JP3130187B2 - Electric field detector - Google Patents

Electric field detector

Info

Publication number
JP3130187B2
JP3130187B2 JP05214269A JP21426993A JP3130187B2 JP 3130187 B2 JP3130187 B2 JP 3130187B2 JP 05214269 A JP05214269 A JP 05214269A JP 21426993 A JP21426993 A JP 21426993A JP 3130187 B2 JP3130187 B2 JP 3130187B2
Authority
JP
Japan
Prior art keywords
electric field
voltage
measured
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05214269A
Other languages
Japanese (ja)
Other versions
JPH0763795A (en
Inventor
淑也 水田
裕之 松浦
直 杉山
Original Assignee
株式会社テラテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テラテック filed Critical 株式会社テラテック
Priority to JP05214269A priority Critical patent/JP3130187B2/en
Publication of JPH0763795A publication Critical patent/JPH0763795A/en
Application granted granted Critical
Publication of JP3130187B2 publication Critical patent/JP3130187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は集積回路の検査に利用す
る。特に、集積回路基板に近接して電気光学素子を配置
し、その集積回路の電極からの電界によってその素子に
生じる物理的状態の変化を光学的に測定する電界検出プ
ローブに関する。
The present invention is used for testing integrated circuits. In particular, the present invention relates to an electric field detection probe in which an electro-optical element is arranged close to an integrated circuit substrate and optically measures a change in a physical state generated in the element by an electric field from an electrode of the integrated circuit.

【0002】[0002]

【従来の技術】図9は従来の電界検出プローブの構成例
およびその測定方法を示す図である。測定時には、電気
光学結晶1を被測定回路基板2に近接して配置し、この
電気光学結晶1に光ビーム100を入射する。被測定回
路基板2に形成された被測定電極3間に電界300が発
生すると、この電界300により電気光学結晶1に物理
的状態の変化が生じ、光ビーム100の偏波面が変化す
る。この偏波面の変化を測定することにより、被測定電
極3間の電界を検出できる。電気光学結晶1としてどの
ような材料(結晶)を用いるかにより、被測定回路基板
2に垂直、すなわち光ビーム100の光軸に平行な電界
を検出するものと、被測定回路基板2に平行な電界を検
出するものとがある。図9では被測定回路基板2に垂直
な電界を検出する例を示す。
2. Description of the Related Art FIG. 9 is a diagram showing a configuration example of a conventional electric field detection probe and a measuring method thereof. At the time of measurement, the electro-optic crystal 1 is arranged close to the circuit substrate 2 to be measured, and a light beam 100 is incident on the electro-optic crystal 1. When an electric field 300 is generated between the electrodes 3 to be measured formed on the circuit board 2 to be measured, the electric field 300 causes a change in the physical state of the electro-optic crystal 1 and changes the plane of polarization of the light beam 100. The electric field between the electrodes 3 to be measured can be detected by measuring the change in the polarization plane. Depending on what kind of material (crystal) is used as the electro-optic crystal 1, an electric field perpendicular to the circuit board 2 to be measured, that is, an electric field parallel to the optical axis of the light beam 100, is detected. Some detect electric fields. FIG. 9 shows an example of detecting an electric field perpendicular to the circuit board 2 to be measured.

【0003】電界検出プローブの詳細については、たと
えば、 永妻忠夫、「電気光学結晶を用いた外部EOサンプ
リング」、電子情報通信学会誌、Vol.75、No.
6、pp.601−605、1992年6月、 神谷武志、高橋亮、「半導体レーザを光源とする電
気光学サンプリング」、応用物理第61巻第1号pp.
30−37、1992年に詳しく説明されている。
[0003] For details of the electric field detection probe, see, for example, Tadao Nagatsuma, "External EO Sampling Using Electro-optic Crystal", Journal of the Institute of Electronics, Information and Communication Engineers, Vol. 75, no.
6, pp. 601-605, June 1992, Takeshi Kamiya and Ryo Takahashi, "Electro-optic Sampling Using Semiconductor Laser as Light Source", Applied Physics Vol.
30-37, 1992.

【0004】しかし、このような従来例構造では、被測
定回路基板2からの漏れ電界の一部しか電気光学結晶1
に印加されないため感度が低く、被測定電極3の幾何学
的配置により感度が変化し、また、絶対電圧の測定が不
可能であるという問題がある。
However, in such a conventional structure, only a part of the leaked electric field from the circuit board 2 to be measured is
, The sensitivity is low due to the geometrical arrangement of the electrode 3 to be measured, and the absolute voltage cannot be measured.

【0005】この問題を解決したひとつの従来例を図1
0および図11に示す。この従来例は特開平2−986
71号公報(以下「先願公報」という)に開示されたも
のであり、上述の神谷の文献でも引用されている。この
電圧測定装置は、電気光学結晶1の上面に補助電極とし
て導電性透明電極4を備え、この導電性透明電極4に可
変電圧を印加する。この印加電圧が零であり被測定電極
3に電圧V0 が印加されているときには、図10に示す
ように被測定回路基板2に垂直な方向の電界が生じ、光
ビーム100に偏波面変化が生じる。ここで、この偏波
面変化がなくなるように、すなわち電気光学結晶1内の
電界がなくなるように、導電性透明電極4に電圧VS
印加する。この状態を図11に示す。電気光学結晶1内
の電界がないのであるから、導電性透明電極4に印加し
た電圧VS が被測定電極3の電圧V0 と等しいはずであ
り、被測定電極3の絶対電圧の測定が可能となる。
FIG. 1 shows a conventional example which solves this problem.
0 and FIG. This conventional example is disclosed in Japanese Patent Application Laid-Open No. 2-9886.
No. 71 (hereinafter referred to as “prior application”), and is also cited in the above-mentioned Kamiya reference. This voltage measuring device includes a conductive transparent electrode 4 as an auxiliary electrode on the upper surface of the electro-optic crystal 1, and applies a variable voltage to the conductive transparent electrode 4. When the applied voltage is zero and the voltage V 0 is applied to the electrode 3 to be measured, an electric field is generated in a direction perpendicular to the circuit board 2 to be measured as shown in FIG. Occurs. Here, the voltage V S is applied to the conductive transparent electrode 4 so that the polarization plane change disappears, that is, the electric field in the electro-optic crystal 1 disappears. This state is shown in FIG. Since there is no electric field in the electro-optic crystal 1, the voltage V S applied to the conductive transparent electrode 4 should be equal to the voltage V 0 of the electrode 3 to be measured, and the absolute voltage of the electrode 3 to be measured can be measured. Becomes

【0006】先願公報にはさらに、補助電極を電気光学
結晶1の側面に設けた例、絶対電圧を測定するための他
の電圧印加方法などが示されている。
The prior application further discloses an example in which an auxiliary electrode is provided on a side surface of the electro-optic crystal 1, and another voltage application method for measuring an absolute voltage.

【0007】[0007]

【発明が解決しようとする課題】しかし、先願公報に開
示された技術でも、絶対電圧を測定するためには、必ず
そのつど校正を行う必要があり、測定を自動化する上で
問題があった。
However, even in the technology disclosed in the prior application, it is necessary to perform calibration every time to measure the absolute voltage, and there is a problem in automating the measurement. .

【0008】本発明は、このような課題を解決し、校正
を行うことなく絶対電圧の測定が可能な電界検出装置を
提供することを目的とする。
An object of the present invention is to solve such a problem and to provide an electric field detecting device capable of measuring an absolute voltage without performing calibration.

【0009】[0009]

【課題を解決するための手段】本発明の電界検出装置
は、被測定回路基板に近接して配置可能な形状であっ
て、その被測定回路基板に設けられた被測定電極からの
電界により光学特性が変化する素子と、この素子を通過
した光の物理的状態の変化を検出する検出手段と、この
素子の少なくともひとつの面に設けられた補助電極と、
この補助電極に電圧を印加する手段とを備えた電界検出
装置において、検出手段の出力に応じて補助電極に印加
される電圧を制御する帰還手段を備えたことを特徴とす
る。
An electric field detecting device according to the present invention has a shape which can be arranged close to a circuit board to be measured, and is optically controlled by an electric field from an electrode to be measured provided on the circuit board to be measured. An element whose characteristics are changed, a detecting means for detecting a change in a physical state of light passing through the element, and an auxiliary electrode provided on at least one surface of the element,
An electric field detection device comprising means for applying a voltage to the auxiliary electrode, characterized in that feedback means for controlling the voltage applied to the auxiliary electrode according to the output of the detection means is provided.

【0010】電界により光学特性が変化する素子として
は、電気光学結晶の他に、電界強度により光の吸収量が
変化するGaAs結晶や、量子井戸構造半導体などを用
いることができる。
As an element whose optical characteristics change by an electric field, besides an electro-optic crystal, a GaAs crystal whose light absorption changes depending on the electric field intensity, a quantum well structure semiconductor, or the like can be used.

【0011】制御手段は補助電極に印加する電圧をその
電圧印加により検出手段で検出される光の物理的状態の
変化がなくなるように制御する手段を含むことが望まし
い。
The control means preferably includes means for controlling the voltage applied to the auxiliary electrode so that the physical state of the light detected by the detection means does not change by the application of the voltage.

【0012】電界により光学特性が変化する素子として
被測定回路基板に垂直な電界に対して感度をもつ素子を
用い、補助電極をこの素子の被測定回路基板に向き合う
面とは逆側の面に設けることが望ましい。
As an element whose optical characteristics change due to an electric field, an element sensitive to an electric field perpendicular to the circuit board to be measured is used, and an auxiliary electrode is provided on a surface of the element opposite to the surface facing the circuit board to be measured. It is desirable to provide.

【0013】補助電極に印加される電圧を変調する手段
をさらに備え、検出手段は光の物理的状態の変化を変調
する手段の変調周波数を用いて同期検波する手段を含む
ことができる。
The apparatus may further comprise means for modulating a voltage applied to the auxiliary electrode, and the detecting means may include means for synchronously detecting using a modulation frequency of the means for modulating a change in the physical state of light.

【0014】補助電極への印加電圧とは別に、素子に入
射する光を変調し、その変調周波数を用いて同期検波す
ることもできる。
[0014] Apart from the voltage applied to the auxiliary electrode, light incident on the element can be modulated, and synchronous detection can be performed using the modulation frequency.

【0015】素子に入射する光としてパルス光を用い、
光の物理的状態の変化をサンプリングすることもでき
る。
[0015] Pulse light is used as light incident on the element,
Changes in the physical state of light can also be sampled.

【0016】[0016]

【作用】電界により光学特性が変化する素子の少なくと
もひとつの面、望ましくは上面に補助電極を取り付け、
この素子に光を入射して検出された物理状態の変化に応
じてその電極に電圧を印加する。特に、光の物理的状態
の変化が検出されなくなるように電圧を印加する。光の
物理的状態の変化が検出されないということは、その素
子に電圧が印加されていないということであり、補助電
極の電位が被測定電極の電位と等しくなっていることを
意味する。したがって、その電圧が被測定電極の電圧に
等しく、校正の必要なしに被測定電極の絶対電圧を測定
することができる。また、常にほぼ一定の電界、通常は
零電界が電界検出用の素子に印加されるため、その素子
の直線性には無関係に直線性のよい出力信号が得られ
る。
Auxiliary electrodes are mounted on at least one surface, preferably the upper surface, of the element whose optical characteristics change due to an electric field.
A voltage is applied to the electrode in response to a change in the physical state detected by light incident on the element. In particular, a voltage is applied so that a change in the physical state of light is not detected. The fact that no change in the physical state of light is detected means that no voltage is applied to the element, which means that the potential of the auxiliary electrode is equal to the potential of the electrode to be measured. Therefore, the voltage is equal to the voltage of the electrode to be measured, and the absolute voltage of the electrode to be measured can be measured without the need for calibration. Also, since an almost constant electric field, usually a zero electric field, is always applied to the element for detecting the electric field, an output signal with good linearity can be obtained regardless of the linearity of the element.

【0017】また、電界による光学特性が変化する素子
として電界のうち被測定回路基板に垂直な電界を検出す
るものを用い、その素子の上面に電極を設けた場合に
は、被測定電極の幾何学的配置によらずにその電極の絶
対電圧を測定できる。
When an element whose optical characteristics change due to an electric field detects an electric field perpendicular to the circuit board to be measured among the electric fields, and an electrode is provided on the upper surface of the element, the geometrical shape of the electrode to be measured is increased. The absolute voltage of the electrode can be measured regardless of the geometrical arrangement.

【0018】素子に印加する電圧を変調して同期検波す
る場合には、非同期雑音を除去できるので信号対雑音比
が良くなり、高感度になる。また、光源のパワー変動に
よらず制御が可能となるので、正確な絶対電圧を測定で
きる。
When synchronous detection is performed by modulating the voltage applied to the element, since the asynchronous noise can be removed, the signal-to-noise ratio is improved and the sensitivity is increased. In addition, since control can be performed regardless of power fluctuation of the light source, an accurate absolute voltage can be measured.

【0019】素子に入射する光を変調すると、光源のA
Mノイズの影響を避けて信号対雑音比を向上させること
ができる。
When the light incident on the element is modulated, A
The signal-to-noise ratio can be improved while avoiding the influence of M noise.

【0020】さらに、パルス光を用い、サンプリングに
より被測定電極の信号を測定すると、測定手段や制御手
段に要求される帯域がサンプリング後の信号の帯域で十
分なので、被測定信号の帯域に無関係に低くでき、簡単
な回路で容易に測定できる。また、補助電極と制御手段
との接続も簡単になる。さらに、雑音帯域幅を狭くでき
るので信号対雑音比が良くなり、高感度になる。また、
同じ測定手段および制御手段を用いた場合に、連続光を
用いた場合に比べて電界検出装置の帯域を高くすること
ができる。
Further, when the signal of the electrode to be measured is measured by sampling using pulsed light, the band required for the measuring means and the control means is sufficient for the band of the signal after sampling, so that it is independent of the band of the signal to be measured. It can be low and can be easily measured with a simple circuit. Also, the connection between the auxiliary electrode and the control means is simplified. Further, since the noise bandwidth can be narrowed, the signal-to-noise ratio is improved and the sensitivity is increased. Also,
When the same measuring means and control means are used, the band of the electric field detecting device can be made higher than when using continuous light.

【0021】[0021]

【実施例】図1は本発明第一実施例の電界検出装置の構
成を示す。ここでは、電界により光学特性が変化する素
子として、縦型電界検出用結晶、すなわち被測定回路基
板2に垂直な電界を検出する素子を用いた例について説
明する。
FIG. 1 shows the structure of an electric field detecting device according to a first embodiment of the present invention. Here, an example will be described in which a vertical electric field detection crystal, that is, an element that detects an electric field perpendicular to the circuit substrate 2 to be measured, is used as an element whose optical characteristics change due to an electric field.

【0022】この実施例装置は、被測定回路基板2に近
接して配置可能な形状であって、その被測定回路基板2
に設けられた被測定電極3からの電界により光学特性が
変化する素子として電気光学結晶1を備え、この電気光
学結晶1を通過した光の物理的状態の変化を検出する検
出手段として光源5、偏光子6、波長板7および光検出
器8を備え、電気光学結晶1の少なくともひとつの面に
設けられた補助電極として導電性透明電極4を備え、こ
の補助電極4に電圧を印加できる構造となっている。こ
こで本実施例の特徴とするところは、光検出器8の出力
に応じて導電性透明電極4に印加される電圧を制御する
制御手段として、基準信号発生器9、減算器10および
制御回路11を備えたことにある。
The apparatus of this embodiment has a shape which can be arranged close to the circuit board 2 to be measured.
An electro-optic crystal 1 is provided as an element whose optical characteristics change due to an electric field from the electrode 3 to be measured provided in the light-emitting device 3. A structure that includes a polarizer 6, a wavelength plate 7, and a photodetector 8, includes a conductive transparent electrode 4 as an auxiliary electrode provided on at least one surface of the electro-optic crystal 1, and can apply a voltage to the auxiliary electrode 4. Has become. Here, the feature of this embodiment is that a reference signal generator 9, a subtractor 10, and a control circuit are used as control means for controlling the voltage applied to the conductive transparent electrode 4 according to the output of the photodetector 8. 11 is provided.

【0023】電気光学結晶1は、被測定回路基板2に垂
直な方向の電界に対して感度をもち、この電界方向と平
行に伝搬する光の偏波面に変化を与える。光源5から出
力された光ビーム100は、偏光子6、波長板7および
導電性透明電極4を通過して電気光学結晶1に入射し、
電気光学結晶1の底面で反射して、再び導電性透明電極
4および波長板7を通過して偏光子6に入射する。この
とき、被測定電極3と導電性透明電極4との間の電圧に
応じて、光ビーム100の偏波面が変化する。偏光子6
は電気光学結晶1からの反射光のうち特定の偏波成分を
反射するので、光ビーム100の偏波面変化に応じて光
検出器8に入射する光の量が変化する。すなわち、光検
出器8の出力は、被測定電極3と導電性透明電極4との
間の電圧に対応して変化する。波長板7は光検出器8に
入射する光のオフセット量を調整するために設けられて
おり、被測定電極3と導電性透明電極4との間の電圧が
零のときでも光検出器8に一定量の光を入射する。
The electro-optic crystal 1 has sensitivity to an electric field in a direction perpendicular to the circuit substrate 2 to be measured, and changes the plane of polarization of light propagating in parallel to the direction of the electric field. The light beam 100 output from the light source 5 passes through the polarizer 6, the wave plate 7, and the conductive transparent electrode 4, and enters the electro-optic crystal 1,
The light is reflected by the bottom surface of the electro-optic crystal 1, passes through the conductive transparent electrode 4 and the wave plate 7 again, and enters the polarizer 6. At this time, the polarization plane of the light beam 100 changes according to the voltage between the electrode 3 to be measured and the conductive transparent electrode 4. Polarizer 6
Reflects a specific polarization component of the reflected light from the electro-optic crystal 1, so that the amount of light incident on the photodetector 8 changes according to the change in the polarization plane of the light beam 100. That is, the output of the photodetector 8 changes according to the voltage between the electrode 3 to be measured and the conductive transparent electrode 4. The wave plate 7 is provided for adjusting the offset amount of light incident on the photodetector 8, and is provided to the photodetector 8 even when the voltage between the measured electrode 3 and the conductive transparent electrode 4 is zero. A certain amount of light enters.

【0024】光検出器8の出力は減算器10に入力され
る。減算器10は光検出器8の出力と基準信号発生器9
の出力との差を出力する。制御回路11はこの減算器1
0の出力に応じて導電性透明電極4に電圧を印加する。
このとき、減算器10の出力が零となるように導電性透
明電極4の電圧を制御する。基準信号発生器9の出力を
被測定電極3と導電性透明電極4との間の電圧が零のと
きの光検出器8の出力と等しくしておけば、常に被測定
電極3と導電性透明電極4との間の電圧を零、すなわち
被測定電極3と導電性透明電極4とを同電位にすること
ができる。したがって、導電性透明電極4に印加する電
圧を出力信号200として取り出せば、その電圧が被測
定電極3の電圧と等しくなる。
The output of the photodetector 8 is input to a subtractor 10. The subtractor 10 outputs the output of the photodetector 8 and the reference signal generator 9.
The difference from the output of is output. The control circuit 11 controls the subtractor 1
A voltage is applied to the conductive transparent electrode 4 according to the output of 0.
At this time, the voltage of the conductive transparent electrode 4 is controlled so that the output of the subtractor 10 becomes zero. If the output of the reference signal generator 9 is made equal to the output of the photodetector 8 when the voltage between the electrode 3 to be measured and the conductive transparent electrode 4 is zero, the electrode 3 to be measured and the conductive transparent electrode 4 are always kept. The voltage between the electrodes 4 can be zero, that is, the electrode 3 to be measured and the conductive transparent electrode 4 can have the same potential. Therefore, if the voltage applied to the conductive transparent electrode 4 is extracted as the output signal 200, the voltage becomes equal to the voltage of the electrode 3 to be measured.

【0025】図2は本発明第二実施例の電界検出装置の
構成を示す。この実施例は、導電性透明電極4に印加さ
れる電圧を変調する手段として発振器12および加算器
13を備え、制御回路11の前段には、光検出器8の出
力を発振器12からの変調周波数を用いて同期検波する
手段としてロックインアンプ14を備えたことが第一実
施例と異なる。
FIG. 2 shows the configuration of an electric field detecting device according to a second embodiment of the present invention. In this embodiment, an oscillator 12 and an adder 13 are provided as means for modulating a voltage applied to the conductive transparent electrode 4, and an output of the photodetector 8 is provided before the control circuit 11 by a modulation frequency from the oscillator 12. The second embodiment differs from the first embodiment in that a lock-in amplifier 14 is provided as a means for performing synchronous detection using.

【0026】図3は第二実施例の動作を説明する図であ
り、(a)は電気光学結晶1に印加される電圧に対する
光検出器8の入射光量、(b)は時間を横軸にとった発
振器12の出力波形、(c)は時間に対する光検出器8
の出力波形、(d)は時間を横軸にとったロックインア
ンプの出力波形、(e)は電気光学結晶1に印加される
電圧に対するロックインアンプ14の出力波形を示す。
FIGS. 3A and 3B are diagrams for explaining the operation of the second embodiment. FIG. 3A shows the amount of incident light on the photodetector 8 with respect to the voltage applied to the electro-optic crystal 1, and FIG. The output waveform of the oscillator 12 taken is shown in FIG.
(D) shows the output waveform of the lock-in amplifier with time on the horizontal axis, and (e) shows the output waveform of the lock-in amplifier 14 with respect to the voltage applied to the electro-optic crystal 1.

【0027】光検出器8に入射する光の量および光検出
器8の出力は、図3(a)に示すように、電気光学結晶
1に印加される電圧により変化する。ここで、波長板7
を調整し、電気光学結晶1に印加される電圧が零のとき
光検出器8に入射する光の量が零となるように、すなわ
ち図3(a)におけるA点となるようにバイアスする。
発振器12では、図3(b)に示すように、±ΔVで変
調を加える。この電圧が+ΔVのときには、光検出器8
に入射する光の量は図3(a)のB点となり、−ΔVの
ときにはC点となる。この特性はA点に対して対称であ
るから、B点とC点における光検出器8に入射する光の
量は等しくなる。したがって、ロックインアンプ14の
出力は図5(d)に示すように零となる。
The amount of light incident on the photodetector 8 and the output of the photodetector 8 change according to the voltage applied to the electro-optic crystal 1, as shown in FIG. Here, the wave plate 7
Is adjusted so that the amount of light incident on the photodetector 8 becomes zero when the voltage applied to the electro-optic crystal 1 is zero, that is, the bias is applied so as to become the point A in FIG.
In the oscillator 12, as shown in FIG. 3B, modulation is applied at ± ΔV. When this voltage is + ΔV, the photodetector 8
Is the point B in FIG. 3A, and becomes the point C when −ΔV. Since this characteristic is symmetric with respect to the point A, the amount of light incident on the photodetector 8 at the points B and C becomes equal. Therefore, the output of the lock-in amplifier 14 becomes zero as shown in FIG.

【0028】電気光学結晶1への印加電圧が正のときに
は、その電圧の増加により光検出器8に入射する光の量
が増加し、電圧の減少により光の量が減少するようにな
る。すなわち、動作点が図3(a)のA′点となる。し
たがって、光検出器8の出力は、図3(c)の中央部に
示すように、発振器12の出力と同相の成分を含むよう
になる。このとき、ロックインアンプ14の出力は、図
3(d)の中央部に示すように、正の電圧を出力する。
When the voltage applied to the electro-optic crystal 1 is positive, the amount of light incident on the photodetector 8 increases with an increase in the voltage, and the amount of light decreases with a decrease in the voltage. That is, the operating point is point A 'in FIG. Therefore, the output of the photodetector 8 includes a component having the same phase as the output of the oscillator 12, as shown in the center of FIG. At this time, the output of the lock-in amplifier 14 outputs a positive voltage as shown in the center of FIG.

【0029】これに対し、電気光学結晶1への印加電圧
が負の場合には、動作点が図3(a)のA″点となり、
その電圧の増加により光検出器8に入射する光の量が減
少するようになる。したがって、光検出器8の出力は、
図3(c)の右側に示すように、発振器12の出力の逆
相の成分を含むようになる。このとき、ロックインアン
プ14の出力は、図3(d)の右側に示すように、負の
電圧を出力する。
On the other hand, when the voltage applied to the electro-optic crystal 1 is negative, the operating point becomes the point A ″ in FIG.
The increase in the voltage causes the amount of light incident on the photodetector 8 to decrease. Therefore, the output of the photodetector 8 is
As shown on the right side of FIG. 3C, the output of the oscillator 12 includes a component having a reverse phase. At this time, the output of the lock-in amplifier 14 outputs a negative voltage as shown on the right side of FIG.

【0030】このように、ロックインアンプ14の出力
は、電気光学結晶1の印加電圧に対して図3(e)のよ
うに変化し、電気光学結晶1の印加電圧が零でないとき
正負の誤差信号となる。この誤差信号に基づき、制御回
路11で誤差信号が零となるように制御する。すなわ
ち、電気光学結晶1への印加電圧が零となるように、導
電性透明電極4に印加する電圧を制御する。この制御に
より、被測定電極3と導電性透明電極4との電位差は零
となる。このようにして、出力信号200には、被測定
電極3と同じ電圧を得ることができる。
As described above, the output of the lock-in amplifier 14 changes with respect to the voltage applied to the electro-optic crystal 1 as shown in FIG. 3 (e). Signal. Based on this error signal, the control circuit 11 controls the error signal to be zero. That is, the voltage applied to the conductive transparent electrode 4 is controlled so that the voltage applied to the electro-optic crystal 1 becomes zero. By this control, the potential difference between the electrode 3 to be measured and the conductive transparent electrode 4 becomes zero. Thus, the same voltage as that of the electrode under measurement 3 can be obtained in the output signal 200.

【0031】第一実施例のように基準に直流信号を使用
する場合には、正負の誤差信号を得るためには光検出器
8に入射する光を零となるような点に制御することはで
きないので、光源5のパワー変動が導電性透明電極4に
印加される電圧のオフセット誤差となってしまう。これ
に対し第二実施例では、常に光検出器8に入射する光が
零となる点Aを中心に制御するので、光源のパワー変動
による誤差を除去できる。また、同期検波しているの
で、非同期ノイズが除去されて信号対雑音比が良くな
り、感度が向上する。
When a DC signal is used as a reference as in the first embodiment, in order to obtain a positive / negative error signal, it is not possible to control the point at which the light incident on the photodetector 8 becomes zero. Therefore, the power fluctuation of the light source 5 causes an offset error of the voltage applied to the conductive transparent electrode 4. On the other hand, in the second embodiment, since the control is always performed around the point A where the light incident on the photodetector 8 becomes zero, it is possible to remove the error due to the power fluctuation of the light source. In addition, since synchronous detection is performed, asynchronous noise is removed, the signal-to-noise ratio is improved, and the sensitivity is improved.

【0032】図3では導電性透明電極4に加える変調電
圧を光量最小の半値幅電圧よりも小さくしているが、こ
れに限定される必要はなく、変調電圧は任意に選択でき
る。図4に変調電圧のピーク値を半値幅電圧の1/2と
したときの波形例を示す。図4において、(a)は電気
光学結晶1に印加される電圧に対する光検出器8の入射
光量を示し、(b)は電気光学結晶1に印加される電圧
に対するロックインアンプ14の出力波形を示す。
In FIG. 3, the modulation voltage applied to the conductive transparent electrode 4 is smaller than the half-width voltage with the minimum light quantity. However, the present invention is not limited to this, and the modulation voltage can be arbitrarily selected. FIG. 4 shows a waveform example when the peak value of the modulation voltage is の of the half-width voltage. 4A shows the amount of incident light of the photodetector 8 with respect to the voltage applied to the electro-optic crystal 1, and FIG. 4B shows the output waveform of the lock-in amplifier 14 with respect to the voltage applied to the electro-optic crystal 1. Show.

【0033】ここでは発振器12の出力信号を矩形波と
したが、正弦波、三角波など、周期波形であればどのよ
うな信号を用いてもよい。
Although the output signal of the oscillator 12 is a rectangular wave here, any signal having a periodic waveform such as a sine wave or a triangular wave may be used.

【0034】図5は本発明第三実施例の電界検出装置の
構成を示す。この実施例は、発振器12の出力信号を正
弦波とし、ロックインアンプ14の参照信号として変調
信号の二次高調波を用いるものである。すなわち、発振
器12の出力が周波数2てい倍器15に入力され、2倍
の周波数の正弦波がロックインアンプ14に入力され
る。ロックインアンプ14は、周波数2てい倍器15の
出力を参照信号として光検出器8の出力信号を同期検波
する。
FIG. 5 shows the structure of an electric field detecting device according to a third embodiment of the present invention. In this embodiment, the output signal of the oscillator 12 is a sine wave, and the second harmonic of the modulation signal is used as a reference signal of the lock-in amplifier 14. That is, the output of the oscillator 12 is input to the frequency doubler 15, and a sine wave of twice the frequency is input to the lock-in amplifier 14. The lock-in amplifier 14 synchronously detects the output signal of the photodetector 8 using the output of the frequency doubler 15 as a reference signal.

【0035】図6は第三実施例における光検出器8の出
力とロックインアンプ14の出力とを示す。横軸は共に
電気光学結晶1に印加される電圧である。ロックインア
ンプの出力信号は、図6(b)に示すように、同図
(a)に示す光検出器8の出力信号の二次微分波形とな
る。したがって、ロックインアンプ14の出力が零とな
るように制御すれば、電気光学結晶1に印加する電圧に
対して光検出器8の出力の傾きが最大となるように(図
6における点Pが動作点となるように)制御される。し
たがって、光源のパワー変動による制御点の変化を除去
できる。
FIG. 6 shows the output of the photodetector 8 and the output of the lock-in amplifier 14 in the third embodiment. The horizontal axis represents the voltage applied to the electro-optic crystal 1. The output signal of the lock-in amplifier has a second derivative waveform of the output signal of the photodetector 8 shown in FIG. 6A, as shown in FIG. 6B. Therefore, if the output of the lock-in amplifier 14 is controlled to be zero, the slope of the output of the photodetector 8 becomes maximum with respect to the voltage applied to the electro-optic crystal 1 (the point P in FIG. (The operating point). Therefore, a change in the control point due to the power fluctuation of the light source can be eliminated.

【0036】図7は本発明第四実施例の電界検出装置の
構成を示す。この実施例は、光源5のAMノイズ(主に
1/fノイズ)の影響を避けて信号対雑音比を向上させ
るために、偏波面変調器16を用いて光を変調し、ロッ
クインアンプ14により同期検波する。この実施例では
電気光学結晶1の入射光と反射光との双方を変調してい
るが、入射光だけを変調する構成とすることもできる。
FIG. 7 shows the structure of an electric field detecting device according to a fourth embodiment of the present invention. This embodiment modulates the light using the polarization modulator 16 to improve the signal-to-noise ratio while avoiding the influence of the AM noise (mainly 1 / f noise) of the light source 5 and the lock-in amplifier 14. To perform synchronous detection. In this embodiment, both the incident light and the reflected light of the electro-optic crystal 1 are modulated, but a configuration in which only the incident light is modulated may be employed.

【0037】図8は本発明第五実施例の電界検出装置の
構成を示す。この実施例は、被測定回路基板2に平行な
電界を検出するためのものであり、電気光学結晶1とし
て横型電界検出結晶を用いたことが第一実施例と異な
る。電気光学結晶1は、第一実施例のものとは異なり、
電界方向と垂直に伝搬する光の偏波面に変化を与える。
電気光学結晶1に垂直に入射した光は、結晶の側面で横
方向に反射し、さらに別の側面で入射方向と逆方向に反
射する。したがって、入射光軸に垂直な電界を検出でき
る。ここでは第一実施例と同等の構成について説明した
が、同様の修正を施すことにより、第二実施例ないし第
四実施例のいずれでも横型電界検出結晶を用いることも
できる。
FIG. 8 shows the structure of an electric field detecting device according to a fifth embodiment of the present invention. This embodiment is for detecting an electric field parallel to the circuit substrate 2 to be measured, and differs from the first embodiment in that a horizontal electric field detection crystal is used as the electro-optic crystal 1. The electro-optic crystal 1 is different from that of the first embodiment,
Changes the plane of polarization of light propagating perpendicular to the direction of the electric field.
Light that is perpendicularly incident on the electro-optic crystal 1 is reflected laterally on a side surface of the crystal and is reflected on another side surface in a direction opposite to the incident direction. Therefore, an electric field perpendicular to the incident optical axis can be detected. Here, a configuration equivalent to that of the first embodiment has been described. However, by making similar modifications, a horizontal electric field detecting crystal can be used in any of the second to fourth embodiments.

【0038】以上の実施例において、光源5としてパル
ス光源を用いることもできる。この場合、被測定回路の
信号をサンプリング手法により測定できるので、被測定
回路信号の帯域に無関係に光検出器8、制御回路11な
どの帯域を低くでき、構成が簡単でその実施が容易にな
る。また、雑音帯域幅を制限できるので、信号対雑音比
が良くなり、感度が良くなる。さらに、同一の光検出器
8および制御回路11を用いた場合に、連続光を用いた
場合に比べて電界検出装置の帯域を高くすることができ
る。
In the above embodiment, a pulsed light source can be used as the light source 5. In this case, since the signal of the circuit under test can be measured by the sampling method, the band of the photodetector 8 and the control circuit 11 can be reduced regardless of the band of the circuit under test, and the configuration is simple and the implementation is easy. . Also, since the noise bandwidth can be limited, the signal-to-noise ratio is improved and the sensitivity is improved. Furthermore, when the same photodetector 8 and control circuit 11 are used, the band of the electric field detection device can be made higher than when using continuous light.

【0039】以上の実施例ではオフセット調整用に波長
板7を用いたが、これは必須というわけではない。ま
た、補助電極として導電性透明電極を用いたが、光が透
過する部分に開口を設けた金属電極を用いることもでき
る。電界により光学特性が変化する素子としては、電気
光学結晶の他に、電界強度により光の吸収量が変化する
GaAs結晶や、量子井戸構造半導体など、電界により
光の物理的状態を変化させる物質であれば何を用いても
本発明を同様に実施できる。
In the above embodiment, the wave plate 7 is used for offset adjustment, but this is not essential. Further, although the conductive transparent electrode is used as the auxiliary electrode, a metal electrode having an opening at a portion where light is transmitted may be used. Elements whose optical characteristics change with an electric field include, besides electro-optic crystals, GaAs crystals whose light absorption changes with the electric field strength, and quantum well structure semiconductors, which change the physical state of light with an electric field. The present invention can be carried out in the same manner no matter what is used.

【0040】[0040]

【発明の効果】以上説明したように、本発明の電界検出
装置は、電界により光学特性が変化する素子の一面に電
極を設け、この電極を被測定電極と同電位となるように
制御する構成としたために、被測定電極と等しい電圧を
得ることができ、校正の必要なしに被測定電極の絶対電
圧を測定することができる効果がある。また、常にほぼ
一定の電圧が電界検出用の素子に印加されるため、その
素子の直線性には無関係に直線性のよい出力信号が得ら
れる効果がある。
As described above, the electric field detecting device of the present invention has a structure in which an electrode is provided on one surface of an element whose optical characteristics are changed by an electric field, and this electrode is controlled to have the same potential as the electrode to be measured. Therefore, it is possible to obtain a voltage equal to that of the electrode to be measured and to measure the absolute voltage of the electrode to be measured without the need for calibration. Further, since a substantially constant voltage is always applied to the element for detecting the electric field, an output signal having good linearity can be obtained irrespective of the linearity of the element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明第一実施例の電界検出装置の構成を示す
図。
FIG. 1 is a diagram showing a configuration of an electric field detection device according to a first embodiment of the present invention.

【図2】本発明第二実施例の電界検出装置の構成を示す
図。
FIG. 2 is a diagram showing a configuration of an electric field detection device according to a second embodiment of the present invention.

【図3】第二実施例の動作を説明する図であり、(a)
は電気光学結晶に印加される電圧に対する光検出器の入
射光量、(b)は時間を横軸にとった発振器の出力波
形、(c)は時間に対する光検出器の出力波形、(d)
は時間を横軸にとったロックインアンプの出力波形、
(e)は電気光学結晶に印加される電圧に対するロック
インアンプの出力波形。
FIGS. 3A and 3B are diagrams for explaining the operation of the second embodiment, and FIG.
Is the amount of incident light of the photodetector with respect to the voltage applied to the electro-optic crystal, (b) is the output waveform of the oscillator with time on the horizontal axis, (c) is the output waveform of the photodetector with respect to time, (d)
Is the output waveform of the lock-in amplifier with time on the horizontal axis,
(E) is an output waveform of the lock-in amplifier with respect to the voltage applied to the electro-optic crystal.

【図4】変調電圧のピーク値を大きくしたときの波形例
を示す図であり、(a)は電気光学結晶に印加される電
圧に対する光検出器の入射光量、(b)は電気光学結晶
に印加される電圧に対するロックインアンプの出力波
形。
FIGS. 4A and 4B are diagrams illustrating waveform examples when a peak value of a modulation voltage is increased. FIG. 4A is a diagram illustrating an incident light amount of a photodetector with respect to a voltage applied to an electro-optic crystal, and FIG. Output waveform of lock-in amplifier for applied voltage.

【図5】本発明第三実施例の電界検出装置の構成を示す
図。
FIG. 5 is a diagram showing a configuration of an electric field detection device according to a third embodiment of the present invention.

【図6】第三実施例における波形例を示す図であり、
(a)は電気光学結晶に印加される電圧に対する光検出
器の入射光量、(b)は電気光学結晶に印加される電圧
に対するロックインアンプの出力波形。
FIG. 6 is a diagram showing a waveform example in the third embodiment;
(A) is the incident light amount of the photodetector with respect to the voltage applied to the electro-optic crystal, and (b) is the output waveform of the lock-in amplifier with respect to the voltage applied to the electro-optic crystal.

【図7】本発明第三実施例の電界検出装置の構成を示す
図。
FIG. 7 is a diagram showing a configuration of an electric field detection device according to a third embodiment of the present invention.

【図8】本発明第四実施例の電界検出装置の構成を示す
図。
FIG. 8 is a diagram showing a configuration of an electric field detection device according to a fourth embodiment of the present invention.

【図9】従来の電界検出プローブの構成例およびその測
定方法を示す図。
FIG. 9 is a diagram showing a configuration example of a conventional electric field detection probe and a measurement method thereof.

【図10】先願公報に開示された電圧測定装置の構成お
よび動作を示す図であり、導電性透明電極を接地した状
態を示す図。
FIG. 10 is a diagram showing the configuration and operation of a voltage measuring device disclosed in the prior application, showing a state in which a conductive transparent electrode is grounded.

【図11】先願公報に開示された電圧測定装置の構成お
よび動作を示す図であり、導電性透明電極に電圧を印加
した状態を示す図。
FIG. 11 is a diagram showing the configuration and operation of a voltage measuring device disclosed in the prior application, showing a state in which a voltage is applied to a conductive transparent electrode.

【符号の説明】[Explanation of symbols]

1 電気光学結晶 2 被測定回路基板 3 被測定電極 4 導電性透明電極 5 光源 6 偏光子 7 波長板 8 光検出器 9 基準信号発生器 10 減算器 11 制御回路 12 発振器 13 加算器 14 ロックインアンプ 15 周波数2てい倍器 16 偏波面変調器 100 光ビーム 200 出力信号 300 電界 DESCRIPTION OF SYMBOLS 1 Electro-optic crystal 2 Circuit board to be measured 3 Electrode to be measured 4 Conductive transparent electrode 5 Light source 6 Polarizer 7 Wave plate 8 Photodetector 9 Reference signal generator 10 Subtractor 11 Control circuit 12 Oscillator 13 Adder 14 Lock-in amplifier Reference Signs List 15 frequency 2 multiplier 16 polarization modulator 100 light beam 200 output signal 300 electric field

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−98671(JP,A) 特開 平4−148872(JP,A) 特開 平5−240884(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 19/00 - 19/32 G01R 31/28 - 31/3193 G01R 15/24 G01R 29/12 H01L 21/66 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-98671 (JP, A) JP-A-4-148872 (JP, A) JP-A-5-240884 (JP, A) (58) Field (Int.Cl. 7 , DB name) G01R 19/00-19/32 G01R 31/28-31/3193 G01R 15/24 G01R 29/12 H01L 21/66

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定回路基板に近接して配置可能な形
状であって、その被測定回路基板に設けられた被測定電
極からの電界により光学特性が変化する素子と、 この素子を通過した光の物理的状態の変化を検出する検
出手段と、 上記素子の少なくともひとつの面に設けられた補助電極
と、 この補助電極に電圧を印加する手段とを備えた電界検出
装置において、上記補助電極に印加される電圧を変調する手段と、 上記検出手段の出力を上記変調する手段の変調周波数を
用いて同期検波する手段と、 この同期検波する手段の検波出力 に応じて上記補助電極
に印加される電圧を制御する制御手段を備えたことを
特徴とする電界検出装置。
An element having a shape that can be arranged close to a circuit board to be measured and whose optical characteristics change due to an electric field from an electrode to be measured provided on the circuit board to be measured, and an element passing through the element. An electric field detection device comprising: a detection unit that detects a change in a physical state of light; an auxiliary electrode provided on at least one surface of the element; and a unit that applies a voltage to the auxiliary electrode. Means for modulating the voltage applied to the detector , and the modulation frequency of the means for modulating the output of the detecting means.
Means for detecting synchronization using an electric field detecting apparatus characterized by comprising a control means for controlling a voltage applied to the auxiliary electrode depending on the detection output of the means for the synchronous detection.
JP05214269A 1993-08-30 1993-08-30 Electric field detector Expired - Fee Related JP3130187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05214269A JP3130187B2 (en) 1993-08-30 1993-08-30 Electric field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05214269A JP3130187B2 (en) 1993-08-30 1993-08-30 Electric field detector

Publications (2)

Publication Number Publication Date
JPH0763795A JPH0763795A (en) 1995-03-10
JP3130187B2 true JP3130187B2 (en) 2001-01-31

Family

ID=16652940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05214269A Expired - Fee Related JP3130187B2 (en) 1993-08-30 1993-08-30 Electric field detector

Country Status (1)

Country Link
JP (1) JP3130187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576324B2 (en) 1995-04-05 2003-06-10 Canon Kabushiki Kaisha Printing medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906039B1 (en) * 2006-09-20 2009-01-23 Univ Paris Sud Etablissement P METHOD AND DEVICE FOR CHARACTERIZING AN ELECTRICAL SIGNAL PROPAGATING IN A SAMPLE
JP2018091782A (en) * 2016-12-06 2018-06-14 三菱電機株式会社 Voltage measurement device and method for voltage measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576324B2 (en) 1995-04-05 2003-06-10 Canon Kabushiki Kaisha Printing medium

Also Published As

Publication number Publication date
JPH0763795A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
US6479979B1 (en) Opto-electric device for measuring the root-mean-square value of an alternating current voltage
EP0197196A1 (en) Electro-electron optical oscilloscope system for time-resolving picosecond electrical waveforms
US7786719B2 (en) Optical sensor, optical current sensor and optical voltage sensor
US5907426A (en) Stabilizing device for optical modulator
JPH06102295A (en) Non-contact type probe and non-contact voltage measuring device
EP0430661B1 (en) Apparatus for detecting a change in light intensity
JP2004101489A (en) Method and apparatus for measuring current
JPS608756A (en) Electronic control circuit
US5256968A (en) Measurement of high-frequency electrical signals by electro-optical effect
US4982151A (en) Voltage measuring apparatus
JP3130187B2 (en) Electric field detector
JP2810976B2 (en) Electrical signal measuring method and apparatus
JP3489701B2 (en) Electric signal measuring device
GB2340233A (en) Current measuring method,current sensor,and IC tester using the same current sensor
US5012183A (en) Electrooptic effect element and electrical signal waveform measuring apparatus using the same
US5631555A (en) Voltage measurement system
JPH0547883A (en) Method and apparatus for testing integrated circuit
US5053696A (en) Electro-electron oscilloscope
US5384638A (en) Sampling-type optical voltage detector utilizing movement of interference fringe
JP3210957B2 (en) Semiconductor laser light frequency modulation device and interference measurement device using the same
JP3478063B2 (en) Optical modulator stabilizer
JP3057280B2 (en) Optical sampling device
JP3015903B2 (en) Integrated circuit circuit test apparatus and circuit test method
JPH036465A (en) Non-contact type voltage measuring apparatus using laser beam
US6303926B1 (en) Optical sampler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees