JPH0340953A - Production of formed superconductor - Google Patents

Production of formed superconductor

Info

Publication number
JPH0340953A
JPH0340953A JP1172911A JP17291189A JPH0340953A JP H0340953 A JPH0340953 A JP H0340953A JP 1172911 A JP1172911 A JP 1172911A JP 17291189 A JP17291189 A JP 17291189A JP H0340953 A JPH0340953 A JP H0340953A
Authority
JP
Japan
Prior art keywords
powder
superconductor
dish
film
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1172911A
Other languages
Japanese (ja)
Inventor
Takanori Suzuki
孝典 鈴木
Toshiaki Suzuki
利昭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP1172911A priority Critical patent/JPH0340953A/en
Publication of JPH0340953A publication Critical patent/JPH0340953A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the formed superconductor having flexibility, strength and a strong diamagnetic effect by previously forming the film of a hot-melt polymeric material on the surface of super-conductor inorg. powder by plasma polymerization, heating and press-bonding the powder into a desired shape. CONSTITUTION:A vibrating dish 3 is placed on the lower electrode 2 of the upper and lower parallel plate electrodes 2 set in a bell jar 1, and the superconductor inorg. powder (e.g. mixed powder of Y2O3, BaCO3 and CuO) is placed on the dish 3. The bell jar 1 is evacuated, the dish 3 is vibrated, and a gaseous monomer (e.g. ethylene) is introduced together with high-purity gaseous Ar from an inlet pipe 4 to keep a specified degree of vacuum. A high-frequency power is then supplied to the upper and lower electrodes 2 to produce plasma, hence the monomer is polymerized, and a uniform thin film of the polymeric material (e.g. PE) is formed on the powder surface. The film-coated powder is thermally pressbonded into a specified shape, and a formed superconductor having flexibility, strength and a strong diamagnetic effect is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超伝導体成形物の製造方法に関し、特に脳磁波
、心磁波の測定に必要なシールド容器等の医療機器、電
子部品に使用される磁気店へいシート及び成型体等に好
適な超伝導体成形物の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a superconductor molded product, particularly for use in medical equipment and electronic components such as shield containers necessary for measuring brain magnetic waves and cardiac magnetic waves. The present invention relates to a method for manufacturing a superconductor molded article suitable for magnetic storage sheets, molded bodies, etc.

〔従来の技術〕[Conventional technology]

従来、超伝導性を有する粉体状無機質材料を用いて特定
用途の成形物を製造する方法としては、■ 粉体を成形
用の型枠に充填し、それを高圧下のもとて成形加工して
成形物を得る方法、■ 粉体をバインダー樹脂と混合し
、成形加工、乾燥工程を経て成形物を得る方法、 ■ 粉体を気相化し、超伝導成分を成形体の表面に付着
させて成形物を得る方法 等がある。
Conventionally, methods for manufacturing molded products for specific purposes using powdered inorganic materials with superconductivity include: 1. Filling a mold with powder and molding it under high pressure. ■ A method of mixing powder with a binder resin, molding, and drying to obtain a molded article; ■ A method of converting the powder into a vapor phase and attaching a superconducting component to the surface of the molded article. There are methods to obtain molded products.

しかしながら、上記■の製造方法に基づく成形物は硬い
が衝撃に弱いという問題を有し、■の製造方法で成形物
を得ようとする場合には、バインダー樹脂を多く添加し
なければ超伝導体無機質粉体同志の接着力が弱く、且つ
分散不良となるために反磁性効果(マイスナー効果)が
発揮され難い等の問題を有する。また、■の製造方法で
は超伝導体無機質粉体の膜厚みを厚くすることができな
いために反磁性効果を強くすることができない等の問題
を有していた。
However, the molded product based on the above manufacturing method (■) has the problem that it is hard but weak against impact, and when trying to obtain a molded product using the manufacturing method (■), it is necessary to add a large amount of binder resin to form a superconductor. There are problems in that the adhesive force between the inorganic powders is weak and the dispersion is poor, making it difficult to exhibit the diamagnetic effect (Meissner effect). In addition, the manufacturing method (2) has the problem that the film thickness of the superconducting inorganic powder cannot be increased, so that the diamagnetic effect cannot be strengthened.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記の問題点を解決するもので、任意の形状の
シールド成形体ができ、バインダー量が比較的少なくて
も可撓性及び強度があり、更に反磁性効果が強い超伝導
体成形物の製造方法を提供するものである。
The present invention solves the above-mentioned problems.It is possible to form a shield molded body of any shape, to have flexibility and strength even with a relatively small amount of binder, and to create a superconductor molded body with a strong diamagnetic effect. The present invention provides a method for manufacturing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、超伝導体無機質粉体の表面に予めプラズマ重
合法により熱融着性を示す高分子物質の薄膜を形成し、
しかるのち該超伝導体無機質粉体を所望の形状に加熱圧
着することを特徴とする超伝導体成形物の製造方法であ
る。
The present invention involves forming a thin film of a polymeric substance exhibiting thermal adhesive properties on the surface of superconducting inorganic powder in advance by plasma polymerization,
This method of producing a superconductor molded article is characterized in that the superconductor inorganic powder is then heated and pressed into a desired shape.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明で使用する超伝導体無機質粉体とは、例えば酸化
イソトリウム(yzos) 、炭酸バリウム(BaCO
3)、酸化銅(CuO)の如き焼結により超伝導となる
無機質粉体の混合物をその最低焼結温度以上で酸化雰囲
気中にて坑底した物を再び粉末化した物が好適に用いら
れるが、これに限定するものではなく他の超伝導体無機
質粉体でも本発明に適用可能である。
The superconductor inorganic powder used in the present invention includes, for example, isotrium oxide (yzos), barium carbonate (BaCO
3) Preferably used is a mixture of inorganic powders such as copper oxide (CuO) that becomes superconducting when sintered, which is pulverized at the bottom of a mine in an oxidizing atmosphere at a temperature higher than its minimum sintering temperature and then re-pulverized. However, the invention is not limited to this, and other superconductor inorganic powders can also be applied to the present invention.

また、上記超伝導体無機質粉体の表面にプラズマ重合法
により形成される熱融着性を示す高分子物質の薄膜は、
常温、常圧下で気体状のメタン、エタン、プロパン、n
−ブタン、i−ブタン、エチレン、プロピレン等のモノ
マーや、常温下で液体状のベンゼン、トルエン、0−キ
シレン、m−キシレン、p−キシレン、n−へキサン、
シクロヘキサン、アクリル酸、メタクリル酸、クロルベ
ンゼン、ニトロトルエン、スチレン及びその誘導体等の
モノマーから形成することができる。
In addition, the thin film of a polymeric substance exhibiting thermal adhesive properties formed on the surface of the superconducting inorganic powder by plasma polymerization is
Gaseous methane, ethane, propane, n at room temperature and pressure
- Monomers such as butane, i-butane, ethylene, propylene, benzene, toluene, 0-xylene, m-xylene, p-xylene, n-hexane, which are liquid at room temperature,
It can be formed from monomers such as cyclohexane, acrylic acid, methacrylic acid, chlorobenzene, nitrotoluene, styrene and its derivatives.

本発明において超伝導体無機質粉体の表面に熱融着性を
示す高分子物質の薄膜を形成するためのプラズマ重合法
としては、例えば内部電極方式のペルジャー型、クロス
型、無電極方式の円筒型等の装置を適用しておこなうこ
とが可能である。
In the present invention, the plasma polymerization method for forming a thin film of a polymeric substance exhibiting thermal adhesive properties on the surface of superconducting inorganic powder includes, for example, a Pelger type with an internal electrode type, a cross type with an internal electrode type, and a cylindrical type with an electrodeless type. This can be done by applying a device such as a mold.

第1図はペルジャー型プラズマ重合装置の一例であり、
ペルジャー1の上下2つの平行平板電極2の下の電極上
に設けた振動皿3上に超伝導体無機質粉体を置き、ペル
ジャーl内を真空に引いた後、ペルジャー1内に原料ガ
ス導入管4から気体状モノマーガスを適量分流し込み、
超伝導体無機質粉体に振動皿3によって振動を伝える。
Figure 1 shows an example of a Pelger type plasma polymerization apparatus.
Superconductor inorganic powder is placed on the vibrating plate 3 provided on the electrodes below the two upper and lower parallel plate electrodes 2 of the Pel Jar 1, and after the inside of the Pel Jar 1 is evacuated, a raw material gas introduction tube is inserted into the Pel Jar 1. 4. Pour in an appropriate amount of gaseous monomer gas,
Vibration is transmitted to the superconducting inorganic powder by a vibrating plate 3.

この振動操作によって、振動皿3内の超伝導体無機質粉
体は流動し始める。次に上下の平行平+1i、電極2に
高周波電力を供給することでプラズマを発生させ、ヘル
ジャー1内でもモノマーを重合させる。この時、超伝導
体無機質粉体は振動皿3により流動しているので、超伝
導体無機質粉体の表面に重合が万遍なく進み、熱融着性
を示す高分子物質の薄膜が形成される。
By this vibration operation, the superconductor inorganic powder in the vibrating plate 3 begins to flow. Next, high-frequency power is supplied to the upper and lower parallel planes +1i and the electrode 2 to generate plasma, and the monomer is polymerized in the herger 1 as well. At this time, since the superconductor inorganic powder is being fluidized by the vibrating plate 3, polymerization progresses evenly on the surface of the superconductor inorganic powder, forming a thin film of a polymeric substance that exhibits thermal adhesive properties. Ru.

上記の気体状モノマーの変わりに液体状モノマーを使用
する場合には、液体状モノマーの入った容器を外部から
加熱し、原料ガス導入管4よりペルジャー1内に導入す
ればよい。また、本発明ではモノマーの同伴ガスとして
アルゴン、水素、窒素等を加えてもよい。
When a liquid monomer is used instead of the gaseous monomer described above, a container containing the liquid monomer may be heated from the outside and the monomer may be introduced into the Pel jar 1 through the raw material gas introduction pipe 4. Further, in the present invention, argon, hydrogen, nitrogen, etc. may be added as a gas accompanying the monomer.

上記のようなプラズマ重合装置を使用した場合の超伝導
体無機質粉体の表面に形成される薄膜構造及び成膜速度
に最適な条件は、真空度、出力電圧、モノマーの種類、
超伝導体無機質粉体の量等のプラズマ重合の操作条件を
変えることにより設定することが可能である。
The optimal conditions for the thin film structure and film formation rate formed on the surface of superconducting inorganic powder when using the above plasma polymerization apparatus are the degree of vacuum, output voltage, type of monomer,
It can be set by changing the plasma polymerization operating conditions such as the amount of superconductor inorganic powder.

本発明は、前述したプラズマ重合法により超伝導体無機
質粉体の表面に熱融着性を示す高分子物質の薄膜を形成
した後、該超伝導体無機質粉体を所望の形状になるよう
ホットプレスやホントロール等の装置により加熱圧着を
施すことにより超伝導体成形物を作製するものである。
The present invention involves forming a thin film of a polymeric substance exhibiting thermal adhesive properties on the surface of a superconducting inorganic powder by the above-mentioned plasma polymerization method, and then heating the superconducting inorganic powder to a desired shape. A superconductor molded product is produced by applying heat and pressure bonding using a device such as a press or a real roll.

なお、本発明でいう所望の形状とは平面状のシート状物
、曲面状のシート状物、凹型の容器状のもの等があり、
その具体的な手段としては、ホットプレスの場合は粉体
を連続的に平面プレートの上にさいちし、しかるのち加
熱圧着する。または治具を使ってシート状物にしたり凹
型にしたりする。また、ホ7)ロールの場合はあらかじ
め粉体を加熱し粒子間を融着状態にして加熱されたロー
ル間に粉体を連続供給し加熱圧着する。
Note that the desired shape in the present invention includes a planar sheet-like object, a curved sheet-like object, a concave container-like object, etc.
As a specific method, in the case of hot pressing, powder is continuously placed on a flat plate and then heated and pressed. Or use a jig to make it into a sheet or concave shape. In addition, in the case of e7) rolls, the powder is heated in advance so that the particles are fused together, and the powder is continuously supplied between the heated rolls and bonded under heat.

〔作用〕[Effect]

本発明の製造方法による超伝導体成形物は、プラズマ重
合法により個々の超伝導体無機質粉体の表面に熱融着性
を示す高分子物質の薄膜が形成される。したがって、個
々の超伝導体無機!粉体が結着しあうために非常に強固
な超伝導体成形物が得られる。
In the superconductor molded article produced by the manufacturing method of the present invention, a thin film of a polymeric substance exhibiting thermal fusibility is formed on the surface of each superconductor inorganic powder by plasma polymerization. Therefore, individual superconductors inorganic! Because the powders bind together, a very strong superconductor molded product can be obtained.

また、本発明の製造方法は粒子間の結着機能を有する高
分子物質の薄膜が極めて薄いために超伝導体無機質粉体
が超伝導体成形物中に高密度充填化される。したがって
、一つの固体からなる超伝導物と同様な強い反磁性効果
が得られる。
Further, in the manufacturing method of the present invention, since the thin film of the polymer substance having the binding function between particles is extremely thin, the superconductor inorganic powder is densely packed into the superconductor molded product. Therefore, a strong diamagnetic effect similar to that of a single solid superconductor can be obtained.

〔実施例〕〔Example〕

次に実施例により本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例1 ペルジャー型プラズマ重合装置内の振動皿上に平均粒子
径1 Bm、 [0,、BaC0,、CuOの混合粉体
(Y ;Ba:Cu= 1 二2 : 3)を酸化雰囲
気中で950℃、1時間焼成したのち、粉砕処理したペ
ロブスカイト系酸化物超伝導体の粉体を50gのせ、ペ
ルジャー内の空気を真空ポンプで排気し、振動皿を振動
させる。次に原料ガス導入管より高純度アルゴン及びエ
チレンを導入し、ペルジャー内の真空度を0.5 To
rrに保持し、高周波電力を入れてグロー放電を行った
。該グロー放電を2時間行って、ペロブスカイト系酸化
物超伝導体の粉体表面に均一なポリエチレンの薄膜を形
成した。
Example 1 A mixed powder of [0, BaC0, CuO (Y; Ba:Cu=122:3) with an average particle diameter of 1 Bm was placed on a vibrating dish in a Pelger type plasma polymerization apparatus in an oxidizing atmosphere. After baking at 950° C. for 1 hour, 50 g of pulverized perovskite oxide superconductor powder is placed on the plate, the air inside the Perger jar is evacuated with a vacuum pump, and the vibrating plate is vibrated. Next, high-purity argon and ethylene were introduced from the raw material gas introduction pipe, and the vacuum level inside the Pel jar was reduced to 0.5 To
rr and high frequency power was applied to perform glow discharge. The glow discharge was performed for 2 hours to form a uniform polyethylene thin film on the surface of the perovskite oxide superconductor powder.

薄膜形成後のペロブスカイト系酸化物超伝導体の粉体を
ホットプレス機の板上にのせ、ホントプレスの温度16
0℃、圧力50 kg/c−で10分間熱プレスし、2
000g/m”のシート状物を得た。該シート状物の密
度は4.0 g/cm’で可撓性及び強度があり、該シ
ート状物を液体窒素による冷却下におくと強い反磁性効
果が認められた。
After forming the thin film, the perovskite oxide superconductor powder is placed on the plate of a hot press machine, and the temperature of the hot press is 16.
Heat press at 0℃ and pressure 50 kg/c for 10 minutes,
000 g/m'' was obtained.The sheet-like material had a density of 4.0 g/cm' and was flexible and strong.When the sheet-like material was cooled with liquid nitrogen, it exhibited strong resistance. A magnetic effect was observed.

実施例2 ペルジャー 型プラズマ重合装置内の振動皿上にペロブ
スカイト系酸化物超伝導体の粉体(実施例1と同じもの
)を80gのせ、ペルジャー内の空気を真空ポンプで1
0−’Torrまで排気し、振動皿を振動させる。次に
原料ガス導入管よりプロピレンを導入し、ペルジャー内
の真空度をl Torrに保持し、高周波電力を入れて
グロー放電を行った。該グロー放電を1時間行って、ペ
ロブスカイト系酸化物超伝導体の粉体表面に均一なポリ
プロピレンの薄膜を形成した。
Example 2 80 g of perovskite oxide superconductor powder (same as in Example 1) was placed on a vibrating dish in a Pelger-type plasma polymerization apparatus, and the air in the Pelger was pumped with a vacuum pump.
Evacuate to 0-'Torr and vibrate the vibrating plate. Next, propylene was introduced through the raw material gas introduction pipe, the vacuum inside the Pel jar was maintained at 1 Torr, and high frequency power was applied to perform glow discharge. The glow discharge was performed for 1 hour to form a uniform polypropylene thin film on the surface of the perovskite oxide superconductor powder.

’a膜膜形後後ペロブスカイト系酸化物超伝導体の粉体
をホットプレス機の板上にのせ、ホントプレスの温度2
00℃、圧力50 kg/cm”で10分間熱プレスし
、2000g/m”のシート状物を得た。該シート状物
の密度は3.9 g/cm’で可撓性及び強度があり、
該シート状物を液体窒素による冷却下におくと強い反磁
性効果が認められた。
After forming the 'a' film, place the powder of the perovskite oxide superconductor on the plate of a hot press machine and press at a temperature of 2.
Hot pressing was carried out at 00°C and a pressure of 50 kg/cm'' for 10 minutes to obtain a sheet-like product weighing 2000 g/m''. The sheet-like material has a density of 3.9 g/cm' and is flexible and strong,
When the sheet-like material was cooled with liquid nitrogen, a strong diamagnetic effect was observed.

比較例1 ペロブスカイト系酸化物超伝導体の粉体(実施例]と同
じもの)40gにポリエチレンのベレフト10gを配合
し、これをラボプラストミルで温度140℃にて30分
間混練した後、混練物をホ該シート状物の密度は3.2
 g/cm’で可撓性のあるシート状物になったが、液
体窒素による冷却下では反磁性効果は認められなかった
Comparative Example 1 10 g of polyethylene Bereft was blended with 40 g of perovskite oxide superconductor powder (same as in Example), and this was kneaded in a laboplast mill at a temperature of 140°C for 30 minutes. The density of the sheet-like material is 3.2
g/cm', a flexible sheet-like material was obtained, but no diamagnetic effect was observed under cooling with liquid nitrogen.

比較例2 ペロブスカイト系酸化物超伝導体の粉体(実施例1と同
しもの)25gを直径120n+fflのシリング−に
充填し両面から線圧100 kg/cm”でプレス処理
をして2000g/m2のシート状物を作製した。該シ
ート状物の密度は4.3 g/c−であり、該シート状
物を液体窒素で冷却して反磁性効果を測定したところ、
反磁性効果は認められたが、脆く実用性に乏しかった。
Comparative Example 2 25 g of perovskite-based oxide superconductor powder (same as Example 1) was filled into a shilling with a diameter of 120 n+ffl and pressed from both sides with a linear pressure of 100 kg/cm" to obtain 2000 g/m2. A sheet-like material was prepared.The density of the sheet-like material was 4.3 g/c-, and when the sheet-like material was cooled with liquid nitrogen and the diamagnetic effect was measured,
Although a diamagnetic effect was observed, it was brittle and of little practical use.

上記実施例1.2及び比較例1.2に基づくシート状物
の特性をまとめて第1表に示す。
Table 1 summarizes the properties of the sheet-like products based on Example 1.2 and Comparative Example 1.2.

「以下余白」 また、反磁性効果の強さの尺度として100エルステツ
ドの磁界下における各シート状物の磁化率の温度変化を
第2図に示す。ここで、第2図は磁化率が負の方向へ大
きな値を示すほど反磁性効果が強いことを示す。
``Left below'' In addition, as a measure of the strength of the diamagnetic effect, FIG. 2 shows the temperature change in magnetic susceptibility of each sheet under a magnetic field of 100 oersteds. Here, FIG. 2 shows that the larger the magnetic susceptibility is in the negative direction, the stronger the diamagnetic effect is.

第1表及び第2図に示すごとく、実施例1.2は強い反
磁性効果が得られかつ可撓性もあった。
As shown in Table 1 and FIG. 2, Example 1.2 had a strong diamagnetic effect and was flexible.

一方、比較例2は、反磁性効果はあったが可撓性が得ら
れなかった。また比較例1はまったく反磁性効果が得ら
れなかった。
On the other hand, Comparative Example 2 had a diamagnetic effect but did not have flexibility. Further, in Comparative Example 1, no diamagnetic effect was obtained at all.

〔発明の効果〕〔Effect of the invention〕

本発明は超伝導体無機質粉体の表面に予めプラズマ重合
法により高分子物質の薄膜を設けるので、これを使って
所望の形状に成形した場合その成形物は可撓性及び強度
があり、更に反磁性効果が強い超伝導体成形物が得られ
る。
In the present invention, a thin film of a polymer substance is previously provided on the surface of superconducting inorganic powder by plasma polymerization, so when this is used to mold a desired shape, the molded product has flexibility and strength, and A superconductor molded product with a strong diamagnetic effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はペルジャー型プラズマ重合装置の概略図、第2
図は超伝導体成形物による磁化率の温度変化を示す図で
ある。 1・・・ペルジャー、 2・・・平行平板電極、 3・・・振動 皿、 4・・・原料ガス導入管
Figure 1 is a schematic diagram of a Pelger type plasma polymerization apparatus, Figure 2
The figure is a diagram showing temperature changes in magnetic susceptibility due to a superconductor molded article. 1... Pelger, 2... Parallel plate electrode, 3... Vibration plate, 4... Raw material gas introduction tube

Claims (1)

【特許請求の範囲】[Claims] 超伝導体無機質粉体の表面に予めプラズマ重合法により
熱融着性を示す高分子物質の薄膜を形成し、しかるのち
該超伝導体無機質粉体を所望の形状に加熱圧着すること
を特徴とする超伝導体成形物の製造方法。
The method is characterized in that a thin film of a polymeric substance exhibiting thermal adhesive properties is formed in advance on the surface of a superconducting inorganic powder by a plasma polymerization method, and then the superconducting inorganic powder is heat-pressed into a desired shape. A method for manufacturing a superconductor molded article.
JP1172911A 1989-07-06 1989-07-06 Production of formed superconductor Pending JPH0340953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172911A JPH0340953A (en) 1989-07-06 1989-07-06 Production of formed superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172911A JPH0340953A (en) 1989-07-06 1989-07-06 Production of formed superconductor

Publications (1)

Publication Number Publication Date
JPH0340953A true JPH0340953A (en) 1991-02-21

Family

ID=15950631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172911A Pending JPH0340953A (en) 1989-07-06 1989-07-06 Production of formed superconductor

Country Status (1)

Country Link
JP (1) JPH0340953A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440521A (en) * 1992-08-19 1995-08-08 Hitachi, Ltd. Semiconductor integrated circuit device
WO1999027157A1 (en) * 1997-11-26 1999-06-03 Minnesota Mining And Manufacturing Company Method and apparatus for coating diamond-like carbon onto particles
US6548172B2 (en) 1997-11-26 2003-04-15 3M Innovative Properties Company Diamond-like carbon coatings on inorganic phosphors
WO2012018075A1 (en) * 2010-08-04 2012-02-09 株式会社島津製作所 Surface treatment device and surface treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222163A (en) * 1988-07-08 1990-01-25 Hosokawa Micron Corp Production of diamagnetic material and diamagnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222163A (en) * 1988-07-08 1990-01-25 Hosokawa Micron Corp Production of diamagnetic material and diamagnetic material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440521A (en) * 1992-08-19 1995-08-08 Hitachi, Ltd. Semiconductor integrated circuit device
WO1999027157A1 (en) * 1997-11-26 1999-06-03 Minnesota Mining And Manufacturing Company Method and apparatus for coating diamond-like carbon onto particles
US6015597A (en) * 1997-11-26 2000-01-18 3M Innovative Properties Company Method for coating diamond-like networks onto particles
US6197120B1 (en) 1997-11-26 2001-03-06 3M Innovative Properties Company Apparatus for coating diamond-like networks onto particles
US6548172B2 (en) 1997-11-26 2003-04-15 3M Innovative Properties Company Diamond-like carbon coatings on inorganic phosphors
WO2012018075A1 (en) * 2010-08-04 2012-02-09 株式会社島津製作所 Surface treatment device and surface treatment method
JP5811092B2 (en) * 2010-08-04 2015-11-11 株式会社島津製作所 Surface treatment apparatus and surface treatment method

Similar Documents

Publication Publication Date Title
TW321768B (en)
CN1564721A (en) Highly filled composites of powdered fillers and polymer matrix
Mou et al. Optimizing impedance matching and interfacial characteristics of aromatic polyimide/graphene by molecular layer deposition for heat-conducting microwave absorption
JPH0340953A (en) Production of formed superconductor
CN110257788A (en) A kind of BaZr0.35Ti0.65O3Epitaxial film and preparation method thereof
CN100497725C (en) Single target sputter method for preparing bismuth telluride thin film using powder target material
JPS6149487A (en) Method of producing porous piezoelectric ceramic material
JPS5830749B2 (en) Zinc oxide piezoelectric crystal film
Shin et al. Low-temperature sintering of garnet-type Li7La3Zr2O12 solid electrolyte with Li3BO3 additive prepared by polymeric complex method
JPH0422062A (en) Polarizable electrode plate
TWI290778B (en) Soft piezoelectric plate structure and synthetic method
JPH01188564A (en) Molded article having superconductivity and production thereof
JPH04133209A (en) Lithium ion conductive solid electrolyte sheet and manufacture thereof
JP3036039B2 (en) Graphite block and method of manufacturing the same
JPS63270347A (en) Production of oxide superconductor
JPH0665623B2 (en) Method for producing high temperature superconducting ceramic material by mechanical orientation method
JP3899402B2 (en) Method for producing diamond-titanium carbide composite sintered body
WO1997045364A1 (en) Graphite thin film, method for manufacturing the same, and secondary battery and capacitor using the same
JPH0233917B2 (en) DANNETSUBAN
JPH02124713A (en) Production of superconducting thin film
JPH0460123B2 (en)
JPH0574657A (en) Electric double layer capacitor and manufacture thereof
JPH027360A (en) Electrode and manufacture thereof
JPS63159248A (en) Manufacture of ceramic thin plate
CN115431624A (en) Method for preparing multilayer dielectric film by hot pressing method