JPH0341328A - Infrared image sensing optical apparatus - Google Patents

Infrared image sensing optical apparatus

Info

Publication number
JPH0341328A
JPH0341328A JP1175691A JP17569189A JPH0341328A JP H0341328 A JPH0341328 A JP H0341328A JP 1175691 A JP1175691 A JP 1175691A JP 17569189 A JP17569189 A JP 17569189A JP H0341328 A JPH0341328 A JP H0341328A
Authority
JP
Japan
Prior art keywords
detector
imaging optical
cold shield
optical system
exit pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1175691A
Other languages
Japanese (ja)
Other versions
JP2691226B2 (en
Inventor
Hajime Ichikawa
元 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1175691A priority Critical patent/JP2691226B2/en
Publication of JPH0341328A publication Critical patent/JPH0341328A/en
Application granted granted Critical
Publication of JP2691226B2 publication Critical patent/JP2691226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To enable maintenance of a high cooling multiplication rate and high sensitiv ity even when the magnification of an objective lens is varied, by making an exit pupil and an opening of a cold shield accord with each other and also by forming the surface on the image side of an aperture stop to be specular. CONSTITUTION:An optical system is provided with an objective lens 2 and a relay lens 3 whereby an image formed on an intermediate imaging plane by the objective lens is formed on a light-sensing surface of an infrared detector 4. The detector 4 has an opening for passing an effective light flux from the relay lens 3 and also is surrounded by a cold shield 5 interrupting heat radiation from surrounding substances, so that it be cooled down to a temperature of about 80K. An aperture stop 1 of an image sensing optical system and an opening of the cold shield 5 are in a conjugated relationship (i.e. a relationship wherein an exit pupil and the opening accord with each other) and the surface on the detector 4 side of the aperture stop 1 is formed to be specular. According to this constitution, radiation lights of the cooled detector 4 and the cold shield 5 itself are reflected by the specular surface and fall on the detector 4 and the cold shield 5, and the heat radiation falling on the detector 4 from the surrounding substance of normal temperature is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、赤外線撮像光学装置に関するものである。[Detailed description of the invention] [Industrial application fields] The present invention relates to an infrared imaging optical device.

[従来の技術] 従来のこの種装置は、第9図に示す様な構造であった。[Conventional technology] A conventional device of this type had a structure as shown in FIG.

図において、対物レンズ102によって中間結像面に結
像された撮像対象の像はリレーレンズ103によって赤
外線検知器104の受光面に結像される。一般に赤外線
用の光電素子は禁制帯幅が狭く暗電流が流れやすいため
、検知器104はリレーレンズ103からの有効光束を
通過させるための開口部を有し周囲の物体からの放射光
(熱輻射)を遮蔽するコールドシールド105によって
囲まれ、80に程度の温度に冷却さされている。このよ
うな構成の赤外線撮像光学装置において、リレーレンズ
103からの光束の光路を遮らず、かつ撮像対象以外の
物体から検知器104に入射する熱輻射を低減するには
、コールドシールド105開口部と撮像光学系の射出瞳
を合致させることが提案されている。
In the figure, an image of the object formed on an intermediate image plane by an objective lens 102 is formed on a light receiving surface of an infrared detector 104 by a relay lens 103. In general, photoelectric elements for infrared light have a narrow forbidden band width, and dark current tends to flow easily. ) is surrounded by a cold shield 105 that shields it, and is cooled to a temperature of about 80°C. In the infrared imaging optical device having such a configuration, in order to not block the optical path of the light beam from the relay lens 103 and to reduce thermal radiation that enters the detector 104 from objects other than the object to be imaged, the cold shield 105 opening and It has been proposed to match the exit pupils of imaging optical systems.

[発明が解決しようとする課題] シカシ、上記の如き従来技術においては、以下のような
問題点があった。
[Problems to be Solved by the Invention] The conventional techniques described above have the following problems.

まず、コールドシールド開口部の検知器受光面からの高
さは射出瞳の位置に対応させなければならないため、コ
ールドシールドの小型化を図ることができず、冷却負荷
を軽減することができないという問題がある。特に検知
器の光電素子が二次元に多数配列されていて受光面積が
大きい場合には、射出瞳と結像面(受光面)との距離が
長くなるため、それに応じてコールドシールドも大型化
し冷却負荷が大きなものとなってしまう。
First, the height of the cold shield opening from the detector light receiving surface must correspond to the position of the exit pupil, which makes it impossible to downsize the cold shield and reduce the cooling load. There is. In particular, when a large number of photoelectric elements in a detector are arranged in two dimensions and the light-receiving area is large, the distance between the exit pupil and the imaging surface (light-receiving surface) becomes longer, so the cold shield also becomes larger and cooled accordingly. This results in a heavy load.

また、コールドシールドの開口部の大きさは固定された
ものであるので、撮像光学系の開口絞りの大きさを変え
ると射出瞳とコールドシールド開口部の大きさが一致し
なくなるという問題点がある。即ち、開口絞りを絞った
場合、コールドシールド開口部より射出瞳の大きさが小
さくなり撮像対象以外の物体からの熱輻射が検知器に入
射してしまい、検知器の感度が低下してしまう。
In addition, since the size of the cold shield aperture is fixed, there is a problem that if the size of the aperture stop of the imaging optical system is changed, the exit pupil and the cold shield aperture size will not match. . That is, when the aperture stop is stopped down, the size of the exit pupil is smaller than that of the cold shield aperture, and thermal radiation from objects other than the object to be imaged enters the detector, reducing the sensitivity of the detector.

更に、赤外線用の検知器は水分が受光面上に結露すると
感度が損なわれてしまう為、一般に検知器受光部を真空
中に保てる様に光学窓部材によって検知器の周囲(コー
ルドシールドの外側)を密閉することが多いが、断熱効
果の点から真空層はある程度厚くする必要があり、装置
が更に大型化してしまうという問題がある。
Furthermore, infrared detectors lose their sensitivity if moisture condenses on the light-receiving surface, so generally an optical window is placed around the detector (outside the cold shield) to keep the detector light-receiving part in a vacuum. However, the vacuum layer needs to be thicker to some extent for insulation purposes, which poses the problem of further increasing the size of the device.

加えて、前述したようにコールドシールド開口部の位置
及び形状は固定されたものにせざるを得ない為、対物レ
ンズの倍率を変えると射出瞳とコールドシールド開口部
が合致しなくなり、検知器の感度が低下してしまうとい
う問題点もある。
In addition, as mentioned above, the position and shape of the cold shield aperture must be fixed, so if the magnification of the objective lens is changed, the exit pupil and the cold shield aperture will no longer match, which will affect the sensitivity of the detector. There is also the problem that the value decreases.

本願発明は上記の問題点に鑑みてなされたものであり、
第1の発明(請求項1)は検知器の冷却効率の向上を図
ることができるとともに、検知器の感度を低下させずに
開口絞りの大きさを変えることができる赤外線撮像光学
装置を提供することを目的としたものである。
The present invention has been made in view of the above problems,
The first invention (claim 1) provides an infrared imaging optical device that can improve the cooling efficiency of the detector and can change the size of the aperture stop without reducing the sensitivity of the detector. It is intended for this purpose.

また、第2の発明(請求項3)は検知器の感度を低下さ
せずに装置の小型化を図ることができる赤外線撮像光学
装置を提供することを目的としたものである。
Moreover, the second invention (claim 3) aims to provide an infrared imaging optical device that can be miniaturized without reducing the sensitivity of the detector.

さらに、第3の発明(請求項4)は対物レンズの倍率を
変えた場合でも高い冷却効率や感度を維持することがで
きる赤外線撮像光学装置を提供することを目的としたも
のである。
Furthermore, the third invention (claim 4) aims to provide an infrared imaging optical device that can maintain high cooling efficiency and sensitivity even when the magnification of the objective lens is changed.

[課題を解決するための手段] 第1の発明の赤外線撮像光学装置は、対物レンズとリレ
ーレンズを有する撮像光学系と、該撮像光学系の最終結
像面の位置に受光面が一致するように配置された赤外線
検知器と、前記撮像光学系からの光束が通過する開口部
を有して前記検知器を囲むように配置され、前記検知器
周囲からの熱輻射を遮蔽するコールドシールドとを備え
た赤外線撮像光学装置てあって、前述した課題を達成す
るために前記コールドシールドの開口部か前記撮像光学
系の射出瞳あるいは射出瞳と共役な位置に合致するとと
もに、前記撮像光学系の開口絞りの像側の面が鏡面で構
成されたことを特徴とする赤外線撮像光学装置である。
[Means for Solving the Problems] The infrared imaging optical device of the first invention includes an imaging optical system having an objective lens and a relay lens, and a light-receiving surface that is aligned with the position of the final imaging surface of the imaging optical system. an infrared detector disposed in the imaging optical system; and a cold shield disposed to surround the detector and having an opening through which a light flux from the imaging optical system passes, and shielding thermal radiation from around the detector. In order to achieve the above-mentioned object, there is provided an infrared imaging optical device equipped with an aperture of the cold shield that matches the exit pupil of the imaging optical system or a position conjugate to the exit pupil, and an aperture of the imaging optical system. This is an infrared imaging optical device characterized in that the image-side surface of the aperture is configured with a mirror surface.

第2の発明の赤外線撮像光学装置は、対物レンズとリレ
ーレンズを有する撮像光学系と、該撮像光学系の最終結
像面の位置に受光面が一致するように配置された赤外線
検知器と、該検知器の周囲を密閉する光学窓部材と、該
光学窓部材を支持する支持部材を有する赤外線撮像光学
装置であって、前述した課題を達成するために前記光学
窓部材が前記撮像光学系の射出瞳あるいは射出瞳と共役
な位置に合致するとともに、前記支持部月の検知器側の
面が鏡面で構成されたことを特徴とする赤外線撮像光学
装置である。
An infrared imaging optical device according to a second aspect of the invention includes: an imaging optical system having an objective lens and a relay lens; an infrared detector disposed such that a light receiving surface coincides with a position of a final imaging surface of the imaging optical system; An infrared imaging optical device having an optical window member that seals the periphery of the detector and a support member that supports the optical window member, wherein the optical window member is connected to the imaging optical system in order to achieve the above-described object. The infrared imaging optical device is characterized in that the surface of the support portion on the detector side is formed of a mirror surface, which coincides with the exit pupil or a position conjugate with the exit pupil.

第3の発明の撮像光学装置は、対物レンズとリレーレン
ズを有する撮像光学系と、該撮像光学系の最終結像面の
位置に受光面が一致するように配置された赤外線検知器
と、前記撮像光学系からの光束が通過する開口部を有し
て前記検知器を囲むように配置され、前記検知器周囲か
らの熱輻射を遮蔽するコールドシールドとを備えた赤外
線撮像光学装置であって、前述した課題の達成のために
前記撮像光学系が、前記対物レンズを変倍した場合にあ
っても、射出瞳あるいは射出瞳と共役な位置が常に前記
コールドシールドの開口部に合致する変倍光学系で構成
されたことを特徴とする赤外線撮像光学装置である。
An imaging optical device according to a third aspect of the invention includes: an imaging optical system having an objective lens and a relay lens; an infrared detector disposed such that a light receiving surface coincides with a position of a final image forming surface of the imaging optical system; An infrared imaging optical device comprising: a cold shield that has an opening through which a light beam from an imaging optical system passes and is arranged to surround the detector, and that shields thermal radiation from around the detector; In order to achieve the above-mentioned problem, the imaging optical system is a variable magnification optical system in which the exit pupil or a position conjugate to the exit pupil always matches the opening of the cold shield even when the objective lens is magnified. This is an infrared imaging optical device characterized by being configured as a system.

なお、本明細書において「射出瞳とコールドシールド開
口部(又は光学窓部材)が合致する」とは、「射出瞳と
開口部(又は光学窓部材)の位置が一致し、かつ大きさ
も等しい」ことを言い、以下「開口整合する」とも表現
する。
In this specification, "the exit pupil and the cold shield opening (or the optical window member) match" means "the exit pupil and the opening (or the optical window member) match in position and are equal in size." This is also referred to as "aperture matching" hereinafter.

[作 用] 第1の発明においては、射出瞳とコールドシールドの開
口部が合致している(一般に光学設計において射出瞳の
位置及び大きさは所望の値とすることが可能であり、対
物レンズの設計によってコールドシールド開口部と光学
系全体の射出瞳を合致させることができる)とともに開
口絞りの像側の面が鏡面で構成されているので、コール
ドシールドの開口部形成面からの放射光は開口絞りの鏡
面で正反射され、コールドシールド開口部形成面に戻る
。即ち、周囲の常温物体からコールドシールド及び検知
器に入射する熱輻射が大幅に低減され、冷却されたコー
ルドシールド及び検知器自体の放射光が入射することに
なる(ナルシサス現象)ので冷却負荷が低減される。
[Function] In the first invention, the exit pupil and the opening of the cold shield match (generally, in optical design, the position and size of the exit pupil can be set to desired values, and the objective lens (The design allows the cold shield aperture to match the exit pupil of the entire optical system) and the image-side surface of the aperture stop is made of a mirror surface, so the light emitted from the cold shield aperture forming surface is It is specularly reflected by the mirror surface of the aperture stop and returns to the cold shield aperture forming surface. In other words, the thermal radiation that enters the cold shield and detector from surrounding room-temperature objects is significantly reduced, and the cooled radiation from the cold shield and detector itself enters (Narcissus phenomenon), reducing the cooling load. be done.

また、射出瞳とコールドシールド開口部が合致している
状態から開口絞りを絞ると射出瞳の大きさが開口部より
小さくなるが、その場合でも撮像対象以外から検知器に
入射する放射光は冷却された検知器(及び支持基板)自
体からの放射光であるので、実質的にコールドシールド
開口部が絞られたことと等価になる。
In addition, if the exit pupil and cold shield aperture are aligned and the aperture diaphragm is narrowed down, the size of the exit pupil will become smaller than the aperture, but even in this case, the radiation that enters the detector from sources other than the object to be imaged will be cooled. Since the light is emitted from the detector (and supporting substrate) itself, it is essentially equivalent to narrowing down the cold shield opening.

第2の発明においては、射出瞳と合致する位置に光学窓
部材が配置されており、コールドシールドはこの先学窓
部材の内側に配置されることになる。即ち、コールドシ
ールド開口部は射出瞳と合致しないが、光学窓部材の支
持部材の検知器側の面が鏡面で構成されているので、リ
レーレンズからの有効光束以外に検知器に入射するのは
冷却されたコールドシールドからの放射光だけとなる。
In the second invention, the optical window member is arranged at a position that matches the exit pupil, and the cold shield is arranged inside the optical window member. In other words, although the cold shield opening does not match the exit pupil, since the surface of the support member of the optical window member on the detector side is configured with a mirror surface, only the effective light flux from the relay lens enters the detector. The only radiation is from the cooled cold shield.

即ち、検知器の感度を低下させずにコールドシールド及
び光学窓部材を従来より小型化することができる。
That is, the cold shield and the optical window member can be made smaller than before without reducing the sensitivity of the detector.

また、第3の発明については対物レンズの倍率を変える
と、それに伴って射出瞳の位置及び大きさが変わってし
まうが、後述する条件を満たすように開口絞りの位置及
び大きさを調整することによって変倍後においても開口
整合が実現できる。
Regarding the third invention, when the magnification of the objective lens is changed, the position and size of the exit pupil change accordingly, but the position and size of the aperture stop should be adjusted so as to satisfy the conditions described below. Therefore, aperture matching can be achieved even after changing the magnification.

[実施例] 第1図は第1発明の実施例を示す光路図である。かかる
撮像光学装置の光学系は、対物レンズ2と、対物レンズ
2によって中間結像面に結像された像を赤外線検知器4
の受光面(図中点A″〜点A ”の領域)に結像するリ
レーレンズ3を備えており、検知器4はリレーレンズ3
からの有効光束を通過させるための開口部を有するとと
もに周囲の物体からの熱輻射を遮蔽するコールドシール
ド5で囲まれて80に程度の温度に冷却されている。そ
して、撮像光学系の開口絞り1とコールドシールド5開
口部は共役な関係(即ち射出瞳と開口部が合致)となっ
ており、開口絞り1の検知器4側の面は鏡面で構成され
ている。
[Embodiment] FIG. 1 is an optical path diagram showing an embodiment of the first invention. The optical system of such an imaging optical device includes an objective lens 2 and an infrared detector 4 that captures an image formed by the objective lens 2 on an intermediate imaging plane.
The detector 4 is equipped with a relay lens 3 that forms an image on the light-receiving surface (area from point A'' to point A'' in the figure).
It is cooled to a temperature of about 80° C. and is surrounded by a cold shield 5 that has an opening for passing the effective light beam from the object and blocks thermal radiation from surrounding objects. The aperture stop 1 of the imaging optical system and the aperture of the cold shield 5 have a conjugate relationship (that is, the exit pupil and the aperture match), and the surface of the aperture stop 1 on the detector 4 side is made of a mirror surface. There is.

このような構成の撮像光学装置において、コールドシー
ルド5開口部の端点Aから角α内に放射される光(検知
器4受光面点A′〜点A ”からの放射光)はすべて開
口絞り1の開口部端点Bで正反射されて点Aに戻ってく
る。同様にして、コルドシールト5の開口部形成面(受
光面からの高さh)からの放射光はすべてコールドシー
ルド5に戻る。即ち、第1図に示された構成をとれば、
冷却された検知器4及びコールドシールド5自体の放射
光が開口絞り1の鏡面で反射されて検知器4及びコール
ドシールド5に入射することになり、周囲の常温物体か
ら検知器に入射する熱輻射が低減される。このため、検
知器4の比検出感度D″ (D*  == AI/2 
 (Δf)”2 /  (NPE)[cm−Hz”2−
W−’コ :ここにNEPは雑音等価電力−J−A/ 
(S /N ) [w] 、 Jは入射光束の単位面積
当りのエネルギー[W/cm2] 、 Sは信号出力電
圧[V] 、 Nは雑音電圧[V]、Aは素子の有効面
積[Cm2]Δfは測定する赤外線の帯域幅[H4F)
が向上する。
In the imaging optical device having such a configuration, all the light emitted within the angle α from the end point A of the aperture of the cold shield 5 (the emitted light from the light-receiving surface points A' to A' of the detector 4) is transmitted through the aperture stop 1. It is specularly reflected at the opening end point B and returns to point A. Similarly, all the emitted light from the opening forming surface (height h from the light receiving surface) of the cold shield 5 returns to the cold shield 5. , if we take the configuration shown in Figure 1,
The emitted light from the cooled detector 4 and cold shield 5 itself is reflected by the mirror surface of the aperture diaphragm 1 and enters the detector 4 and cold shield 5, and thermal radiation from surrounding room-temperature objects enters the detector. is reduced. Therefore, the specific detection sensitivity of the detector 4 D'' (D* == AI/2
(Δf)”2 / (NPE) [cm-Hz”2-
W-'co: Here, NEP is the noise equivalent power -J-A/
(S/N) [w], J is the energy per unit area of the incident light flux [W/cm2], S is the signal output voltage [V], N is the noise voltage [V], and A is the effective area of the element [Cm2]. ]Δf is the bandwidth of the infrared ray to be measured [H4F)
will improve.

また、本実施例では中間結像面に視野絞り6を設けて視
野絞り6の検知器側の面も鏡面で構成しているので、検
知器4の非受光面の端点C(−!A°°)と視野絞り6
の開口部端点りも共役関係にあり、点Cから放射された
光も視野絞り6の鏡面で反射され点Cに戻ることになる
。即ち、検知器4非受光面からの放射光も検知器4(非
受光面)に戻ることになるので、冷却効率の向上を図る
ことができる。この際、撮像光学系がテレセントリック
系であれば、検知器4からの放射光がより効率良く開口
絞り1及び視野絞り6の鏡面で反射されることになる。
In addition, in this embodiment, the field stop 6 is provided on the intermediate imaging plane, and the surface of the field stop 6 on the detector side is also made of a mirror surface, so the end point C (-!A° °) and field aperture 6
The end points of the aperture are also in a conjugate relationship, and the light emitted from point C is also reflected by the mirror surface of field stop 6 and returns to point C. That is, since the emitted light from the non-light-receiving surface of the detector 4 also returns to the detector 4 (non-light-receiving surface), the cooling efficiency can be improved. At this time, if the imaging optical system is a telecentric system, the emitted light from the detector 4 will be more efficiently reflected by the mirror surfaces of the aperture stop 1 and the field stop 6.

次に第2図は、第1発明の別の実施例を示す光路図であ
る。本実施例の撮像光学装置は、基本的な構成は第1図
に示された実施例と同様であるが、中間結像面に視野絞
りが設けられておらず、開口絞り21の開口部の大きさ
が可変になっている。かかる撮像光学装置において、開
口絞り21を図の様に絞った場合、射出瞳の大きさは図
中点E〜点Fで示される大きさとなる。このとき射出瞳
の大きさはコールドシールド5開口部の大きさはより小
さくなるが、角γ及び角γ′内の光束は開口絞り21の
鏡面で反射されて、同じ光路を通って検知器4受光面の
光軸上の点に戻る。
Next, FIG. 2 is an optical path diagram showing another embodiment of the first invention. The basic configuration of the imaging optical device of this embodiment is the same as that of the embodiment shown in FIG. The size is variable. In such an imaging optical device, when the aperture stop 21 is stopped as shown in the figure, the size of the exit pupil becomes the size shown by points E to F in the figure. At this time, the size of the exit pupil is smaller than the size of the aperture of the cold shield 5, but the light beams within angles γ and γ' are reflected by the mirror surface of the aperture stop 21 and pass through the same optical path to the detector 4. Return to the point on the optical axis of the light receiving surface.

また、射出瞳の端点Eから角β内に発せられる光束(検
知器の受光面と周辺の非受光部を含む点E°〜点E ”
内から発せられた光束)は開口絞り21の端点B′で反
射されてそのまま検知器4の点E′〜点E ”内に戻っ
てくる。コールドシールド5開口部の端点Aについても
同様に開口絞り21の鏡面て反射され、点A°〜点A 
”の領域に戻る。
Also, the light flux emitted within the angle β from the end point E of the exit pupil (point E° to point E including the light-receiving surface of the detector and the surrounding non-light-receiving area)
The light flux emitted from the inside is reflected at the end point B' of the aperture diaphragm 21 and returns directly to the point E' to point E'' of the detector 4. Similarly, the end point A of the cold shield 5 opening is It is reflected by the mirror surface of the diaphragm 21, and from point A° to point A
” Return to the realm of “.

即ち、第2図に示されたような構成をとれば、開口絞り
21を絞ることによってコールドシールド5開口部の大
きさより射出瞳が小さくなっても撮像対象以外から検知
器4に入射するのは冷却された検知器4及びコールドシ
ールド5自体からの放射光であるので、実質的にコール
ドシールド5の開口部が絞られたのと等価である。
That is, if the configuration shown in FIG. 2 is adopted, even if the exit pupil becomes smaller than the size of the opening of the cold shield 5 by narrowing down the aperture diaphragm 21, no light will enter the detector 4 from other than the object to be imaged. Since the light is emitted from the cooled detector 4 and the cold shield 5 itself, it is substantially equivalent to the opening of the cold shield 5 being narrowed down.

次に、第2の発明の実施例を第3図を用いて説明する。Next, an embodiment of the second invention will be described using FIG. 3.

本゛実施例による撮像光学装置の光学系は対物レンズ3
2と、対物レンズ32によって中間結像面32aに結像
された像を赤外線検知器34の受光面に結像するリレー
レンズ33を備えており、検知器34はリレーレンズ3
3からの有効光束を通過させるための開口部を有すると
ともに周囲の物体からの熱輻射を遮蔽するコールドシー
ルド35で囲まれて80に程度の温度に冷却されている
。コールドシールド35の外側は赤外線を透過する光学
窓部材7aとこの窓部材の支持部材7bで密閉されてお
り、検知器34は真空中に配置されている。
The optical system of the imaging optical device according to this embodiment is an objective lens 3.
2, and a relay lens 33 for forming an image formed on an intermediate image forming surface 32a by an objective lens 32 on a light receiving surface of an infrared detector 34,
It is surrounded by a cold shield 35 which has an aperture for passing the effective light beam from 3 and which blocks thermal radiation from surrounding objects, and is cooled to a temperature of about 80°C. The outside of the cold shield 35 is sealed with an optical window member 7a that transmits infrared rays and a support member 7b for this window member, and the detector 34 is placed in a vacuum.

また、支持部材7bの検知器34側の面は鏡面て構成さ
れており、光学窓部材7aの端部(支持部材7bとの接
続部分)は耐圧性の点からテーバ加工されている。そし
て、光学窓部44’ 7 aの検知器34側の面と撮像
光学系の開口絞り31か共役な関係(即ち射出瞳と光学
窓部材7aが合致)となっている。検知器34とともに
真空中に配置されているコールドシールド35の開口部
形成面の高さは射出瞳の位置より低くなっており、開口
部口径はリレーレンズ33からの有効光束の光路を遮ら
ないように射出瞳より大きくなっている。また、本実施
例ではコールドシールド35の外表面は黒体(反射率−
!零、放射率!100%)て構成されている。
Further, the surface of the support member 7b on the side of the detector 34 is mirror-finished, and the end portion of the optical window member 7a (the connection portion with the support member 7b) is tapered for pressure resistance. The surface of the optical window portion 44' 7a on the detector 34 side and the aperture stop 31 of the imaging optical system are in a conjugate relationship (that is, the exit pupil and the optical window member 7a match). The height of the aperture forming surface of the cold shield 35 placed in a vacuum together with the detector 34 is lower than the exit pupil position, and the aperture diameter is set so as not to block the optical path of the effective light beam from the relay lens 33. is larger than the exit pupil. In addition, in this embodiment, the outer surface of the cold shield 35 is a black body (reflectance -
! Zero, emissivity! 100%).

このような構成の撮像光学装置の光軸を含む断面におい
て、光軸上の受光点G、射出瞳の端点Hコールドシール
ド35開口部の端点■で規定される角δ内から点Gに入
射する熱輻射は、全て冷却器(図示せず)によって冷却
された検知器34受光部及びコールドシールド35から
発せられることになる。例えば、コールドシールド35
の外表面の点Jからの放射光は図に示される如く光学窓
部材7aの鏡面て反射されて検知器34受光面上の点G
に入射する。また、受光部の端点Kに関しても3点H,
に、Iで規定される角C内から入射する熱輻射について
同様の状況が成立し、コールドシールド35からの放射
光が入射することになる。光軸を含まない断面について
も同様である。このため、光学窓部材7aによって規定
されるF値(F=f/D 、fは光学系の焦点距離、D
は入射瞳の直径)と、コールドシールド35によって規
定されるF値が実質的に一致することになる。
In a cross section including the optical axis of the imaging optical device having such a configuration, light enters point G from within the angle δ defined by the light receiving point G on the optical axis, the end point H of the exit pupil, and the end point ■ of the cold shield 35 opening. Thermal radiation is emitted from the light receiving portion of the detector 34 and the cold shield 35, which are all cooled by a cooler (not shown). For example, Cold Shield 35
The emitted light from the point J on the outer surface of the optical window member 7a is reflected by the mirror surface of the optical window member 7a, as shown in the figure, and reaches the point G on the light receiving surface of the detector 34.
incident on . Also, regarding the end point K of the light receiving part, there are three points H,
A similar situation holds true for thermal radiation that enters from within the angle C defined by I, and radiation from the cold shield 35 enters. The same applies to a cross section that does not include the optical axis. Therefore, the F value defined by the optical window member 7a (F=f/D, f is the focal length of the optical system, D
(diameter of the entrance pupil) and the F value defined by the cold shield 35 substantially match.

即ち、第3図に示された撮像光学系においては、射出瞳
と合致するように配置された光学窓部材7aの支持部7
bの検知器側の面を鏡面で構成されているので、射出瞳
と開口部とが合致するように配置されたコールドシール
ドの代替としての機能を支持部7bの内面(鏡面)が果
たしていることになり、従来に比較してコールドシール
ド35及び光学窓部材7a、支持部材7bを小型化する
ことができ、それによって冷却負荷を低減することもで
きる。更に、光学窓部材7a及びその支持部材7bを小
型化できることは機械的強度(耐圧)の点でも有利であ
る。
That is, in the imaging optical system shown in FIG. 3, the support portion 7 of the optical window member 7a is arranged to match the exit pupil.
Since the detector side surface of support part 7b is made of a mirror surface, the inner surface (mirror surface) of support part 7b functions as a substitute for a cold shield arranged so that the exit pupil and the opening match. As a result, the cold shield 35, the optical window member 7a, and the support member 7b can be made smaller than in the past, and the cooling load can thereby be reduced. Furthermore, being able to downsize the optical window member 7a and its support member 7b is advantageous in terms of mechanical strength (pressure resistance).

なお、コールドシールド35の外表面は冷却されたコー
ルドシールド35自体の放射光を検知器34に入射させ
る上では本実施例のように黒体で構成することが好まし
いか、コールドシールド35外表面の放射率1反射率に
ついては特に限定されるものではない。コールドシール
ド35外表面が鏡面である場合には、検知器34の支持
基板8(第3図では基板8はコールドシールド35内に
配置されているが、支持部材7aの底部が基板8によっ
て閉止された構造をとることもある)等からの放射光が
コールドシールド35の外表面及び支持部材7bの鏡面
で反射されて検知器34に入射する。
The outer surface of the cold shield 35 is preferably made of a black body as in this embodiment in order to allow the emitted light of the cooled cold shield 35 itself to enter the detector 34, or the outer surface of the cold shield 35 is preferably made of a black body as in this embodiment. There are no particular limitations on the emissivity and reflectance. When the outer surface of the cold shield 35 is a mirror surface, the support substrate 8 of the detector 34 (in FIG. 3, the substrate 8 is placed inside the cold shield 35, but the bottom of the support member 7a is closed by the substrate 8) The emitted light is reflected by the outer surface of the cold shield 35 and the mirror surface of the support member 7b and enters the detector 34.

また、上記の実施例では検知器34及びコールドシール
ド35が真空中に配置されているが、不活性ガス等を封
入する場合でも同様に適応できることは言うまでもない
Further, in the above embodiment, the detector 34 and the cold shield 35 are placed in a vacuum, but it goes without saying that the same can be applied to the case where the detector 34 and the cold shield 35 are filled with inert gas or the like.

更に、第3図に示された実施例ては光学窓部材7aの内
側(検知器側)の面と射出瞳を合致させたが、外側の面
と射出瞳を合致させ、光学窓部材7aの外表面の位置に
検知器34側の面を鏡面で構成した絞りを配置すれば、
この絞りによって第2図で説明した実施例と同様に検知
器の感度を低下させることなく光学系のF値を変化させ
ることかできる。
Furthermore, in the embodiment shown in FIG. 3, the inner surface (detector side) of the optical window member 7a matches the exit pupil, but the outer surface and the exit pupil match, and the optical window member 7a If a diaphragm with a mirror surface on the side facing the detector 34 is placed on the outer surface,
With this diaphragm, the F value of the optical system can be changed without reducing the sensitivity of the detector, similar to the embodiment described in FIG. 2.

次に、第3の発明の実施例について第4図及び第5図を
用いて説明する。
Next, an embodiment of the third invention will be described using FIGS. 4 and 5.

まず、第4図を参照して射出瞳とコールドシールド開口
部を合致させるための条件について説明する。第4図に
示された撮像光学装置の構成は第1図に示した実施例の
構成と基本的に同様である。図において、対物レンズ2
を単レンズとして主点から開口絞り1までの距離をS、
対物レンズ2の焦点距離をfl、リレーレンズ3主点か
ら中間結像面までの距離をa、最終結像面(検知器4受
光面)までの距離をす、リレーレンズ3の焦点距離をf
2.コールドシールド5開口部の高さをり、射出瞳位置
(リレーレンズ主点からの距離)をX、射出瞳の径をφ
、l5fI口絞り径をDとする。
First, conditions for matching the exit pupil with the cold shield opening will be explained with reference to FIG. The configuration of the imaging optical device shown in FIG. 4 is basically the same as the configuration of the embodiment shown in FIG. In the figure, objective lens 2
Assuming that is a single lens, the distance from the principal point to the aperture stop 1 is S,
The focal length of the objective lens 2 is fl, the distance from the principal point of the relay lens 3 to the intermediate imaging plane is a, the distance to the final imaging plane (detector 4 light receiving surface) is f, the focal length of the relay lens 3 is f
2. Calculate the height of the cold shield 5 opening, set the exit pupil position (distance from the relay lens principal point) to X, and set the diameter of the exit pupil to φ.
, l5fI aperture diameter is assumed to be D.

そして、入射瞳と共役な位置をX”、入射瞳の径をpo
 とすると、光軸方向には 1  1  1 x=b−h (4) が成立し、 光軸と直角方向には D’=Dx’/5 (5) φ−D X/(fl ) (6) が成立する。
Then, the position conjugate to the entrance pupil is X'', and the diameter of the entrance pupil is po.
Then, 1 1 1 x=b-h (4) holds in the optical axis direction, and D'=Dx'/5 (5) φ-DX/(fl) (6 ) holds true.

(1) 〜(4) を解く と s−f、+[(b f2) (h (b f2N/(hf2”)]f+’ (7) 更に(5) (6)を解くと、 fl1O−(h/φ)  X f2/b−f2−(h−
φ)  x (a/b)   (8)従って、リレーレ
ンズ3が固定で、対物レンズ2を交換することによって
画角を変える場合、(7)式で決定される位置に開口絞
り1を置くと同時に、(8)式で決定される開口の大き
さを設定すれば(即ち、一定のF値を設定すれば)、常
に射出瞳とコールドシールド5開口部が合致することに
なる。
Solving (1) to (4) gives s−f, +[(b f2) (h (b f2N/(hf2”))]f+' (7) Furthermore, solving (5) and (6), fl1O−( h/φ) X f2/b-f2-(h-
φ) x (a/b) (8) Therefore, when the relay lens 3 is fixed and the angle of view is changed by replacing the objective lens 2, if the aperture stop 1 is placed at the position determined by equation (7), then At the same time, if the aperture size determined by equation (8) is set (that is, if a constant F value is set), the exit pupil and the cold shield 5 aperture always match.

第5図は、第4図の撮像光学装置において対物0 レンズの焦点距離を変えた場合を示す光路図である。FIG. 5 shows the objective 0 in the imaging optical device of FIG. FIG. 4 is an optical path diagram showing a case where the focal length of a lens is changed.

このとき、 開口絞り 1の中間結像面からの距 @I1.は 角−s’+f、°−[(b−t2) (h(b f2))/(hf2”)]L’+2f+(9) となり、 (9) 式を、 flをtと書きなおし、 F  (t) と すると、 F (t)−pt2+2t−p (t+1/p) 21
/p (10) 但し、 p・(b−f2)(h−(b f2) )/ (hf2) となる。
At this time, the distance from the intermediate imaging plane of the aperture stop 1 @I1. becomes the angle -s'+f, °-[(b-t2) (h(b f2))/(hf2'')]L'+2f+(9), and in equation (9), rewriting fl as t, F (t), then F (t)-pt2+2t-p (t+1/p) 21
/p (10) However, p・(b-f2)(h-(b f2) )/(hf2).

従って、 対物レンズの倍率を変えた場合の開口 絞り5 1の移動量を対物レンズ5 2の焦点距離に 比例した値とするための条件は p ” (t)−o 、  即ち、p=Qを解いて、h
=b   f2 (S=f+  >         
  (11)となる。
Therefore, the condition for making the amount of movement of the aperture stop 51 proportional to the focal length of the objective lens 52 when the magnification of the objective lens is changed is p''(t)-o, that is, p=Q. Solve, h
=b f2 (S=f+ >
(11).

即ち、開口絞り51の位置を対物レンズ52の前側焦点
位置に一致させ対物レンズ52を射出側テレセントリッ
クとすれば射出瞳をコールドシールド5の開口部に合致
させることができる。
That is, by aligning the position of the aperture stop 51 with the front focal position of the objective lens 52 and making the objective lens 52 telecentric on the exit side, the exit pupil can be aligned with the opening of the cold shield 5.

また、対物レンズの倍率を2段階に変倍(1=f3.f
4)する場合には、 f3”f4    1 を満たせば、F(f3)・F (f、+)−2f3f4
/(f3’L)が成立し、変倍しても射出瞳位置が等し
くなる。
In addition, the magnification of the objective lens can be changed in two stages (1=f3.f
4) If f3”f4 1 is satisfied, then F(f3)・F (f, +)−2f3f4
/(f3'L) holds true, and the exit pupil position remains the same even if the magnification is changed.

f3+f4 =f’ と置き、 (12)式をhについて解く h−(b−f2)2/((b−f2)+f2’/f(1
3) となる。
Set f3+f4 = f' and solve equation (12) for h as h-(b-f2)2/((b-f2)+f2'/f(1
3) It becomes.

即ち、コールドシールド5開口部をこの位置に配せば、
2段階に変倍する場合に入射瞳の大きさを変えるたけて
射出瞳とコールドシールド開口部を合致させることがで
きる。
That is, if the opening of the cold shield 5 is placed at this position,
When changing the magnification in two steps, the exit pupil and the cold shield opening can be matched by changing the size of the entrance pupil.

更に、この条件は、対物レンズの焦点距離をf3〜f4
に連続的に変えた場合の、開口絞り位置F (t)の変
化量が最少の場合でもある。また、2段階変倍時に対物
レンズ主点からの入射瞳位置を等しくする場合もF (
t)=pt2+tに関して同様に考えれば良い。
Furthermore, this condition sets the focal length of the objective lens to f3 to f4.
This is also the case in which the amount of change in the aperture stop position F (t) is the smallest when the aperture stop position F (t) is continuously changed. Also, when the entrance pupil position from the objective lens principal point is made equal during two-step magnification change, F (
t)=pt2+t can be considered in the same way.

なお、上記の説明では射出瞳とコールドシールド開口部
を合致させることについて述べたが、上述した条件は第
2の発明において射出瞳と光学窓部材を合致させる場合
にも適応されることは言うまでもない。また、上記の説
明ては対物レンズを単レンズとしたが2段レンズ、3段
レンズ等多段3 レンズについても同様に開口整合のための解が存在する
Note that although the above explanation has been about matching the exit pupil with the cold shield opening, it goes without saying that the above-mentioned conditions also apply when matching the exit pupil with the optical window member in the second invention. . Further, in the above explanation, the objective lens is a single lens, but solutions for aperture matching also exist for multi-stage three lenses such as a two-stage lens and a three-stage lens.

更に、第4図に示された構成の撮像光学装置において第
6図に示されるように中間結像面に焦点鏡9を挿入する
場合、焦点鏡9のマスク部分10を鏡面で構成すれば、
ナルシサス現象を利用して(マスク部分10の鏡面で検
知器からの放射光が反射され検知器に戻る)焦点鏡を得
ることができる。また、鏡面(マスク部分10)以外で
の反射光が検知器に入射することが問題となる場合には
、第7図のようにくさび型の部材を2枚貼りあわせて平
行平面板11とし、貼り合せ面に焦点鏡9を形成して焦
点鏡9が中間結像面に位置するように平行平面板11を
光軸AXk:対して傾けて挿入すればよい。このように
すれば、マスク10以外ての反射光が検知器に入射する
のを回避できる。
Furthermore, when the focusing mirror 9 is inserted into the intermediate imaging plane as shown in FIG. 6 in the imaging optical device having the configuration shown in FIG. 4, if the mask portion 10 of the focusing mirror 9 is configured with a mirror surface,
A focusing mirror can be obtained using the Narcissus phenomenon (emitted light from the detector is reflected by the mirror surface of the mask portion 10 and returned to the detector). In addition, if it is a problem that light reflected from surfaces other than the mirror surface (mask portion 10) enters the detector, two wedge-shaped members are pasted together to form a parallel plane plate 11 as shown in FIG. A focusing mirror 9 may be formed on the bonding surface, and the plane-parallel plate 11 may be inserted at an angle with respect to the optical axis AXk so that the focusing mirror 9 is located on the intermediate image plane. In this way, reflected light other than from the mask 10 can be prevented from entering the detector.

また、第8図に示された様に平行平面板12を光軸AX
に対して傾けて挿入し、平行平面板12を光軸を回転軸
として回転させれば等価的に検知 4 器の画素の数あるいは一画素の大きさを増すことができ
るが、平行平面板12を中間結像面2aの位置に配置す
ることによって光学系の収差を最少とすることができる
In addition, as shown in FIG. 8, the parallel plane plate 12 is aligned with the optical axis AX.
The number of pixels or the size of one pixel can be equivalently increased by inserting the parallel plane plate 12 at an angle to the plane and rotating the plane parallel plate 12 around the optical axis. By arranging the lens at the intermediate imaging plane 2a, the aberration of the optical system can be minimized.

[発明の効果コ 以上のように、第1の発明においては射出瞳ととコール
ドシールド開口部が合致し、かつ開口絞りの像側が鏡面
で構成されているので、ナルシサス現象を利用して等価
的にコールドシールド開口部の大きさを変えることが可
能となる。このため、開口絞りを絞って光学系のF値を
大きくさせるとともに、コールドシールドによって規定
されるF値と光学系のF値と合致させて、検知器の感度
(D*)を高めることができる。
[Effects of the Invention] As described above, in the first invention, the exit pupil and the cold shield aperture match, and the image side of the aperture stop is configured with a mirror surface. It becomes possible to change the size of the cold shield opening. Therefore, the sensitivity (D*) of the detector can be increased by narrowing down the aperture diaphragm to increase the F-number of the optical system and by matching the F-number defined by the cold shield with the F-number of the optical system. .

また、第2の発明においては射出瞳と光学窓部材が合致
し、かつ光学窓部材の支持部が鏡面で構成されているの
で、検知器の感度を低下させることなく検知器の周囲に
配置される光学窓部材及びその支持部材とコールドシー
ルドの大きさを従来に比較して小型化することができる
In addition, in the second invention, the exit pupil and the optical window member match, and the support portion of the optical window member is made of a mirror surface, so that it can be placed around the detector without reducing the sensitivity of the detector. The size of the optical window member, its support member, and cold shield can be reduced in size compared to conventional ones.

更に、第3の発明においては対物レンズの倍率が変わる
場合にも常に射出瞳とコールドシールド開口部が合致す
るので、冷却効率及び検出感度を維持しなから画角を変
えることができる。
Furthermore, in the third invention, even when the magnification of the objective lens changes, the exit pupil and the cold shield aperture always match, so the angle of view can be changed without maintaining cooling efficiency and detection sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1発明の詳細な説明するための光路図、第2
図は第1発明の別の実施例を説明するための光路図、第
3図は第2発明の詳細な説明するための光路図、第4図
及び第5図は第3発明を説明するための光路図、第6図
及び第7図は焦点鏡の挿入側説明する光路図、第8図は
平行平面板の挿入例を説明する光路図、第9図は従来例
を説明するための光路図である。 [主要部分の符号の説明] 1.21.31・・・開口絞り 2.32・・・・・・・・・・・・対物レンズ333・
・・・・・・・・・・・リレーレンズ4.34・・・・
・・・・・・・・検知器5.35・・・・・・・・・・
・・コールドシールド6・・・・・・・・・・・・・・
・・・・・・・視野絞り7
FIG. 1 is an optical path diagram for detailed explanation of the first invention, and FIG.
The figure is an optical path diagram for explaining another embodiment of the first invention, FIG. 3 is an optical path diagram for explaining the second invention in detail, and FIGS. 4 and 5 are for explaining the third invention. , FIG. 6 and FIG. 7 are optical path diagrams explaining the insertion side of the focusing mirror, FIG. 8 is an optical path diagram explaining an example of inserting a parallel plane plate, and FIG. 9 is an optical path diagram explaining a conventional example. It is a diagram. [Explanation of symbols of main parts] 1.21.31... Aperture diaphragm 2.32... Objective lens 333.
・・・・・・・・・Relay lens 4.34・・・・
・・・・・・・・・Detector 5.35・・・・・・・・・
・・Cold Shield 6・・・・・・・・・・・・・・・
・・・・・・Field aperture 7

Claims (5)

【特許請求の範囲】[Claims] (1)対物レンズとリレーレンズを有する撮像光学系と
、該撮像光学系の最終結像面の位置に受光面が一致する
ように配置された赤外線検知器と、前記撮像光学系から
の光束が通過する開口部を有して前記検知器を囲むよう
に配置され、前記検知器周囲からの熱輻射を遮蔽するコ
ールドシールドとを備えた赤外線撮像装置において、 前記コールドシールドの開口部が前記撮像光学系の射出
瞳あるいは射出瞳と共役な位置に合致するとともに、前
記撮像光学系の開口絞りの像側の面が鏡面で構成された
ことを特徴とする赤外線撮像光学装置。
(1) An imaging optical system having an objective lens and a relay lens, an infrared detector arranged so that its light-receiving surface coincides with the position of the final imaging plane of the imaging optical system, and a light beam from the imaging optical system. In an infrared imaging device, the infrared imaging device includes a cold shield that is arranged to surround the detector and has an opening through which it passes, and that blocks thermal radiation from around the detector, wherein the opening of the cold shield is arranged so as to surround the detector, and the opening of the cold shield is arranged so as to surround the detector, and the cold shield has an opening that allows the imaging optics to pass through the cold shield. An infrared imaging optical device, characterized in that the image-side surface of the aperture stop of the imaging optical system is formed of a mirror surface, which coincides with an exit pupil of the system or a position conjugate with the exit pupil.
(2)前記対物レンズによる像が結像される中間結像面
に配置された視野絞りを有し、かつ該視野絞りの像側の
面が鏡面で構成されたことを特徴とする請求項1記載の
赤外線撮像光学装置。
(2) A field stop disposed on an intermediate image forming plane on which an image by the objective lens is formed, and an image-side surface of the field stop is formed of a mirror surface. The infrared imaging optical device described.
(3)対物レンズとリレーレンズを有する撮像光学系と
、該撮像光学系の最終結像面の位置に受光面が一致する
ように配置された赤外線検知器と、該検知器の周囲を密
閉する光学窓部材と、該光学窓部材を支持する支持部材
を有する赤外線撮像光学装置において、 前記光学窓部材が前記撮像光学系の射出瞳あるいは射出
瞳と共役な位置に合致するとともに、前記支持部材の検
知器側の面が鏡面で構成されたことを特徴とする赤外線
撮像光学装置。
(3) An imaging optical system having an objective lens and a relay lens, an infrared detector arranged so that its light-receiving surface coincides with the position of the final imaging plane of the imaging optical system, and the area around the detector sealed. In an infrared imaging optical device having an optical window member and a support member that supports the optical window member, the optical window member matches the exit pupil of the imaging optical system or a position conjugate with the exit pupil, and the support member An infrared imaging optical device characterized in that a surface on the detector side is configured with a mirror surface.
(4)対物レンズとリレーレンズを有する撮像光学系と
、該撮像光学系の最終結像面の位置に受光面が一致する
ように配置された赤外線検知器と、前記撮像光学系から
の光束が通過する開口部を有して前記検知器を囲むよう
に配置され、前記検知器周囲からの熱輻射を遮蔽するコ
ールドシールドとを備えた赤外線撮像光学装置において
、 前記撮像光学系が、前記対物レンズを変倍した場合にあ
っても、射出瞳あるいは射出瞳と共役な位置が常に前記
コールドシールドの開口部に合致する変倍光学系である
ことを特徴とする赤外線撮像光学装置。
(4) an imaging optical system having an objective lens and a relay lens; an infrared detector arranged so that its light receiving surface coincides with the position of the final image forming surface of the imaging optical system; and a light beam from the imaging optical system. In the infrared imaging optical device, the imaging optical system includes a cold shield that is arranged to surround the detector and has an opening through which it passes, and that blocks thermal radiation from around the detector, wherein the imaging optical system is configured to 1. An infrared imaging optical device characterized by having a variable magnification optical system in which an exit pupil or a position conjugate to the exit pupil always matches the opening of the cold shield even when the magnification of the infrared imaging optical system is changed.
(5)前記対物レンズがテレセントリックであることを
特徴とする請求項4記載の赤外線撮像光学装置。
(5) The infrared imaging optical device according to claim 4, wherein the objective lens is telecentric.
JP1175691A 1989-07-10 1989-07-10 Infrared imaging optics Expired - Fee Related JP2691226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1175691A JP2691226B2 (en) 1989-07-10 1989-07-10 Infrared imaging optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175691A JP2691226B2 (en) 1989-07-10 1989-07-10 Infrared imaging optics

Publications (2)

Publication Number Publication Date
JPH0341328A true JPH0341328A (en) 1991-02-21
JP2691226B2 JP2691226B2 (en) 1997-12-17

Family

ID=16000557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175691A Expired - Fee Related JP2691226B2 (en) 1989-07-10 1989-07-10 Infrared imaging optics

Country Status (1)

Country Link
JP (1) JP2691226B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654251B2 (en) 2001-12-05 2003-11-25 Samsung Electronics Co., Ltd. Actuation of tray and door used for inserting and removing an optical storage unit to and from a computer
JP2007086022A (en) * 2005-09-26 2007-04-05 Fuji Xerox Co Ltd Instrument for measuring characteristic of printing head, luminous energy correction method, printing head, and image forming device
US7682031B2 (en) 2004-12-23 2010-03-23 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
EP1184703B1 (en) * 2000-08-29 2010-06-23 PerkinElmer Singapore Pte. Ltd. Infrared imaging microscope
US7816650B2 (en) * 2003-05-28 2010-10-19 Opto-Knowledge Systems, Inc. External variable aperture and relay for infra-red cameras
US7869138B2 (en) 2006-03-27 2011-01-11 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8101918B1 (en) * 2009-05-13 2012-01-24 Itt Manufacturing Enterprises, Inc. Re-imaging infrared lenses
US8169694B2 (en) 2005-09-13 2012-05-01 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8411251B2 (en) 2006-12-28 2013-04-02 Carl Zeiss Smt Gmbh Optical element and illumination optics for microlithography
US8705005B2 (en) 2006-02-17 2014-04-22 Carl Zeiss Smt Gmbh Microlithographic illumination system
US8836793B1 (en) 2010-08-13 2014-09-16 Opto-Knowledge Systems, Inc. True color night vision (TCNV) fusion
US9411143B2 (en) 2011-06-30 2016-08-09 Hamamatsu Photonics K.K. Optical device for microscopic observation
DE102019203560A1 (en) * 2019-03-15 2020-09-17 Bruker Optik Gmbh IR microscope

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184703B1 (en) * 2000-08-29 2010-06-23 PerkinElmer Singapore Pte. Ltd. Infrared imaging microscope
US6654251B2 (en) 2001-12-05 2003-11-25 Samsung Electronics Co., Ltd. Actuation of tray and door used for inserting and removing an optical storage unit to and from a computer
US7816650B2 (en) * 2003-05-28 2010-10-19 Opto-Knowledge Systems, Inc. External variable aperture and relay for infra-red cameras
US8632195B2 (en) 2004-12-23 2014-01-21 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8317345B2 (en) 2004-12-23 2012-11-27 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US7682031B2 (en) 2004-12-23 2010-03-23 Carl Zeiss Smt Ag Catoptric objectives and systems using catoptric objectives
US8004755B2 (en) 2004-12-23 2011-08-23 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US9304407B2 (en) 2004-12-23 2016-04-05 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US9465300B2 (en) 2005-09-13 2016-10-11 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8169694B2 (en) 2005-09-13 2012-05-01 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
JP2007086022A (en) * 2005-09-26 2007-04-05 Fuji Xerox Co Ltd Instrument for measuring characteristic of printing head, luminous energy correction method, printing head, and image forming device
US9341953B2 (en) 2006-02-17 2016-05-17 Carl Zeiss Smt Gmbh Microlithographic illumination system
US8705005B2 (en) 2006-02-17 2014-04-22 Carl Zeiss Smt Gmbh Microlithographic illumination system
US7869138B2 (en) 2006-03-27 2011-01-11 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8810927B2 (en) 2006-03-27 2014-08-19 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8094380B2 (en) 2006-03-27 2012-01-10 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8411251B2 (en) 2006-12-28 2013-04-02 Carl Zeiss Smt Gmbh Optical element and illumination optics for microlithography
US8101918B1 (en) * 2009-05-13 2012-01-24 Itt Manufacturing Enterprises, Inc. Re-imaging infrared lenses
US8836793B1 (en) 2010-08-13 2014-09-16 Opto-Knowledge Systems, Inc. True color night vision (TCNV) fusion
US9411143B2 (en) 2011-06-30 2016-08-09 Hamamatsu Photonics K.K. Optical device for microscopic observation
US10048483B2 (en) 2011-06-30 2018-08-14 Hamamatsu Photonics K.K. Optical device for microscopic observation
US10663709B2 (en) 2011-06-30 2020-05-26 Hamamatsu Photonics K.K. Optical device for microscopic observation
DE102019203560A1 (en) * 2019-03-15 2020-09-17 Bruker Optik Gmbh IR microscope
JP2020173427A (en) * 2019-03-15 2020-10-22 ブルーカー オプティク ゲーエムベーハ− IR microscope
US11714272B2 (en) 2019-03-15 2023-08-01 Bruker Optics Gmbh & Co. Kg IR microscope

Also Published As

Publication number Publication date
JP2691226B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US5710661A (en) Integrated panoramic and high resolution sensor optics
JPH0341328A (en) Infrared image sensing optical apparatus
EP0766112B1 (en) Panoramic optics assembly having an initial flat reflective element
KR970002387A (en) Solid reflective refractive lens
US4525744A (en) Viewfinder optical arrangement of a camera
US8254018B2 (en) Monolithic lens/reflector optical component
US6181486B1 (en) Optical architecture for infrared viewing system
JPH09130678A (en) Solid-state image pickup device
CN106370308B (en) Long linear array push-broom infrared thermal imaging system based on inclined special-shaped cold screen
US5378892A (en) Angle filter for use in an infrared optical system
WO2007015236A1 (en) Dual field of view optics
JPH04287580A (en) X-ray image pickup method and device, and fluorescent plate and cooling type ccd camera
US4989928A (en) Compact infrared lens arrangement including at least three reflections
US8735837B2 (en) Gamma camera system
JP2760789B2 (en) Infrared lens
JPH0730793A (en) Image photographing device
JP3916703B2 (en) Optical assembly for observing panoramic scenes
US20040155195A1 (en) Uncooled optical imaging device
US6281486B1 (en) Off-axis image correction with spaced photodetectors
JP2531197B2 (en) Compound optical system device
JP2805954B2 (en) Infrared imaging device
JPH11201913A (en) Flaw inspection apparatus
JPH0611776A (en) Infrared-ray camera having multi-element detector wherein sensitivity is made uniform
JPH0219818A (en) Dark field binocular
JP3233400B2 (en) Streak camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees