JPH0344564A - Method and device for measuring photoelectric field - Google Patents

Method and device for measuring photoelectric field

Info

Publication number
JPH0344564A
JPH0344564A JP1179856A JP17985689A JPH0344564A JP H0344564 A JPH0344564 A JP H0344564A JP 1179856 A JP1179856 A JP 1179856A JP 17985689 A JP17985689 A JP 17985689A JP H0344564 A JPH0344564 A JP H0344564A
Authority
JP
Japan
Prior art keywords
electric field
light
pockels element
section
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1179856A
Other languages
Japanese (ja)
Other versions
JPH077022B2 (en
Inventor
Yoshinari Kozuka
小塚 義成
Yuichi Kakizaki
柿崎 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1179856A priority Critical patent/JPH077022B2/en
Priority to US07/550,978 priority patent/US5111135A/en
Publication of JPH0344564A publication Critical patent/JPH0344564A/en
Publication of JPH077022B2 publication Critical patent/JPH077022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To compensate a temperature characteristic of a Pockels element and to enable execution of accurate measurement by making a prescribed direct-current electric field act, together with an alternating-current electric field act, together with an alternating-current electric field, on the element and by determining the electric field and a voltage from the relative ratio between angular frequency signals being the same and twice as large as the alternating-current electric field. CONSTITUTION:A light emitted from a light-emitting unit 15 enters a sensor head unit 2 and passes through a Pockels element 4 provided between a polarizer 6 and an analyzer 8. In the element 4, the light is subjected to modulation by an alternating- current voltage V to be measured and a direct-current voltage VDC and then enters a light-receiving unit 24, and an electric signal is supplied therefrom to an identical angular frequency component detector 26 and a double angular frequency component detector 28. A division circuit 30 subjects signal components from the detectors 26 and 28 to division and outputs a division signal ET (=E2w/Ew), wherefrom the voltage V is measured. By selecting the voltage VDC satisfying ET = V/4VDC, the signal ET is made free from an effect due to the temperature of the element 4 and others and thus accurate measurement can be attained in a stable manner.

Description

【発明の詳細な説明】 (技術分野) 本発明は、ポッケルス効果による光の変調作用を利用し
て交流電界若しくはその交流電界を発生する交流電圧を
測定する光電界測定方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an optical electric field measuring method and apparatus for measuring an alternating current electric field or an alternating current voltage that generates the alternating electric field by utilizing the light modulation effect due to the Pockels effect. .

(背景技術) 近年、電界若しくは電圧を測定する技術の一つとして、
電気光学効果の一つであるポッケルス効果を利用する測
定手法が注目を受けている。この手法によれば、光が媒
体となり、そのために、絶縁性が良好であり、また電磁
誘導ノイズを受けない等の特徴を発揮するからである。
(Background technology) In recent years, as one of the technologies for measuring electric fields or voltages,
Measurement methods that utilize the Pockels effect, which is one of the electro-optical effects, are attracting attention. This is because, according to this method, light is used as a medium, and therefore, characteristics such as good insulation properties and no electromagnetic induction noise are exhibited.

ところで、このポッケルス効果を用いた電界(電圧)の
測定には、良く知られているように、ポッケルス素子と
その光透過方向の前後に配置された偏光子及び検光子と
を含むセンサ部と、該センサ部に透過させる光を出射せ
しめる発光部と、該センサ部を透過した光を受光して、
その受光した光に対応する電気信号を出力する受光部と
を含んで構成されてなる構造の装置が用いられることと
なるのである。
By the way, in order to measure an electric field (voltage) using the Pockels effect, as is well known, a sensor section including a Pockels element, a polarizer and an analyzer arranged before and behind the Pockels element in the light transmission direction; a light emitting unit that emits light that is transmitted through the sensor unit; and a light emitting unit that receives the light that has passed through the sensor unit;
A device having a structure including a light receiving section that outputs an electric signal corresponding to the received light is used.

そして、そのような装置においては、発光部からの光が
センサ部を透過させられる際、ポッケルス素子に作用さ
れる電界強度に応じてその透過光が変調されて、検光子
から出射される光の強度、つまり受光部で受光される光
の強度が変(1,せしめられるのであり、従って、その
受光部から出力される電気信号に基づいて、ポッケルス
素子に作用する電界若しくはその電界を与える電圧を測
定することができるのである。
In such a device, when the light from the light emitting part is transmitted through the sensor part, the transmitted light is modulated according to the electric field strength acting on the Pockels element, and the light emitted from the analyzer is modulated. The intensity, that is, the intensity of the light received by the light receiving part is changed (1). Therefore, based on the electrical signal output from the light receiving part, the electric field acting on the Pockels element or the voltage that provides the electric field can be changed. It can be measured.

而して、かかる従来のポッケルス効果を利用する光電界
測定装置には、ポッケルス素子の設置位置の環境変化に
より、出力信号の大きさが変化するという問題が内在し
ていることが、認められている。そして、その原因の一
つとして、被測定電界(電圧)を求めるための関係式中
に含まれるポッケルス素子の電気光学定数等に、温度依
存性が存在することが、挙げられるのである。尤も、こ
の問題を解決すべく、各種の方式が検討されてはいるが
、それらは、何れも、かかる問題点を充分に解決するに
至っていないか、若しくは方式が複雑であったり、装置
が大掛かりであったりして、実用性に乏しいといった問
題があったのである。
It has been recognized that such conventional optical electric field measurement devices that utilize the Pockels effect have an inherent problem in that the magnitude of the output signal changes due to environmental changes in the installation position of the Pockels element. There is. One of the reasons for this is that the electro-optical constant of the Pockels element included in the relational expression for determining the electric field (voltage) to be measured has temperature dependence. Although various methods have been considered to solve this problem, none of them have fully solved the problem, or the methods are complicated or the equipment is large. Therefore, there was a problem that it was not practical.

(解決課題) ここにおいて、本発明は、かかる事情を背景にして為さ
れたものであって、その解決すべき課題とするところは
、環境変化により出力信号の大きさが変化することがな
く、安定した検出精度を維持することの出来る光電界測
定方法並びに装置を提供することにあり、また電気光学
定数が温度依存性を有するポッケルス素子を用いて作製
された光電界測定装置においても、その温度特性を補償
し、しかも簡単な装置構造において、光電界・電圧測定
を実現し得るようにすることにある。
(Problem to be solved) The present invention has been made against this background, and the problem to be solved is to prevent the magnitude of the output signal from changing due to environmental changes. The purpose of the present invention is to provide an optical electric field measuring method and apparatus that can maintain stable detection accuracy, and also to provide an optical electric field measuring apparatus manufactured using a Pockels element whose electro-optic constant is temperature dependent. The object of this invention is to compensate for the characteristics and to make it possible to measure optical electric fields and voltages with a simple device structure.

(解決手段) そして、本発明は、かかる課題解決のために、ポッケル
ス素子の光透過方向の前後に偏光子と検光子とを直列に
配置して、該ポッケルス素子に作用する電界にて透過光
が変調せしめられるように構成したセンサ部に、測定す
べき交流電界をそのポッケルス素子に作用させつつ、発
光部から出射された光を透過せしめて、受光した光に対
応した信号を出力する受光部にて、該センサ部を透過し
た透過光を受光させ、その受光部の出力信号から、前記
交流電界若しくは該交流電界を発生する交流電圧を求め
るに際して、前記ポッケルス素子に前記交流電界と共に
所定の直流電界を作用させつつ、前記センサ部に前記発
光部から出射された光を透過させて、その透過光を前記
受光部で受光させる一方、前記受光部の出力信号から前
記交流電界と同一角周波数の信号成分(Eω)及び2倍
の角周波数の信号成分(EXω)を取り出して、それら
の相対比から、前記交流電界若しくは前記交流電圧を求
めるようにしたのである。
(Solution Means) In order to solve this problem, the present invention arranges a polarizer and an analyzer in series before and after the light transmission direction of the Pockels element, and uses the electric field acting on the Pockels element to generate the transmitted light. a light receiving section that transmits light emitted from the light emitting section and outputs a signal corresponding to the received light while applying an alternating current electric field to be measured to the Pockels element of the sensor section configured to modulate the light; When receiving the transmitted light transmitted through the sensor section and determining the alternating current electric field or the alternating current voltage that generates the alternating electric field from the output signal of the light receiving section, a predetermined direct current voltage is applied to the Pockels element together with the alternating electric field. While applying a field, the light emitted from the light emitting part is transmitted through the sensor part, and the transmitted light is received by the light receiving part. The signal component (Eω) and the signal component with twice the angular frequency (EXω) are taken out, and the AC electric field or the AC voltage is determined from their relative ratio.

また、本発明にあっては、かかる光電界測定方法を実施
するために、(i)ポッケルス素子と、該ポッケルス素
子の光透過方向の前後に直列に配置された偏光子及び検
光子とを含み、該ポ・ンケルス素子に作用する電界によ
って透過光が変調せしめられるように構成されたセンサ
部と、(ii )前記ポッケルス素子に所定の直流電界
を作用させるための直流電界印加手段と、(ji)前記
センサ部に透過させるための光を出射する発光部と、 
(iv)前記センサ部を透過した透過光を受光する、受
光した光に対応した信号を出力する受光部と、(v)該
受光部の出力信号から、前記ポッケルス素子に作用する
交流電界と同一角周波数の信号成分(Eω)を取り出す
第一の取出手段と、(vi)該受光部の出力信号から、
前記ポッケルス素子に作用する交流電界の2倍の角周波
数の信号成分(Hzω)を取り出す第二の取出手段と、
(vi)それら第一及び第二の取出手段にて取り出した
信号成分の相対比を求める相対比検出手段とを含むよう
に、光電外測定装置を構成したのである。
In addition, in the present invention, in order to implement the optical electric field measuring method, (i) a Pockels element, and a polarizer and an analyzer arranged in series in front and behind the light transmission direction of the Pockels element. , a sensor section configured such that transmitted light is modulated by an electric field acting on the Pockels element; (ii) DC electric field applying means for applying a predetermined DC electric field to the Pockels element; ) a light emitting unit that emits light to be transmitted to the sensor unit;
(iv) a light receiving section that receives the transmitted light transmitted through the sensor section and outputs a signal corresponding to the received light; and (v) the same AC electric field that acts on the Pockels element from the output signal of the light receiving section. a first extraction means for extracting the signal component (Eω) of the angular frequency; and (vi) from the output signal of the light receiving section,
a second extraction means for extracting a signal component (Hzω) having an angular frequency twice that of the AC electric field acting on the Pockels element;
(vi) The photoelectric external measuring device is configured to include relative ratio detection means for determining the relative ratio of the signal components extracted by the first and second extraction means.

更にまた、本発明は、上記装置における( vi )相
対比検出手段に代えて、(vui)第一の取出手段にて
取り出される信号成分(Eω)が一定となるように、発
光部からの出射光の強度を制御するフィードバック制御
手段を設けた光電外測定装置をも、その要旨とするもの
である。
Furthermore, the present invention provides, instead of (vi) the relative ratio detection means in the above device, (vui) the output from the light emitting section so that the signal component (Eω) extracted by the first extraction means is constant. The gist of the invention is also a photoelectric external measuring device provided with a feedback control means for controlling the intensity of emitted light.

(具体的構成・実施例) 以下、本発明の幾つかの実施例を示す図面を参照しつつ
、本発明を、更に具体的に明らかにすることとする。
(Specific Configuration/Examples) Hereinafter, the present invention will be explained in more detail with reference to drawings showing some embodiments of the present invention.

先ず、第1図は、本発明に従う光電界(電圧)測定装置
の一例を示すものであるが、そこにおいて、2は、測定
部としてのセンサヘッド部であって、ポッケルス素子4
の光透過方向の前後に偏光子6と検光子8が直列に配置
されると共に、それら偏光子6及び検光子8の更に前後
に位置して、ファイバーコリメータ10.10が直列に
配置された構造を有している。そして、かかるセンサヘ
ッド部2のポッケルス素子4の相対向する面に電極12
,12が配設され、それら電極12.12に、被測定交
流電圧:Vを印加するための交流電圧印加装置13と、
所定の直流電圧:Vo、を印加するための直流電圧印加
装置14が接続されてし)る。ここでは、直流電圧印加
装置14が直流電界印加手段を構成しているのである。
First, FIG. 1 shows an example of an optical electric field (voltage) measuring device according to the present invention, in which 2 is a sensor head section as a measuring section, and a Pockels element 4 is shown in FIG.
A structure in which a polarizer 6 and an analyzer 8 are arranged in series in the front and rear of the light transmission direction, and fiber collimators 10 and 10 are arranged in series further in front and behind the polarizer 6 and the analyzer 8. have. Then, electrodes 12 are provided on opposing surfaces of the Pockels element 4 of the sensor head section 2.
, 12 are arranged, and an AC voltage applying device 13 for applying an AC voltage to be measured: V to the electrodes 12.12;
A DC voltage application device 14 for applying a predetermined DC voltage: Vo is connected. Here, the DC voltage application device 14 constitutes a DC electric field application means.

一方、第1図において、15は、発光部であって、発光
素子16と、それを駆動する発光素子駆動回路18とを
備えており、その発光部15の発光素子16から出射さ
れた光が、光ファイツク−20を通じて、センサヘッド
部20入側のファインく一コリメータ10に導かれ、か
かる入側ファイツマ−コリメータ10からセンサヘッド
部2に入射せしめられるようになっている。そして、か
かる入側ファイバーコリメータlOからセンサへ・ンド
部2に入射された光は、偏光子6.ポッケルス素子4及
び検光子8を順に透過して、出側のファイツマ−コリメ
ータ10から出射されるようになっており、かかるファ
イバーコリメータlOから、それに接続された光ファイ
バー22を通して、受光部24に導かれるようになって
いる。
On the other hand, in FIG. 1, reference numeral 15 denotes a light emitting section, which includes a light emitting element 16 and a light emitting element drive circuit 18 for driving the light emitting element 16, and the light emitted from the light emitting element 16 of the light emitting section 15. The light is guided through the optical fiber 20 to a fine collimator 10 on the entrance side of the sensor head section 20, and is made to enter the sensor head section 2 from the entrance side fiber collimator 10. The light incident on the sensor/end section 2 from the input fiber collimator 1O is transmitted to the polarizer 6. It passes through the Pockels element 4 and the analyzer 8 in order and is emitted from the Feitzmer collimator 10 on the output side, and is guided from the fiber collimator IO to the light receiving section 24 through the optical fiber 22 connected thereto. It looks like this.

受光部24は、フォトダイオード等の受光素子と、その
受光素子で受光した光の強度:Pに対応した電気信号:
Eを出力する受光回路とを含んで構成されており、その
電気信号:Eを、同−角周波数成分検出器26及び2倍
角周波数戒分検出器28にそれぞれ供給するようになっ
ている。
The light receiving unit 24 includes a light receiving element such as a photodiode, and an electric signal corresponding to the intensity of light received by the light receiving element: P:
The electric signal E is supplied to the same angular frequency component detector 26 and the double angular frequency component detector 28, respectively.

受光部24からの電気信号:Eが供給される同−角周波
数成分検出器26は、前記交流電圧印加装置I3にてポ
ッケルス素子4に印加される被測定交流電圧:Vと同じ
角周波数:ωの信号成分:Eωを、電気信号:Eから取
り出すためのものであって、電気的フィルタや位相検波
回路等から構成されており、その電気信号:Eから取り
出した信号成分:Eωを割算回路30に供給するように
なっている。また、2倍角周波数戒分検出器28は、被
測定交流電圧:Vの2倍の角周波数:2ωの信号成分:
8tωを電気信号:Eから取り出すためのものであって
、同−角周波数成分検出器26と同様に、電気的フィル
タや位相検波回路等から構成されており、その電気信号
:Eから取り出した信号成分:E2ωを割算回路30に
供給するようになっている。そして、割算回路30は、
2倍角周波数戒分検出器28からの信号成分:E2ωを
同一角周波数成分検出器26からの信号成分:Eωで除
算して、その除算信号:Et(=E2ω/Eω)を出力
するようになっており、ここでは、後述するように、か
かる除算信号:E7から前記被測定交流電圧:■が測定
されるようになっている。
The same angular frequency component detector 26 to which the electrical signal E from the light receiving section 24 is supplied has the same angular frequency: ω as the AC voltage to be measured: V applied to the Pockels element 4 by the AC voltage applying device I3. This is for extracting the signal component: Eω from the electrical signal: E, and is composed of an electrical filter, a phase detection circuit, etc., and a circuit for dividing the signal component: Eω extracted from the electrical signal: E. 30. In addition, the double angular frequency distribution detector 28 detects a signal component with an angular frequency: 2ω that is twice the AC voltage to be measured: V:
This is for extracting 8tω from the electric signal: E, and like the angular frequency component detector 26, it is composed of an electric filter, a phase detection circuit, etc., and the signal extracted from the electric signal: E. The component: E2ω is supplied to the division circuit 30. Then, the division circuit 30 is
The signal component: E2ω from the double angular frequency component detector 28 is divided by the signal component: Eω from the same angular frequency component detector 26, and the divided signal: Et (=E2ω/Eω) is output. Here, as will be described later, the AC voltage to be measured: ■ is measured from the divided signal: E7.

なお、上述の説明から明らかなように、ここでは、同一
角周波数成分検出器26及び2倍角周波数戒分検出器2
8がそれぞれ第一の取出手段及び第二の取出手段を構成
しているのであり、また割算回路30が相対比検出手段
を構成しているのである。
Note that, as is clear from the above description, here, the same angular frequency component detector 26 and the double angular frequency component detector 2
8 constitute the first extraction means and the second extraction means, respectively, and the division circuit 30 constitutes the relative ratio detection means.

このような装置においては、発光部15の発光素子16
から出射された光は、光ファイバー20から、センサヘ
ッド部2に入り、そして光ファイバー22を通り、受光
部24で受光されることとなるが、センサヘッド部2に
入射された光は、ポッケルス素子4を透過する際、その
ボ、ンケルス素子4に印加される電圧(V、V。、)に
応して変調を受けることとなる。そして、その結果、受
光部24においては、偏光子6と検光子8との偏光方向
の相対角度二〇を0°とした平行偏光子の場合、交流印
加電圧:■によってポッケルス素子4に惹起される光学
的位相差をφ、直流印加電圧:Vocによる光学バイア
スをψとすると、下記(1)式で示される強度:Pの光
が受光せしめられることとなる。
In such a device, the light emitting element 16 of the light emitting section 15
The light emitted from the optical fiber 20 enters the sensor head section 2, passes through the optical fiber 22, and is received by the light receiving section 24. However, the light incident on the sensor head section 2 passes through the Pockels element 4. When transmitting the light, the light is modulated in accordance with the voltage (V, V.,) applied to the Vocals element 4. As a result, in the light receiving section 24, in the case of a parallel polarizer in which the relative angle 20 of the polarization directions between the polarizer 6 and the analyzer 8 is 0°, the voltage induced in the Pockels element 4 by the AC applied voltage: Assuming that the optical phase difference is φ, and the optical bias due to the DC applied voltage: Voc is ψ, light with an intensity of P expressed by the following equation (1) will be received.

P =c P ocos” ((φ十ψ)/21   
  ・−・(1)〔但し、C:比例定数 Po:発光素子16の出射光強度〕 ここで、光学的位相差:φは、ポッケルス素子4の半波
長電圧を■π、交流印加電圧:■の振幅を■。、その角
周波数をωとすると、下記(2)式のように表されるこ
とから、上記(1)式は下記(3)式のようになり、従
って受光部24からは、下記(4)式で示される電気信
号:Eが出力されることとなる。
P = c P ocos” ((φ1ψ)/21
... (1) [However, C: proportionality constant Po: output light intensity of the light emitting element 16] Here, the optical phase difference: φ is the half-wave voltage of the Pockels element 4, ■π, and the AC applied voltage: ■ ■The amplitude of. , and its angular frequency is ω, it is expressed as the following equation (2), so the above equation (1) becomes the following equation (3), and therefore, from the light receiving section 24, the following equation (4) is obtained. An electrical signal E expressed by the formula will be output.

φ==(π/νπ)・V′ =(π/Vπ) ・Vo ・sinωL・(2) P =c P 、cos” ((φ+ψ)/2)−cP
、cos”  [((x/Vπ)  −V  + ψ 
) /2コcP。
φ==(π/νπ)・V′=(π/Vπ)・Vo・sinωL・(2) P=c P, cos” ((φ+ψ)/2)−cP
, cos” [((x/Vπ) −V + ψ
) /2 cP.

−(1+cos ((π/Vπ) ・vo・sinω(トψ) ] ・(3) E。−(1+cos ((π/Vπ) ・vo・sinω (toψ) ] ・(3) E.

E=   (1+cos ((π/Vπ)io−sinωL+ψ)] 0 = −(1+cos (Astnωt+ψ) ]・ ・
 ・(4) 〔但し、E、:電気信号(E)の振幅 A=(π/■π)・■。〕 ここで、かかる(4)式をベッセル関数を用いて展開す
ると、下記(5)式のようになる。
E= (1+cos ((π/Vπ)io-sinωL+ψ)] 0 = -(1+cos (Astnωt+ψ)]・・
・(4) [However, E: Amplitude A of electric signal (E)=(π/■π)・■. ] Here, when the equation (4) is expanded using the Bessel function, the following equation (5) is obtained.

6 E −−[1+cos (八sinωt+ψ) ]E。6 E--[1+cos (8 sinωt+ψ)]E.

=  [1+cos(Asinωt)cosψ−5in
(Asinωt)sinψ12 (2J+(A)sinωt+2J3(A)sin3ωt
+・・) sinψ]・ ・ ・(5) 従って、かかる(5)式から明らかなように、同一角周
波数成分検出器26から出力される被測定交流電圧:V
と同一角周波数の信号成分:Eωは、下記(6)式のよ
うになり、また2倍角周波数成分検出器28から出力さ
れる被測定交流電圧:Vの2倍・の角周波数の信号成分
:[!2ωは、下記(7)式のようになり、割算回路3
0から出力される除算信号:ETは、下記(8)式のよ
うに表されることとなる。
= [1+cos(Asinωt)cosψ−5in
(Asinωt) sinψ12 (2J+(A)sinωt+2J3(A)sin3ωt
+...) sinψ]... (5) Therefore, as is clear from equation (5), the AC voltage to be measured output from the same angular frequency component detector 26: V
The signal component Eω with the same angular frequency is as shown in equation (6) below, and the signal component with the angular frequency twice the AC voltage to be measured: V output from the double angular frequency component detector 28: [! 2ω is as shown in equation (7) below, and divider circuit 3
The division signal ET output from 0 will be expressed as in equation (8) below.

E (IJ =  Eo ・J+(A) ・sinψ 
    −・−(6)Ex(d=  Eo・Jz(A)
・cosψ     −−・(7)ここで、いま、Aを
8.8°以下に選ぶと共に、ψを3.l°以下に選べば
、上記(8)式におけるA”/24及びψ2/3は、何
れも、1/1000以下の小さな値となり、更に被測定
交流電圧:Vに応じて直流印加電圧:vIlcを調整し
て、A”/24 トψ”/3 トの差を小さくすれば、
それらA”/24及びψ2/3は更に小さくなり、上記
(8)式は、下記(9)式のように近似することができ
る。
E (IJ = Eo ・J+(A) ・sinψ
−・−(6)Ex(d=Eo・Jz(A)
・cos ψ −−・(7) Now, A is selected to be 8.8° or less, and ψ is set to 3. If selected below 1°, both A''/24 and ψ2/3 in the above equation (8) will be small values of 1/1000 or less, and furthermore, depending on the AC voltage to be measured: V, the DC applied voltage: vIlc By adjusting the difference between A”/24 and ψ”/3, we get
These A''/24 and ψ2/3 become even smaller, and the above equation (8) can be approximated as shown in the following equation (9).

そして、かかる(9)式において、Aは、前述のように
、A=(π/Vπ)Vt+であり、またψは、ψ=(π
/Vπ)・ VDC と表わされることから、かかる(9)式は、下記0II
D式のように表されることとなる。
In this equation (9), A is A=(π/Vπ)Vt+ as described above, and ψ is ψ=(π
/Vπ)・VDC Therefore, the equation (9) can be expressed as the following 0II
This will be expressed as Equation D.

M(i)   4(π/VKJVac  4Vocつま
り、割算回路30から出力される除算信号:ETは、か
かる00)弐から明らかなように、交流電圧印加装置1
3にてポッケルス素子4に印加される被測定交流電圧:
Vの振幅:Voに比例した値となるのであり、それ故、
その除算信号:ETから、前記ポッケルス素子4に印加
される被測定交流電圧:V(振幅:vo)を求めること
ができるのであり、またその振幅:■。から、ポッケル
ス素子4に作用される電界を求めることができるのであ
る。
M(i) 4(π/VKJVac 4Voc In other words, the division signal output from the division circuit 30: ET is 00) As is clear from 2, the AC voltage application device 1
Measured AC voltage applied to Pockels element 4 at step 3:
Amplitude of V: It is a value proportional to Vo, therefore,
The AC voltage to be measured: V (amplitude: vo) applied to the Pockels element 4 can be determined from the divided signal: ET, and its amplitude: ■. From this, the electric field acting on the Pockels element 4 can be determined.

そして、ここでは、上記00)式から明らかなように、
除算信号:ETに比例する被測定交流電圧:■の振幅:
voの比例定数が直流印加電圧:■。。
And here, as is clear from the above equation 00),
Divided signal: AC voltage to be measured proportional to ET: Amplitude of ■:
The proportionality constant of vo is the DC applied voltage: ■. .

だけを含み、温度依存性を有するポッケルス素子4の半
波長電圧:■π等がその比例定数中に含まれないことか
ら、ポッケルス素子4の設置位置における環境温度の変
化によってその除算信号:ETが変動するようなことが
ないのであり、それ故、環境温度に起因する誤差のない
測定結果を安定して得ることができるのである。
Since the half-wave voltage of the Pockels element 4, which is temperature-dependent and includes only There is no fluctuation, and therefore it is possible to stably obtain measurement results free of errors caused by environmental temperature.

マタ、前記00)式から明らかなように、割算回路30
から出力される除算信号二Eiには、発光部15からの
発光光量や、光伝搬路の伝送損失、或いは受光部24の
検出感度に応じて変動する電気信号:Eの振幅:Eoも
含まれないため、それら発光部15からの発光光量や、
光伝搬路の伝送損失、或いは受光部24の検出感度の変
動によって、その除算信号:ETが変動することもない
のであり、それ故、発光素子16や受光素子の経年変化
によって発光部15からの出射光量や受光部24におけ
る検出感度が変化しても、そのことに起因して被測定交
流電圧:V(振幅:vo)の測定結果に誤差が生じるこ
とがないといった特長もあるのである。
Mata, as is clear from the above equation 00), the division circuit 30
The divided signal 2Ei output from the light emitting section 15 also includes the amplitude Eo of the electrical signal E, which varies depending on the amount of light emitted from the light emitting section 15, the transmission loss of the optical propagation path, or the detection sensitivity of the light receiving section 24. Therefore, the amount of light emitted from the light emitting unit 15 and
The divided signal (ET) does not change due to transmission loss in the optical propagation path or fluctuations in detection sensitivity of the light receiving section 24. Therefore, due to aging of the light emitting element 16 or the light receiving element, the signal from the light emitting section 15 does not change. Another advantage is that even if the amount of emitted light or the detection sensitivity of the light receiving section 24 changes, there will be no error in the measurement result of the AC voltage to be measured: V (amplitude: vo).

また、本発明にあっては、上記の如き装置の他にも、第
2図に示される如き構造の装置を用いて、被測定交流電
圧:■(振幅:Vo)を検出することが可能である。こ
の第2図の装置においては、同−角周波数成分検出器2
6にて取り、出される、被測定交流電圧:Vと同一角周
波数の信号成分:Eωの値が一定となるように、発光素
子16から出射される光量を調整する光N調整器32が
フィードバック制御手段として設けられているのである
Furthermore, in the present invention, in addition to the device described above, it is also possible to detect the AC voltage to be measured: ■ (amplitude: Vo) using a device having the structure shown in FIG. be. In the apparatus shown in FIG. 2, the same angular frequency component detector 2
The light N adjuster 32 adjusts the amount of light emitted from the light emitting element 16 so that the value of the signal component Eω having the same angular frequency as the AC voltage to be measured: V taken and outputted at 6 becomes constant. It is provided as a control means.

即ち、同−角周波数成分検出器26から出力される信号
成分:Eωの値に基づいて、光量調整器(電子回路)3
2が発光素子駆動回路18を制御し、それによって発光
素子16から出射される光の光1: poが調整されて
、かかる被測定交流電圧:Vと同一の角周波数の信号成
分:Eωの値が一定となるようにされるのである。
That is, based on the value of the signal component Eω output from the angular frequency component detector 26, the light amount adjuster (electronic circuit) 3
2 controls the light emitting element driving circuit 18, whereby the light 1: po of the light emitted from the light emitting element 16 is adjusted, and the value of the signal component: Eω having the same angular frequency as the AC voltage to be measured: V. is kept constant.

このように、同一角周波数の信号成分:Eωを検出し、
その値、即ち前記(6)式で示される値が一定となるよ
うに発光素子16の光!: poを調整するフィードバ
ック回路(32)を設け、かかるフィードバック回路(
32)による発光光1:Paのフィードバック制御下に
2倍角周波数成分:E2ωを検出して、その2倍角周波
数戒分:E2ωから被測定文fi電圧:Vの振幅:vo
を求めるようにしても、前記第1図の装置と同様の効果
を得ることができるのである。なお、このような方式を
採用すれば、交流電圧(電界)測定のための電子回路を
簡略化する上で有利となるといった利点がある。
In this way, the signal component of the same angular frequency: Eω is detected,
The light emitted from the light emitting element 16 so that the value, that is, the value shown by the equation (6) above, is constant! : A feedback circuit (32) for adjusting po is provided, and this feedback circuit (
32) Under the feedback control of emitted light 1:Pa, the double angular frequency component: E2ω is detected, and from the double angular frequency component: E2ω, the amplitude of the voltage: V: vo
Even if it is determined, the same effect as the device shown in FIG. 1 can be obtained. Note that adopting such a method has the advantage of simplifying the electronic circuit for measuring alternating current voltage (electric field).

以上、図面に示される、本発明に従う二つの具体例に基
づいて、本発明の詳細な説明し、本発明によれば、環境
変化或いは経年変化に対して安定した光電界(電圧)測
定技術を提供し得ることを明らかにしたが、本発明が、
かかる例示の具体例にのみ限定して解釈されるものでは
決してなく、本発明の趣旨を逸脱しない限りにおいて、
当業者の知識に基づいて種々なる変更、修正、改良等を
加えた形態において実施され得るものであることが、理
解されるべきである。
The present invention has been described in detail based on two specific examples according to the present invention shown in the drawings. However, the present invention provides
It should not be construed as being limited only to such illustrative specific examples, and as long as it does not depart from the spirit of the present invention,
It should be understood that the present invention may be implemented with various changes, modifications, improvements, etc. based on the knowledge of those skilled in the art.

例えば、ポッケルス素子4に直流電圧を印加する直流電
圧印加装置14の電圧源には、それに専用の電源を用い
ることも可能であるが、かかる装置の消費電力は小さい
ため、被測定交流電圧から取り出して整流した電圧を直
流電圧印加装置14の電圧源として用いることも可能で
ある。例えば、電力分野の送電線や配電線等の電圧を測
定するような場合には、それら送電線や配電線からカレ
ントトランス(CT)等で取り出した交流電圧を電圧源
として採用してもよいのである。
For example, it is possible to use a dedicated power source for the voltage source of the DC voltage application device 14 that applies DC voltage to the Pockels element 4, but since the power consumption of such a device is small, It is also possible to use the rectified voltage as the voltage source of the DC voltage application device 14. For example, when measuring the voltage of power transmission lines or distribution lines in the electric power field, it is possible to use AC voltage extracted from the transmission lines or distribution lines using a current transformer (CT) etc. as the voltage source. be.

また、本発明におけるポッケルス素子4としても、公知
の各種のものが適宜に採用され得るものであって、例え
ば、LiNb0z、 LiTa0z、 BitzSi0
20BilzGeO□。、 CdMnTe等が、適宜に
ポッケルス素子として用いられることとなる。
Furthermore, various known devices can be appropriately adopted as the Pockels element 4 in the present invention, such as LiNb0z, LiTa0z, BitzSi0
20BilzGeO□. , CdMnTe, etc. will be used as the Pockels element as appropriate.

(発明の効果) 以上の説明から明らかなように、本発明は、ポッケルス
素子に加わる電界の強さに応して変調された光を電気信
号に変換し、その電気信号から、ポッケルス素子に作用
する交流電界と同一の角周波数の信号成分(Eω)と2
倍の角周波数の信号成分(atω)とを取り出して、そ
れらの相対比から、交流電界若しくは電圧を測定するも
のであるところから、ポッケルス素子の電気光学定数や
発光部からの出射光量、或いは受光部における検出感度
を用いることなく、それら交流電界若しくは電圧を測定
することができるのであり、それ故に、環境温度の変化
や、発光部における発光素子や受光部における受光素子
等の経年変化に影響されることなく、安定した検出精度
を維持することが出来るのである。
(Effects of the Invention) As is clear from the above description, the present invention converts light modulated according to the strength of the electric field applied to the Pockels element into an electric signal, and from the electric signal acts on the Pockels element. The signal component (Eω) with the same angular frequency as the alternating current electric field and 2
Since the signal component (atω) of twice the angular frequency is extracted and the AC electric field or voltage is measured from their relative ratio, the electro-optic constant of the Pockels element, the amount of light emitted from the light emitting part, or the amount of light received It is possible to measure these alternating electric fields or voltages without using the detection sensitivity in the part, and therefore it is not affected by changes in environmental temperature or aging of the light emitting element in the light emitting part or the light receiving element in the light receiving part. This makes it possible to maintain stable detection accuracy without any problems.

従って、例えば、温度依存性を有するポッケルス素子を
用いて作製した光電界測定装置においても、その温度特
性を補償し、しかも簡単な装置構造において、正確な測
定を可能と為し得たのであり、そこに、本発明の大きな
工業的意義が存するのである。
Therefore, for example, even in an optical electric field measuring device fabricated using a Pockels element having temperature dependence, its temperature characteristics can be compensated for, and accurate measurements can be made with a simple device structure. This is where the great industrial significance of the present invention lies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ、本発明の異なる実施例
を示す装置の配置構成図である。 2:センサヘッド部 4:ボッケルス素子6:偏光子 
    8:検光子 10:ファイバーコリメーク 14:直流電圧印加装置 15:発光部    18:発光素子駆動回路24:受
光部 26:同一角周波数成分検出器 28:2倍角周波数成分検出器 30 二側算回路 2 :光量調整器
1 and 2 are arrangement diagrams of devices showing different embodiments of the present invention, respectively. 2: Sensor head 4: Bockels element 6: Polarizer
8: Analyzer 10: Fiber collimator 14: DC voltage application device 15: Light emitting section 18: Light emitting element drive circuit 24: Light receiving section 26: Same angular frequency component detector 28: Double angular frequency component detector 30 Two side calculation circuit 2: Light amount adjuster

Claims (3)

【特許請求の範囲】[Claims] (1)ポッケルス素子の光透過方向の前後に偏光子と検
光子とを直列に配置して、該ポッケルス素子に作用する
電界にて透過光が変調せしめられるように構成したセン
サ部に、測定すべき交流電界をそのポッケルス素子に作
用させつつ、発光部から出射された光を透過せしめて、
受光した光に対応した信号を出力する受光部にて、該セ
ンサ部を透過した透過光を受光させ、その受光部の出力
信号から、前記交流電界若しくは該交流電界を発生する
交流電圧を求めるに際して、前記ポッケルス素子に前記
交流電界と共に所定の直流電界を作用させつつ、前記セ
ンサ部に前記発光部から出射された光を透過させて、そ
の透過光を前記受光部で受光させる一方、前記受光部の
出力信号から前記交流電界と同一角周波数の信号成分(
Eω)及び2倍の角周波数の信号成分(E_2ω)を取
り出して、それらの相対比から、前記交流電界若しくは
前記交流電圧を求めることを特徴とする光電界測定方法
(1) A polarizer and an analyzer are arranged in series before and after the light transmission direction of the Pockels element, and the sensor part is configured so that the transmitted light is modulated by the electric field acting on the Pockels element. While applying an alternating current electric field to the Pockels element, the light emitted from the light emitting part is transmitted.
A light receiving section that outputs a signal corresponding to the received light receives the transmitted light that has passed through the sensor section, and from the output signal of the light receiving section, the alternating current electric field or the alternating current voltage that generates the alternating electric field is determined. , while applying a predetermined DC electric field together with the alternating current electric field to the Pockels element, the light emitted from the light emitting section is transmitted through the sensor section, and the transmitted light is received by the light receiving section; From the output signal of the signal component (
A method for measuring an optical electric field, characterized in that the alternating current electric field or the alternating current voltage is obtained by extracting a signal component (E_2ω) of twice the angular frequency and a signal component (E_2ω) of twice the angular frequency.
(2)ポッケルス素子と、該ポッケルス素子の光透過方
向の前後に直列に配置された偏光子及び検光子とを含み
、該ポッケルス素子に作用する電界によって透過光が変
調せしめられるように構成されたセンサ部と、 前記ポッケルス素子に所定の直流電界を作用させるため
の直流電界印加手段と、 前記センサ部に透過させるための光を出射する発光部と
、 前記センサ部を透過した透過光を受光する、受光した光
に対応した信号を出力する受光部と、該受光部の出力信
号から、前記ポッケルス素子に作用する交流電界と同一
角周波数の信号成分(Eω)を取り出す第一の取出手段
と、 該受光部の出力信号から、前記ポッケルス素子に作用す
る交流電界の2倍の角周波数の信号成分(E_2ω)を
取り出す第二の取出手段と、それら第一及び第二の取出
手段にて取り出した信号成分の相対比を求める相対比検
出手段とを、 含むことを特徴とする光電界測定装置。
(2) It includes a Pockels element, a polarizer and an analyzer arranged in series in front and behind the light transmission direction of the Pockels element, and is configured such that transmitted light is modulated by an electric field acting on the Pockels element. a sensor section; a direct current electric field applying means for applying a predetermined direct current electric field to the Pockels element; a light emitting section that emits light to be transmitted to the sensor section; and a light emitting section that receives the transmitted light that has passed through the sensor section. , a light receiving section that outputs a signal corresponding to the received light, and a first extraction means that extracts a signal component (Eω) having the same angular frequency as the alternating current electric field acting on the Pockels element from the output signal of the light receiving section; A second extraction means for extracting a signal component (E_2ω) having an angular frequency twice that of the alternating current electric field acting on the Pockels element from the output signal of the light receiving section, and the first and second extraction means extract the signal component (E_2ω). An optical electric field measurement device comprising: relative ratio detection means for determining the relative ratio of signal components.
(3)ポッケルス素子と、該ポッケルス素子の光透過方
向の前後に直列に配置された偏光子及び検光子とを含み
、該ポッケルス素子に作用する電界によって透過光が変
調せしめられるように構成されたセンサ部と、 前記ポッケルス素子に所定の直流電界を作用させるため
の直流電界印加手段と、 前記センサ部に透過させるための光を出射する発光部と
、 前記センサ部を透過した透過光を受光する、受光した光
に対応した信号を出力する受光部と、該受光部の出力信
号から、前記ポッケルス素子に作用する交流電界と同一
角周波数の信号成分(Eω)を取り出す第一の取出手段
と、 該受光部の出力信号から、前記ポッケルス素子に作用す
る交流電界の2倍の角周波数の信号成分(E_2ω)を
取り出す第二の取出手段と、前記第一の取出手段にて取
り出される信号成分(Eω)が一定となるように、前記
発光部からの出射光の強度を制御するフィードバック制
御手段とを、 含むことを特徴とする光電界測定装置。
(3) It includes a Pockels element, a polarizer and an analyzer arranged in series in front and behind the light transmission direction of the Pockels element, and is configured such that transmitted light is modulated by an electric field acting on the Pockels element. a sensor section; a direct current electric field applying means for applying a predetermined direct current electric field to the Pockels element; a light emitting section that emits light to be transmitted to the sensor section; and a light emitting section that receives the transmitted light that has passed through the sensor section. , a light receiving section that outputs a signal corresponding to the received light, and a first extraction means that extracts a signal component (Eω) having the same angular frequency as the alternating current electric field acting on the Pockels element from the output signal of the light receiving section; a second extraction means for extracting a signal component (E_2ω) with an angular frequency twice the AC electric field acting on the Pockels element from the output signal of the light receiving section; and a signal component (E_2ω) extracted by the first extraction means. An optical electric field measuring device comprising: feedback control means for controlling the intensity of light emitted from the light emitting section so that Eω) is constant.
JP1179856A 1989-07-12 1989-07-12 Optical electric field measuring method and device Expired - Lifetime JPH077022B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1179856A JPH077022B2 (en) 1989-07-12 1989-07-12 Optical electric field measuring method and device
US07/550,978 US5111135A (en) 1989-07-12 1990-07-11 Method for optically measuring electric field and optical voltage/electric-field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179856A JPH077022B2 (en) 1989-07-12 1989-07-12 Optical electric field measuring method and device

Publications (2)

Publication Number Publication Date
JPH0344564A true JPH0344564A (en) 1991-02-26
JPH077022B2 JPH077022B2 (en) 1995-01-30

Family

ID=16073113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179856A Expired - Lifetime JPH077022B2 (en) 1989-07-12 1989-07-12 Optical electric field measuring method and device

Country Status (1)

Country Link
JP (1) JPH077022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066816A1 (en) * 2018-09-26 2020-04-02 横河電機株式会社 Electric field sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066816A1 (en) * 2018-09-26 2020-04-02 横河電機株式会社 Electric field sensor

Also Published As

Publication number Publication date
JPH077022B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US6952107B2 (en) Optical electric field or voltage sensing system
US5113131A (en) Voltage measuring device having electro-optic sensor and compensator
US4694243A (en) Optical measurement using polarized and unpolarized light
EP0254396A1 (en) A direct current magneto-optic current transformer
JPS61234364A (en) Magneto-optic current measuring device and drift compensating method thereof
JPH0670653B2 (en) Light temperature / electric quantity measuring device
EP0351171A2 (en) Method and apparatus for optically measuring electric and magnetic quantities
JPH0668508B2 (en) Photocurrent and magnetic field measurement method and device
JPS608756A (en) Electronic control circuit
US6285182B1 (en) Electro-optic voltage sensor
JPH04332878A (en) Electromagnetic field intensity measuring device
US4010632A (en) Piezooptical measuring transducer
US4982151A (en) Voltage measuring apparatus
US6297625B1 (en) Method and device for measuring a magnetic field
JPH0344564A (en) Method and device for measuring photoelectric field
JPS6166169A (en) Temperature compensation type current sensor
JPH0344563A (en) Method and device for measuring photoelectric field
GB2400172A (en) Optical AC current sensor
JP3201729B2 (en) How to use the optical sensor system
JP3130187B2 (en) Electric field detector
Wang et al. Comparison of signal processing schemes used in optical current transformers
SU1674024A1 (en) Method for measuring parameters of solar plasma
JPH0231171A (en) Photocurrent/magnetic field sensor
RU2112937C1 (en) Polarimeter
JPH0670654B2 (en) Optical magnetic field measuring method and apparatus