupled element
JPH04105372A (en) Micro-bridge type josephson junction element
JPH02260473A (en) Josephson junction element
JP3085492B2 (en) Micro-bridge type Josephson device and stacked type Josephson device
JPH0262083A (en) Josephson junction element and formation thereof
JPH02260475A (en) Forming method for josephson junction element
JPH0319290A (en) Electromagnetic wave sensor
JPH0561787B2 (en)
JPS63310182A (en) Manufacture of superconductive wiring
JPH03234071A (en) Josephson element