WO1997045364A1 - Graphite thin film, method for manufacturing the same, and secondary battery and capacitor using the same - Google Patents

Graphite thin film, method for manufacturing the same, and secondary battery and capacitor using the same Download PDF

Info

Publication number
WO1997045364A1
WO1997045364A1 PCT/JP1997/001845 JP9701845W WO9745364A1 WO 1997045364 A1 WO1997045364 A1 WO 1997045364A1 JP 9701845 W JP9701845 W JP 9701845W WO 9745364 A1 WO9745364 A1 WO 9745364A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
plasma
gas
film portion
graphite
Prior art date
Application number
PCT/JP1997/001845
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yamamoto
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1997045364A1 publication Critical patent/WO1997045364A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a graphite thin film, a method for producing the graphite thin film, and a secondary battery and a capacitor using the same, and more particularly, to a graphite thin film having a novel crystal structure.
  • a battery is a device that converts electrical energy into chemical energy and stores it. It is composed of a combination of positive electrode-active material / electrolyte Z active material and negative electrode. An electron conductive material is used for the positive electrode and the negative electrode, an ion conductive material is used for the electrolyte, an oxidizing agent is used for the positive electrode active material, and a reducing agent is used for the negative electrode active material.
  • a positive electrode current collector 102 is attached to the inner bottom surface, and a positive electrode 103 is pressure-bonded to a positive electrode can 101 on which an insulating packing 108 is placed.
  • a negative electrode current collector 105 is attached to the inner surface of a negative electrode can 104, and a negative electrode 106 is crimped on the separator 107.
  • a coin-type lithium battery formed by caulking through a battery JP-A-6-325575.
  • Graphite is used as the negative electrode, but it is necessary to use a material having a high degree of graphitization and a high surface area.
  • an increase in the contact area between the electrode material and the ion conductive material is also a major factor.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a graphite thin film having an extremely large surface area used for an electrode material or the like of such a battery and having a completely novel structure.
  • Another object of the present invention is to provide a compact battery having a remarkably high energy density.
  • a first feature of the present invention resides in that a flat thin film portion and an upright thin film portion which is erected in a direction perpendicular to the flat thin film portion.
  • the upright thin film portion has a regularly arranged polygonal mesh structure.
  • a second feature of the present invention is that, in the graphite thin film formed on the surface of the base, a flat thin film portion formed so as to cover the surface of the base, and a vertical erect portion with respect to the flat thin film portion. And an upright thin film portion having a polygonal mesh surface structure arranged regularly.
  • the substrate is a copper or aluminum substrate.
  • a third feature of the present invention is that a plasma generating step of generating a plasma by exciting a plasma of a compound gas containing carbon or a mixed gas of the compound gas and hydrogen or a halogen gas as a raw material gas, Flow velocity of plasma higher than the speed of sound And the gas plasma is guided to the surface of the substrate to be processed, which is heated to a desired temperature and placed under reduced pressure, and a graphite thin film is formed by using a plasma jet method. It is in.
  • a fourth feature of the present invention is that, as a source gas, a plasma generation step of generating a plasma by exciting a mixed gas of CH 2 and with a plasma, and accelerating the gas plasma so as to have a flow velocity higher than the speed of sound. And guiding the gas plasma to the surface of the substrate to be heated heated to a desired temperature, and the flat thin film portion and the hexagonal net vertically erected with respect to the flat thin film portion and arranged regularly.
  • a graphite thin film consisting of an upright thin film portion having a planar structure is formed by a plasma jet method.
  • a fifth feature of the present invention is that a first electrode formed on the surface of the base, an ion conductor material formed on the first electrode, and an ion conductor material formed on the ion conductor material A second electrode, wherein the first electrode is erected in a direction perpendicular to the planar thin film portion and has a polygonal mesh structure regularly arranged.
  • a lithium secondary battery characterized in that it is formed of a graphite thin film comprising a thin film portion.
  • a sixth feature of the present invention is that in an electric double layer capacitor in which a large number of internal electrodes are formed with a separator impregnated with an electrolyte interposed therebetween, the internal electrodes are connected to a flat thin film portion and the flat thin film portion. It is characterized by being composed of a graphitic thin film that is made to stand in the vertical direction and has an upright thin film portion having a regularly arranged polygonal reticular structure.
  • the gas is turned into plasma by the induction plasma method or the DC plasma jet method, and the gas is turned into a plasma.
  • a technique of performing a surface treatment such as thin film formation, etching, or surface modification is already known, and is widely used for forming or etching a semiconductor thin film, or a surface modification treatment such as oxidation or nitridation.
  • the present inventors have conducted various experiments using the plasma jet method and formed various thin films, and as a result, the surface area is very large, the film characteristics are extremely good, and a completely new film is obtained.
  • a highly reliable graphite thin film having good film quality can be formed on the surface of the substrate to be processed.
  • the planar thin film portion is formed on the surface of the substrate to be processed, and the plurality of the thin film portions are erected in a direction perpendicular to the planar thin film portion and are regularly arranged. It is possible to form a graphite thin film composed of an upright thin film portion having a rectangular network structure.
  • the first electrode is made to stand upright in the direction perpendicular to the plane thin-film section and the plane thin-film section, and the upright thin film having a regularly arranged polygonal network structure.
  • the contact area with the ion conductor material formed on this upper layer can be made extremely large, and a highly efficient secondary battery can be obtained. Become.
  • the internal electrode is composed of the flat thin film portion, and the upright thin film portion having a polygonal mesh surface structure that is erected in a direction perpendicular to the flat thin film portion and is regularly arranged. Since it is composed of a graphite thin film, the contact area with the electrolyte can be extremely large, and a large-capacity capacitor can be obtained.
  • the supply of the raw material gas may be carried out together with an inert gas such as argon as a carrier gas.
  • FIG. 1 is a schematic sectional view showing a graphite thin film according to an embodiment of the present invention.
  • Fig. 2 Electron micrograph showing the crystal structure of the graphite thin film.
  • FIG. 3 Electron micrograph showing the crystal structure of the graphite thin film.
  • Figure 4 Electron micrograph showing the crystal structure of the graphite thin film.
  • Figure 5 Electron micrograph showing the crystal structure of the graphite thin film.
  • Figure 6 Electron micrograph showing the crystal structure of the graphite thin film.
  • Fig. 7 Diagram showing the Raman spectrum of the graphite thin film.
  • Figure 8 Diagram showing a film-forming apparatus for forming the graphit thin film.
  • Fig. 9 Electron micrograph showing the crystal structure of a graphite thin film according to another embodiment of the present invention.
  • Figure 10 Electron micrograph showing the crystal structure of the graphite thin film.
  • Fig. 11 Electron micrograph showing the crystal structure of the graphite thin film.
  • FIG. 12 is a view showing a lithium secondary battery using the graphite thin film of the example of the present invention.
  • Fig. 13 Diagram showing an electric multilayer capacitor using the graphite thin film of the example of the present invention.
  • FIG. 14 A diagram showing a catalyst carrier using the graphite thin film of the example of the present invention.
  • FIG. 15 A diagram showing a hydrogen storage material using the graphite thin film of the example of the present invention.
  • Figure 16 Diagram showing a normal lithium secondary battery.
  • Figure 17 Graph showing the formation of high specific surface area graphite thin films corresponding to various gas flow values and concentration values when the substrate is made of molybdenum and silicon.
  • the graphite thin film of the embodiment of the present invention is shown in FIG. 1 as a cross-sectional explanatory view, and as shown in FIGS. 2 to 6 as photographs of a crystal structure taken by an electron microscope, an n + type single crystal silicon is shown.
  • Fig. 2 is a magnified photo at 10k magnification
  • Fig. 3 is a magnified photo at 30k magnification
  • Fig. 4 is a magnified photo at 30k magnification taken at an inclination angle of 40 degrees
  • Fig. 5 is a vertical photograph.
  • Fig. 6 is a 50k magnification photograph taken from the vertical direction.
  • FIG. 7 is a diagram showing the Raman spectrum of this graphite thin film.
  • This device uses the plasma jet method, and as shown in Fig. 8, A high-frequency current of 13.56 MHz is applied from the high-frequency power supply 2 to the high-frequency power supply 2 to excite the raw material gas flowing in the quartz Laval nozzle 3 into plasma to generate gas plasma.
  • the graphite thin film is formed by guiding the surface of the n + -type single-crystal silicon substrate 11 placed in 4 at a supersonic speed.
  • the substrate as a substrate to be processed is configured so that it can be maintained at a desired temperature by a heater 6 provided on the substrate support base, and a temperature controller 9 detects a temperature while a thermocouple 8 detects a temperature.
  • the supply voltage to heater 7 is controlled.
  • the supersonic velocity under the conditions described below is set so that the raw material gas passing through the nozzle ⁇ is adiabatically expanded and injected from the nozzle outlet 3 e at a flow velocity u greater than the sonic velocity a.
  • a Lapearl nozzle 3, which is a nozzle, is configured.
  • the rubber nozzle 3 is a medium-sized nozzle, and has a gas inlet 3 a (20 ⁇ ) for supplying a source gas to be injected onto the surface of the wire as a substrate to be processed, and a cross-sectional area as the gas progresses.
  • a gas inlet pipe 3b that is configured to become gradually smaller, a mouth part 3c that forms the smallest cross-sectional area A1 (diameter dl: 1 Omm) across the nozzle, and a predetermined spread from this throat
  • the cross-sectional area is gradually enlarged with an angle, and it is composed of a gas injection pipe 3 d from which a plasma flow P is injected from a gas injection port 3 e having a maximum cross-sectional area A2 (diameter d 2: 22 mm).
  • An induction coil 1 (coil diameter: 16 mm, number of coil turns: 5) is wound around the throat portion 3c as plasma generation means, and a high-frequency current is applied to the induction coil 1 Then, an induced magnetic field is formed in the throat portion 3c, and the gas passing through the throat portion 3c is excited by plasma. In this way, the throat portion 3c having the smallest cross-sectional area A1 is favorably turned into plasma. Then, the plasma flow P is configured to be injected from the injection port 3 e of the Laval nozzle 3 toward the substrate.
  • an n + -type single-crystal silicon substrate 11 is placed on a substrate support as a substrate 5 to be processed, and the temperature is controlled by a temperature controller 9 so that the substrate temperature is maintained at 800 ° C. I do. Then, the inside of the vacuum chamber 14 is evacuated using a vacuum pump (not shown) to a pressure of 0.1 lTorr.
  • a vacuum pump (not shown) to a pressure of 0.1 lTorr.
  • H 500 cc / [nin. Is supplied to the Laval nozzle 3 from the gas inlet 3a.
  • the plasma-converted high-density gas is expanded and accelerated due to the spread of the nozzle by the downstream gas injection pipe 3d, and is injected as a supersonic plasma flow P from the gas injection port 3e.
  • This plasma flow P is guided onto the substrate 5 at a supersonic speed, and the film is processed for 1 hour.
  • the cross-sectional structure is shown in FIG. 1 and electron microscope images taken at various angles and magnifications are shown in FIGS. As shown in the photograph, it is composed of a flat thin film portion 12 and an upright thin film portion 13 having a polygonal mesh surface structure which is erected in a direction perpendicular to the flat thin film portion 12 and is regularly arranged.
  • Graphite thin film G is formed.
  • the ratio PlZPO between the stagnation pressure P0 of the introduced source gas 6 and the pressure PI downstream of the injection port 4a is about 0.52 or less
  • Ratio of the cross-sectional area A1 of the throat 3c to the cross-sectional area A2 of the bomb 3e (Suehiro ratio)
  • A2 / A1 exceeds 1
  • the gas is adiabatically expanded and the injection flow velocity is supersonic, that is, the sound velocity.
  • the flow velocity u is larger than a.
  • the divergence angle before and after the slot 3c is too large, separation of the boundary layer occurs on the wall surface. Therefore, it is necessary to set the divergence angle to an appropriate size, for example, about 15 °.
  • the Lapearl nozzle 1 is designed so that the raw material gas passing therethrough is adiabatically expanded as described above, and thus is rapidly cooled during this adiabatic expansion process until it reaches the surface of the substrate to be processed.
  • the temperature is set to an appropriate temperature that does not cause deterioration of the substrate to be processed. Since the temperature at this time is determined by the divergent ratio A2 / A1 (0.4 in this example), an arbitrary temperature can be obtained depending on the design conditions of the nozzle 1.
  • the plasma flow has a supersonic velocity
  • the time required to reach the substrate to be processed is extremely short.
  • the returned state does not return to the original state.
  • the temperature can be reduced to an appropriate temperature while maintaining the so-called excited state. Therefore, the film quality can be improved.
  • the film forming speed is increased, and the work efficiency is also improved.
  • T ⁇ T + (1/2) ⁇ ⁇ ( ⁇ - 1) / (7 ⁇ R) ⁇ -u ⁇ (1)
  • T O Total temperature of the flow (approximately equal to the temperature of the throat 3 which is the heating part)
  • Static temperature of the flow (so-called temperature)
  • the above equation (2) is obtained by rewriting the above equation (1) using Mach numbers (uZa, a: sound velocity). Further, the Mach number M is uniquely determined as a function of the suehiro ratio A2 / A1.
  • the value of the temperature ratio T OZT increases in proportion to the square of the Mach number M.
  • temperature ratio ⁇ 0 / ⁇ 6. That is, the reactive plasma heated to a high temperature is adiabatically expanded and accelerated to a high Mach number using the Laval nozzle 1, thereby lowering the plasma temperature ⁇ ⁇ to a temperature suitable for the single-crystal silicon substrate 11 as the substrate to be processed.
  • a single-crystal silicon substrate is used as the substrate.
  • the present invention is not limited to single-crystal silicon, and other materials may be used. It can also be formed on a metal substrate such as Ni or Fe or an insulating substrate.
  • FIG. 9 to 11 show electron micrographs when a graphite thin film was formed on a Mo substrate under the same conditions as in the above example.
  • Fig. 9 is a magnified image of 3Ok times
  • Fig. 10 is a magnified photo of 30k times taken from a direction of 40 degrees
  • Fig. 11 is 50k taken from a direction of 40 degrees. It is a 2 times enlarged photograph.
  • a graph eye composed of a planar thin film part and a vertically oriented thin film part having a regular polygonal mesh structure is similarly formed on the Mo substrate. It can be seen that a thin film was formed.
  • the conditions can be changed in various ways, but it is necessary to increase the input power to about 800 to 1000 w at the time of plasma excitation. Also, it is desirable that the temperature be 600 to 800 ° C. Further, it is desirable that the pressure in the vacuum chamber be 0.1 or less.
  • the gas is plasma-excited by the induction coil, but other plasma-excitation means such as ECR plasma and helicon plasma may be used for plasma excitation.
  • a capacity of more than 90 OmAhZg and a depth of 100% discharge will result in more than 1,500 cycles.
  • Service life was achieved. This is considered to be due to the use of the negative electrode 14 having a fine graphite structure such as a sponge to greatly improve the electrode area and the degree of graphitization being slightly disturbed.
  • the graphite thin film of the present invention was used for the negative electrode, This is the same as the lithium secondary battery of the example, in which a microporous polypropylene separator 107 is impregnated with an electrolytic solution and sandwiched between the positive electrode 103 and the electrolyte. Note that the same components as those of the lithium secondary battery shown in FIG. 16 are denoted by the same reference numerals, and description thereof is omitted.
  • the graphite film of the present invention can be formed directly on a metal foil, the binder becomes insoluble, and the storage capacity can be improved. Further, the production is easy, and the storage capacity can be extremely easily formed by simply laminating the negative electrode with the graphite electrode and the separator positive electrode.
  • the graphite thin film when used as the internal electrode 24 of an electric double layer capacitor, it is possible to increase the capacity.
  • 25 is a microporous polypropylene separator
  • 26 is an electrode.
  • the inner electrode 24 is placed on a copper plate having a diameter of 2 O mm and a thickness of 1 mm with a flow rate of 500 sccm, CH., A flow rate of 50 sccm, a high-frequency output of 1 kw, and a heating temperature of 800 ° C. Under the conditions, a graphite thin film of the present invention having a thickness of 1 ⁇ formed on one side for one hour was used. In addition, 100 layers of electrode plates sandwiching a microporous polypropylene separator are laminated using a 0.5 M propylene captone solution of (C 2 H),? 8? Negative electrode and positive electrode.
  • the electric double layer capacitor thus formed was charged at a charging voltage of 3 V, and the capacity density was measured. As a result, 30 to 4 OWh ZL was obtained.
  • the charge / discharge cycle was repeated 100,000 times or more, and the decrease in capacity density was measured. It had a very long life with only a drop in temperature.
  • the graphite thin film of the present invention can provide a large contact area when used as a catalyst carrier.
  • a catalyst support having an extremely large surface area can be formed.
  • this catalyst carrier L i, K, H- H g, K- F e C h, B r H 2 S_ ⁇ F e to one force, single Chillon Inta the conventional case of using as a catalyst for organic reactions The reaction was able to proceed at a rate of 10 times or more as compared to
  • the graphite thin film of the present invention is also effective as a hydrogen storage material.
  • a hydrogen storage material having a large surface area can be formed.
  • the graphite thin film repeatedly absorbs and releases hydrogen by forming an intercalation compound with potassium, but the use of the graphite thin film of the present invention results in a hydrogen absorption and desorption rate of 10 times or more as compared with the conventional one. Became. Also, the cycle life could be increased to 100,000 cycles.
  • a graphite thin film having an extremely large surface area and a high degree of graphiticity can be obtained, which is extremely effective as various element materials such as an electrode material for a lithium secondary battery. It is. According to the method of the present invention, a graphite thin film can be obtained very easily and with good reproducibility.

Abstract

A graphite thin film which can be used as the electrode material, etc., of batteries and has an extremely large surface area and a novel structure. The graphite thin film is composed of a planar thin film section (12) formed to cover the surface of a substrate (11) and an erected thin film section (13) which is vertically erected on the planar thin film section (12) and has a hexagonal network structure regularly arranged.

Description

明 細 書  Specification
グラフアイ ト薄膜、 グラフアイ ト薄膜の製造方法およびこれを用いた二次電池 およびコンデンサ Graphite thin film, method of manufacturing graphite thin film, and secondary battery and capacitor using the same
技術分野 Technical field
本発明は、 グラフアイ 卜薄膜、 グラフアイ ト薄膜の製造方法およびこれを用い た二次電池およびコンデンサに係り、 特に、 新規な結晶構造をもつグラフアイ ト 薄膜に関する。  The present invention relates to a graphite thin film, a method for producing the graphite thin film, and a secondary battery and a capacitor using the same, and more particularly, to a graphite thin film having a novel crystal structure.
背景技術 Background art
現在充放電可能な電池 (二次電池) としては、 鉛蓄電池が最もポピュラーであ り、 この他、 特にリチウム電池、 ニッケル電池、 マンガン電池などがあげられる。 電池は電気エネルギーを化学エネルギーに変換して蓄積する装置であり、 正極 - 活物質/電解質 Z活物質 ·負極の組み合わせで構成される。 そしてこの正極 ·負 極には電子伝導性材料、 電解質にはイオン伝導性材料、 正極活物質には酸化剤、 負極活物質には還元剤が用いられる。  Currently, lead-acid batteries are the most popular batteries that can be charged and discharged (secondary batteries). In addition, lithium batteries, nickel batteries, manganese batteries, and the like can also be mentioned. A battery is a device that converts electrical energy into chemical energy and stores it. It is composed of a combination of positive electrode-active material / electrolyte Z active material and negative electrode. An electron conductive material is used for the positive electrode and the negative electrode, an ion conductive material is used for the electrolyte, an oxidizing agent is used for the positive electrode active material, and a reducing agent is used for the negative electrode active material.
しかしながらいずれも化学反応を利用するものであるが、 蓄えようとするエネ ルギ一に応じて相応の容積と重量は免れ得ず、 電気自動車やソーラーカーへの利 用を考えるときには小型化への要求が極めて高くなる。  However, all of them use a chemical reaction, but the appropriate volume and weight cannot be spared depending on the energy to be stored, and demands for miniaturization when considering use in electric vehicles and solar cars Becomes extremely high.
例えば、 従来、 図 16に示すように、 内底面に正極集電体 102が取り付けら れ、 絶縁パッキン 108が載置された正極缶 1 01に正極 1 03を圧着し、 さら に微多孔性ポリプロピレンのセパレ一タ 107を載置し、 電解液を含浸させる一 方、 この上に、 負極缶 104の内面に負極集電体 105を取り付けると共に負極 106を圧着してなるものを、 絶縁パッキン 1 08を介してかしめ込むことによ り形成されたコイン型リチウム電池が提案されている (特開平 6— 325753 号) 。 負極としてはグラフアイ 卜が用いられているが、 黒鉛化度が高く表面積の 高いものを用いる必要がある。  For example, conventionally, as shown in FIG. 16, a positive electrode current collector 102 is attached to the inner bottom surface, and a positive electrode 103 is pressure-bonded to a positive electrode can 101 on which an insulating packing 108 is placed. A negative electrode current collector 105 is attached to the inner surface of a negative electrode can 104, and a negative electrode 106 is crimped on the separator 107. There has been proposed a coin-type lithium battery formed by caulking through a battery (JP-A-6-325575). Graphite is used as the negative electrode, but it is necessary to use a material having a high degree of graphitization and a high surface area.
また、 負極材料として、 繊維状グラフアイ 卜を用いた例も提案されている (炭 素 TANS01 99 1 (No. 1 50) p. 3 1 9— 327) 。 しかしながらグ ラファイ トファイバ一を負極板として成形しなければならず、 依然として、 電解 液との接触面積が十分に大きいとはいえず、 有効利用可能な部分が小さく、 特に 比表面積が小さいという問題があった。 An example using fibrous graphite as a negative electrode material has also been proposed (carbon TANS01 991 (No. 150) p. 319-327). However, the graphite fiber must be molded as a negative electrode plate, and the contact area with the electrolyte is still not sufficiently large, and the effective use area is small. There was a problem that the specific surface area was small.
一方、 同じエネルギーを従来の積層型セラミックコンデンサに蓄えようとする 試みもなされているが、 十分なエネルギーを得ることができなかった。  On the other hand, attempts have been made to store the same energy in conventional multilayer ceramic capacitors, but sufficient energy could not be obtained.
蓄積エネルギーの増大をはかるには、 イオン伝導性材料からなる電解質および 電極物質の改良のほかに、 電極物質とイオン伝導性材料との接触面積の増大も大 きな要素となっている。  In order to increase the stored energy, in addition to the improvement of the electrolyte and the electrode material made of the ion conductive material, an increase in the contact area between the electrode material and the ion conductive material is also a major factor.
【発明が解決しようとする課題】  [Problems to be solved by the invention]
このように、 二次電池の蓄積エネルギーの増大への要求は高まっているにもか かわらず、 十分な蓄積エネルギーを得ることのできるものではなかった。  Thus, despite the increasing demand for increased storage energy of secondary batteries, it was not possible to obtain sufficient storage energy.
そこで、 電極材料としては、 表面積が大きく伝導性の高い材料が求められてい た。  Therefore, a material having a large surface area and high conductivity has been required as an electrode material.
本発明は、 前記実情に鑑みてなされたもので、 このような電池の電極物質等に 用いられる表面積が極めて大きく、 まったく新規な構造のグラフアイ ト薄膜を提 供することを目的とする。  The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a graphite thin film having an extremely large surface area used for an electrode material or the like of such a battery and having a completely novel structure.
また本発明は、 エネルギー密度が飛躍的に高く、 コンパク トな電池を提供する ことを目的とする。  Another object of the present invention is to provide a compact battery having a remarkably high energy density.
発明の開示 Disclosure of the invention
本発明の第 1の特徴は、 平面薄膜部と、 前記平面薄膜部に対し垂直方向に起立 せしめられた起立薄膜部とから構成したことにある。  A first feature of the present invention resides in that a flat thin film portion and an upright thin film portion which is erected in a direction perpendicular to the flat thin film portion.
望ましくは、 前記起立薄膜部は、 規則的に配列された多角形網面構造をもつこ とを特徴とする。  Preferably, the upright thin film portion has a regularly arranged polygonal mesh structure.
本発明の第 2の特徴は、 基体表面に形成された、 グラフアイ ト薄膜において、 前記基体表面を覆うように形成された平面薄膜部と、 前記平面薄膜部に対して垂 直方向に起立せしめられ、 規則的に配列された多角形網面構造をもつ起立薄膜部 とから構成されたことにある、  A second feature of the present invention is that, in the graphite thin film formed on the surface of the base, a flat thin film portion formed so as to cover the surface of the base, and a vertical erect portion with respect to the flat thin film portion. And an upright thin film portion having a polygonal mesh surface structure arranged regularly.
望ましくは、 前記基体は銅またはアルミニウム基板とする。  Preferably, the substrate is a copper or aluminum substrate.
本発明の第 3の特徴は、 原料ガスとして炭素を含む化合物ガスあるいは前記化 合物ガスと水素またはハロゲンガスとの混合ガスを、 プラズマ励起してガスプラ ズマを生成するプラズマ生成工程と、 前記ガスプラズマを音速よりも大きい流速 となるように加速する工程と、 所望の温度に加熱せしめられ、 減圧下におかれた 被処理基体表面に前記ガスプラズマを導き、 グラフアイ 卜薄膜を、 プラズマジェ ット法を用いて形成したことにある。 A third feature of the present invention is that a plasma generating step of generating a plasma by exciting a plasma of a compound gas containing carbon or a mixed gas of the compound gas and hydrogen or a halogen gas as a raw material gas, Flow velocity of plasma higher than the speed of sound And the gas plasma is guided to the surface of the substrate to be processed, which is heated to a desired temperature and placed under reduced pressure, and a graphite thin film is formed by using a plasma jet method. It is in.
本発明の第 4の特徴は、 原料ガスとして、 C H ,と との混合ガスを、 ブラズ マ励起してガスブラズマを生成するブラズマ生成工程と、 前記ガスブラズマを音 速よりも大きい流速となるように加速する工程と、 所望の温度に加熱せしめられ た被処理基体表面に前記ガスプラズマを導き、 平面薄膜部と、 前記平面薄膜部に 対して垂直方向に起立せしめられ、 規則的に配列された六角網面構造をもつ起立 薄膜部とからなるグラフアイ ト薄膜を、 プラズマジヱット法を用いて形成したこ とにある。  A fourth feature of the present invention is that, as a source gas, a plasma generation step of generating a plasma by exciting a mixed gas of CH 2 and with a plasma, and accelerating the gas plasma so as to have a flow velocity higher than the speed of sound. And guiding the gas plasma to the surface of the substrate to be heated heated to a desired temperature, and the flat thin film portion and the hexagonal net vertically erected with respect to the flat thin film portion and arranged regularly. A graphite thin film consisting of an upright thin film portion having a planar structure is formed by a plasma jet method.
本発明の第 5の特徴は、 基体表面に形成された第 1の電極と、 前記第 1の電極 の上層に形成されたィォン伝導体材料と、 このィォン伝導体材料の上層に形成さ れた第 2の電極とから構成され、 前記第 1の電極が、 平面薄膜部と、 前記平面薄 膜部に対して垂直方向に起立せしめられ、 規則的に配列された多角形網面構造を もつ起立薄膜部とからなるグラフアイ ト薄膜で形成されるようにしたことを特徴 とするリチウムニ次電池にある。  A fifth feature of the present invention is that a first electrode formed on the surface of the base, an ion conductor material formed on the first electrode, and an ion conductor material formed on the ion conductor material A second electrode, wherein the first electrode is erected in a direction perpendicular to the planar thin film portion and has a polygonal mesh structure regularly arranged. A lithium secondary battery characterized in that it is formed of a graphite thin film comprising a thin film portion.
本発明の第 6の特徴は、 電解液を含浸させたセパレ一タを挟んで多数の内部電 極を形成した電気二重層コンデンサにおいて、 この内部電極を、 平面薄膜部と、 前記平面薄膜部に対して垂直方向に起立せしめられ、 規則的に配列された多角形 網面構造をもつ起立薄膜部とからなるグラフアイ 卜薄膜で構成したことを特徴と する。  A sixth feature of the present invention is that in an electric double layer capacitor in which a large number of internal electrodes are formed with a separator impregnated with an electrolyte interposed therebetween, the internal electrodes are connected to a flat thin film portion and the flat thin film portion. It is characterized by being composed of a graphitic thin film that is made to stand in the vertical direction and has an upright thin film portion having a regularly arranged polygonal reticular structure.
ところで、 ィンダクションプラズマ法や D Cプラズマジェッ 卜法により、 ガス をプラズマ化して、 活性化し反応性を高めた状態で、 このプラズマ化されたガス を被処理基体表面に向けて高速で噴射させることにより、 薄膜形成、 エッチング あるいは表面改質などの表面処理を行うという技術は既に公知であり、 半導体薄 膜の形成あるいはエッチング、 あるいは酸化、 窒化などの表面改質処理等に広く 利用されている。  By the way, the gas is turned into plasma by the induction plasma method or the DC plasma jet method, and the gas is turned into a plasma. Thus, a technique of performing a surface treatment such as thin film formation, etching, or surface modification is already known, and is widely used for forming or etching a semiconductor thin film, or a surface modification treatment such as oxidation or nitridation.
本発明者等は、 プラズマジェッ ト法を用いて、 種々の実験を重ねいろいろな薄 膜を形成した結果、 表面積が非常に大きく、 膜特性が極めて良好でまったく新規 な構造のグラフアイ ト薄膜を発見した。 The present inventors have conducted various experiments using the plasma jet method and formed various thin films, and as a result, the surface area is very large, the film characteristics are extremely good, and a completely new film is obtained. We have discovered a graphite thin film with a simple structure.
本発明の第 1 、 2によれば、 極めて安定で再現性良く得ることができ、 表面積 が非常に大きいものとなる。  According to the first and second aspects of the present invention, extremely stable and reproducible results can be obtained, and the surface area is extremely large.
本発明の第 3によれば、 プラズマジェッ トを吹きつけることによって、 被処理 基体表面に、 膜質が良好で信頼性の高いグラフアイ ト薄膜を形成することができ る。  According to the third aspect of the present invention, by spraying the plasma jet, a highly reliable graphite thin film having good film quality can be formed on the surface of the substrate to be processed.
本発明の第 4によれば、 プラズマジェットを吹きつけることにより、 被処理基 体表面に、 平面薄膜部と、 前記平面薄膜部に対して垂直方向に起立せしめられ、 規則的に配列された多角形網面構造をもつ起立薄膜部とからなるグラフアイ ト薄 膜を形成することができる。  According to the fourth aspect of the present invention, by spraying the plasma jet, the planar thin film portion is formed on the surface of the substrate to be processed, and the plurality of the thin film portions are erected in a direction perpendicular to the planar thin film portion and are regularly arranged. It is possible to form a graphite thin film composed of an upright thin film portion having a rectangular network structure.
本発明の第 5によれば、 第 1の電極を、 平面薄膜部と、 前記平面薄膜部に対し て垂直方向に起立せしめられ、 規則的に配列された多角形網面構造をもつ起立薄 膜部とからなるグラフアイ ト薄膜で構成しているため、 この上層に形成されたィ オン伝導体材料との接触面積を極めて大きくとることができ、 高効率の二次電池 を得ることが可能となる。  According to the fifth aspect of the present invention, the first electrode is made to stand upright in the direction perpendicular to the plane thin-film section and the plane thin-film section, and the upright thin film having a regularly arranged polygonal network structure. The contact area with the ion conductor material formed on this upper layer can be made extremely large, and a highly efficient secondary battery can be obtained. Become.
本発明の第 6によれば、 内部電極を、 平面薄膜部と、 前記平面薄膜部に対して 垂直方向に起立せしめられ、 規則的に配列された多角形網面構造をもつ起立薄膜 部とからなるグラフアイ ト薄膜で構成しているため、 電解液との接触面積を極め て大きくとることができ、 大容量のコンデンサを得ることが可能となる。  According to the sixth aspect of the present invention, the internal electrode is composed of the flat thin film portion, and the upright thin film portion having a polygonal mesh surface structure that is erected in a direction perpendicular to the flat thin film portion and is regularly arranged. Since it is composed of a graphite thin film, the contact area with the electrolyte can be extremely large, and a large-capacity capacitor can be obtained.
なおここで原料ガスの供給は、 キヤリァガスとして、 アルゴンなどの不活性ガ スと共に行うようにしてもよレ、。  Here, the supply of the raw material gas may be carried out together with an inert gas such as argon as a carrier gas.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 :本発明実施例のグラフアイ ト薄膜を示す模式的断面図。  FIG. 1 is a schematic sectional view showing a graphite thin film according to an embodiment of the present invention.
図 2 同グラフアイ 卜薄膜の結晶構造を示す電子顕微鏡写真。  Fig. 2 Electron micrograph showing the crystal structure of the graphite thin film.
図 3 :同グラフアイ ト薄膜の結晶構造を示す電子顕微鏡写真。  Figure 3: Electron micrograph showing the crystal structure of the graphite thin film.
図 4 :同グラフアイ ト薄膜の結晶構造を示す電子顕微鏡写真。  Figure 4: Electron micrograph showing the crystal structure of the graphite thin film.
図 5 :同グラフアイ ト薄膜の結晶構造を示す電子顕微鏡写真。  Figure 5: Electron micrograph showing the crystal structure of the graphite thin film.
図 6 :同グラフアイ ト薄膜の結晶構造を示す電子顕微鏡写真。  Figure 6: Electron micrograph showing the crystal structure of the graphite thin film.
図 7 :同グラフアイ ト薄膜のラマンスぺク トルを示す図。 図 8 :同グラフアイ ト薄膜を形成するため成膜装置を示す図。 Fig. 7: Diagram showing the Raman spectrum of the graphite thin film. Figure 8: Diagram showing a film-forming apparatus for forming the graphit thin film.
図 9 :本発明の他の実施例のグラフアイ ト薄膜の結晶構造を示す電子顕微鏡写 真。  Fig. 9: Electron micrograph showing the crystal structure of a graphite thin film according to another embodiment of the present invention.
図 1 0 :同グラフアイ ト薄膜の結晶構造を示す電子顕微鏡写真。  Figure 10: Electron micrograph showing the crystal structure of the graphite thin film.
図 1 1 :同グラフアイ ト薄膜の結晶構造を示す電子顕微鏡写真。  Fig. 11: Electron micrograph showing the crystal structure of the graphite thin film.
図 1 2 :本発明の実施例のグラフアイ ト薄膜を用いたリチウム二次電池を示す 図。  FIG. 12 is a view showing a lithium secondary battery using the graphite thin film of the example of the present invention.
図 1 3 :本発明実施例のグラフアイ ト薄膜を用いた電気多重層コンデンサを示 す図。  Fig. 13: Diagram showing an electric multilayer capacitor using the graphite thin film of the example of the present invention.
図 1 4 :本発明実施例のグラフアイ ト薄膜を用いた触媒担体を示す図。  FIG. 14: A diagram showing a catalyst carrier using the graphite thin film of the example of the present invention.
図 1 5 :本発明実施例のグラフアイ ト薄膜を用いた水素吸蔵材料を示す図。 図 1 6 :通常のリチウム二次電池を示す図。  FIG. 15: A diagram showing a hydrogen storage material using the graphite thin film of the example of the present invention. Figure 16: Diagram showing a normal lithium secondary battery.
図 1 7 :基板をモリブデンおよびシリコンとした場合における、 各種 ガス 流量値および濃度値に対応する高比表面積グラファィ ト薄膜の形成状 態を示すグラフ図。  Figure 17: Graph showing the formation of high specific surface area graphite thin films corresponding to various gas flow values and concentration values when the substrate is made of molybdenum and silicon.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下この発明の実施例を添付図面に従って詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
以下、 本発明の実施例について図面を参照しつつ詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本発明実施例のグラフアイ ト薄膜は、 図 1に断面説明図を示すと共に、 図 2乃 至図 6に電子顕微鏡で撮影した結晶構造の写真を示すように、 n +型の単結晶シリ コン基板 1 1の表面に形成された平面薄膜部 1 2と、 この平面薄膜部 1 2に対し て垂直方向に起立せしめられ、 規則的に配列された多角形網面構造をもつ起立薄 膜部 1 3とから成るものであることを特徴とする。  The graphite thin film of the embodiment of the present invention is shown in FIG. 1 as a cross-sectional explanatory view, and as shown in FIGS. 2 to 6 as photographs of a crystal structure taken by an electron microscope, an n + type single crystal silicon is shown. A flat thin film portion 12 formed on the surface of the substrate 11; and an upright thin film portion 1 having a polygonal mesh surface structure which is vertically erected on the flat thin film portion 12 and is regularly arranged. And (3).
ここで図 2は 1 0 k倍、 図 3は 3 0 k倍の平面拡大写真、 図 4は傾斜角 4 0度 の方向からとった 3 0 k倍の拡大写真、 図 5は垂直方向からとった 3 0 k倍の拡 大写真、 図 6は垂直方向からとった 5 0 k倍の拡大写真である。  Here, Fig. 2 is a magnified photo at 10k magnification, Fig. 3 is a magnified photo at 30k magnification, Fig. 4 is a magnified photo at 30k magnification taken at an inclination angle of 40 degrees, and Fig. 5 is a vertical photograph. Fig. 6 is a 50k magnification photograph taken from the vertical direction.
図 7はこのグラフアイ ト薄膜のラマンスぺク トルを示す図である。  FIG. 7 is a diagram showing the Raman spectrum of this graphite thin film.
次に、 このグラフアイ ト薄膜を形成する装置について説明する。  Next, an apparatus for forming the graphite thin film will be described.
この装置は、 プラズマジェッ ト法を用いたもので、 図 8に示すように、 誘導コ ィル 1に高周波電源 2から 1 3 . 5 6 MH zの高周波電流を印加し、 石英製のラ バールノズル 3内を流れる原料ガスをプラズマ励起して、 ガスブラズマを生成し、 これを真空チャンバ一 4内に設置された n +型の単結晶シリ コン基板 1 1の表面 に超音速で導くことにより、 グラフアイ ト薄膜を形成するようにしたものである。 ここで被処理基体としての基板は基板支持台に設けられたヒータ 6によって所望 の温度に維持できるように構成されており、 熱電対 8によって温度を検出しなが ら温度コントローラ 9によってヒータ用電源 7のヒータへの供給電圧を制御して いる。 This device uses the plasma jet method, and as shown in Fig. 8, A high-frequency current of 13.56 MHz is applied from the high-frequency power supply 2 to the high-frequency power supply 2 to excite the raw material gas flowing in the quartz Laval nozzle 3 into plasma to generate gas plasma. The graphite thin film is formed by guiding the surface of the n + -type single-crystal silicon substrate 11 placed in 4 at a supersonic speed. Here, the substrate as a substrate to be processed is configured so that it can be maintained at a desired temperature by a heater 6 provided on the substrate support base, and a temperature controller 9 detects a temperature while a thermocouple 8 detects a temperature. The supply voltage to heater 7 is controlled.
ラバールノズル (末広ノズルともいう) では、 ノズル內を通過する原料ガスが 断熱膨張せしめられてノズル出口 3 eから音速 aよりも大きい流速 uで噴射され るように、 後述する条件の下で、 超音速ノズルであるラパールノズル 3が構成さ れている。  In the Laval nozzle (also called the divergent nozzle), the supersonic velocity under the conditions described below is set so that the raw material gas passing through the nozzle 內 is adiabatically expanded and injected from the nozzle outlet 3 e at a flow velocity u greater than the sonic velocity a. A Lapearl nozzle 3, which is a nozzle, is configured.
ラバ一ルノズル 3は、 中細のノズルであり、 被処理基体である線材の表面に噴 射すべき原料ガスを供給するガス導入口 3 a ( 2 0 πιπι Φ ) と、 ガス進行に伴い 断面積が徐々に小さくなるよう構成されたガス導入管 3 bと、 ノズル全体で最小 の断面穰 A 1 (直径 d l : 1 O mm ) をなすス口一ト部 3 cと、 このスロート部 から所定の広がり角をもって断面積が徐々に拡大せしめられ、 最大断面積 A2 ( 直径 d 2 : 2 2 mm ) のガス噴射口 3 eからプラズマ流 Pが噴射されるガス噴 射管 3 dとから構成されている。 そして、 スロート部 3 cの外側には、 プラズマ 生成手段として誘導コイル 1 (コイル径: 1 6 mm、 コイル卷き数: 5 ) が巻回 されており、 該誘導コイル 1に高周波電流が通電されるとスロー卜部 3 c内に誘 導電磁場が形成され、 スロート部 3 cを通過するガスがプラズマ励起される。 こ のようにして、 最小の断面積 A 1 をもつスロート部 3 cで、 良好にプラズマ化さ れる。 そして、 基板に向けて、 ラバールノズル 3の噴射口 3 eからプラズマ流 P が噴射されるように構成されている。  The rubber nozzle 3 is a medium-sized nozzle, and has a gas inlet 3 a (20 πιπιΦ) for supplying a source gas to be injected onto the surface of the wire as a substrate to be processed, and a cross-sectional area as the gas progresses. A gas inlet pipe 3b that is configured to become gradually smaller, a mouth part 3c that forms the smallest cross-sectional area A1 (diameter dl: 1 Omm) across the nozzle, and a predetermined spread from this throat The cross-sectional area is gradually enlarged with an angle, and it is composed of a gas injection pipe 3 d from which a plasma flow P is injected from a gas injection port 3 e having a maximum cross-sectional area A2 (diameter d 2: 22 mm). . An induction coil 1 (coil diameter: 16 mm, number of coil turns: 5) is wound around the throat portion 3c as plasma generation means, and a high-frequency current is applied to the induction coil 1 Then, an induced magnetic field is formed in the throat portion 3c, and the gas passing through the throat portion 3c is excited by plasma. In this way, the throat portion 3c having the smallest cross-sectional area A1 is favorably turned into plasma. Then, the plasma flow P is configured to be injected from the injection port 3 e of the Laval nozzle 3 toward the substrate.
次にこの装置を用いたグラフアイ ト薄膜の形成方法について説明する。  Next, a method of forming a graphite thin film using this apparatus will be described.
まず、 被処理基体 5として n +型の単結晶シリコン基板 1 1を基板支持台に設 置し、 温度コントローラ 9によって温度制御を行いながら、 基板温度が 8 0 0 °C を維持するように制御する。 そして真空チャンバ一 4内を真空ポンプ (図示せず) を用いて真空排気し、 圧 力を 0. lTorr とし、 原料ガスとして、 CH. 50cc/min.と H : 500cc/[nin.の 混合ガスをガス導入口 3 aからラバールノズル 3に供給する。 First, an n + -type single-crystal silicon substrate 11 is placed on a substrate support as a substrate 5 to be processed, and the temperature is controlled by a temperature controller 9 so that the substrate temperature is maintained at 800 ° C. I do. Then, the inside of the vacuum chamber 14 is evacuated using a vacuum pump (not shown) to a pressure of 0.1 lTorr. As a raw material gas, a mixed gas of CH. 50 cc / min. And H: 500 cc / [nin. Is supplied to the Laval nozzle 3 from the gas inlet 3a.
そして、 スロ一ト部 3 cにおいては、 高周波電源 2がオン状態に設定され、 誘 導コイル 1に高周波電流 (l kW、 1 3. 56MH z ) が流れると、 管内に誘導 電磁場が発生し、 この場のエネルギーによって高密度のガスが、 加熱励起され、 プラズマ化される。  Then, in the slot 3c, when the high-frequency power supply 2 is turned on and a high-frequency current (1 kW, 13.56 MHz) flows through the induction coil 1, an induction electromagnetic field is generated in the tube, The high-density gas is heated and excited by the energy of this field and turned into plasma.
そして、 プラズマ化された高密度ガスは、 下流側のガス噴出管 3 dによるノズ ルの広がりのために膨張加速され、 ガス噴射口 3 eから超音速のプラズマ流 Pと なって噴射される。 このプラズマ流 Pを超音速で被処理基体 5上に導き、 1時間 の成膜処理により、 図 1に断面構造を示すと共に、 図 2乃至図 6にいろいろな角 度および倍率で撮影した電子顕微鏡写真を示すように、 平面薄膜部 1 2と、 この 平面薄膜部 1 2に対して垂直方向に起立せしめられ、 規則的に配列された多角形 網面構造をもつ起立薄膜部 1 3とからなるグラフアイ ト薄膜 Gが形成される。 ところで、 気体力学の理論によれば、 たとえば 2原子気体の場合、 導入された 原料ガス 6のよどみ圧 P0と噴射口 4 aの下流の圧力 PIとの比 PlZPOが、 約 0. 5 2以下、 スロート部 3 cの断面積 A1と嘖射ロ 3 eの断面積 A2の比 (末広比) A2/A1が 1を越える場合に、 ガスが断熱膨張されて、 噴射流速が超音速、 つま り音速 aよりも大きい流速 uとなる。  Then, the plasma-converted high-density gas is expanded and accelerated due to the spread of the nozzle by the downstream gas injection pipe 3d, and is injected as a supersonic plasma flow P from the gas injection port 3e. This plasma flow P is guided onto the substrate 5 at a supersonic speed, and the film is processed for 1 hour. The cross-sectional structure is shown in FIG. 1 and electron microscope images taken at various angles and magnifications are shown in FIGS. As shown in the photograph, it is composed of a flat thin film portion 12 and an upright thin film portion 13 having a polygonal mesh surface structure which is erected in a direction perpendicular to the flat thin film portion 12 and is regularly arranged. Graphite thin film G is formed. By the way, according to the theory of gas dynamics, for example, in the case of a diatomic gas, the ratio PlZPO between the stagnation pressure P0 of the introduced source gas 6 and the pressure PI downstream of the injection port 4a is about 0.52 or less, Ratio of the cross-sectional area A1 of the throat 3c to the cross-sectional area A2 of the bomb 3e (Suehiro ratio) When A2 / A1 exceeds 1, the gas is adiabatically expanded and the injection flow velocity is supersonic, that is, the sound velocity. The flow velocity u is larger than a.
また、 スロ一ト部 3 cの前後の広がり角は、 あまり大きいと壁面で境界層の剥 離が発生するので、 適切な大きさ、 たとえば 1 5° 程度とする必要がある。  Also, if the divergence angle before and after the slot 3c is too large, separation of the boundary layer occurs on the wall surface. Therefore, it is necessary to set the divergence angle to an appropriate size, for example, about 15 °.
しかしながら、 ラパールノズル 1は、 上述するように内部を通過する原料ガス が断熱膨張せしめられるように設計されているため、 この断熱膨張過程におし、て 急冷され、 被処理基体表面に達するまでには被処理基体の劣化を生じない程度の 適切な温度になる。 このときの温度は、 上記末広比 A2/A1 (この例では 0. 4) によって決まるので、 ノズル 1の設計条件によって任意の温度を得ることができ る。  However, the Lapearl nozzle 1 is designed so that the raw material gas passing therethrough is adiabatically expanded as described above, and thus is rapidly cooled during this adiabatic expansion process until it reaches the surface of the substrate to be processed. The temperature is set to an appropriate temperature that does not cause deterioration of the substrate to be processed. Since the temperature at this time is determined by the divergent ratio A2 / A1 (0.4 in this example), an arbitrary temperature can be obtained depending on the design conditions of the nozzle 1.
さらに、 プラズマ流は超音速をもっため、 被処理基体に到達するまでの時間が 極めて短く、 被処理基体に到達するまでに、 加熱、 プラズマ化によって励起され た状態が元の状態に戻ってしまうことがない。 このように、 いわゆる励起状態を 維持したまま温度を適温まで下げることができる。 したがって、 膜質を向上させ ることができる。 また、 短時間で噴射が終了するため、 成膜速度が高まり、 作業 効率も向上することとなる。 Furthermore, since the plasma flow has a supersonic velocity, the time required to reach the substrate to be processed is extremely short. The returned state does not return to the original state. Thus, the temperature can be reduced to an appropriate temperature while maintaining the so-called excited state. Therefore, the film quality can be improved. In addition, since the injection is completed in a short time, the film forming speed is increased, and the work efficiency is also improved.
以上説明した現象は、 一次元流体力学の理論により次のように説明される。 すなわち、 完全気体の断熱流れにおける流体温度と流速の関係は次式により表 される。  The above-described phenomenon is explained as follows by the theory of one-dimensional fluid dynamics. That is, the relationship between the fluid temperature and the flow velocity in the adiabatic flow of complete gas is expressed by the following equation.
T〇=T+ ( 1 /2) · { (γ— 1 ) / (7 · R) } - u ··· ( 1 ) あるいは、  T〇 = T + (1/2) · {(γ- 1) / (7 · R)}-u ··· (1)
T 0/T= 1 + { (γ— 1 ) /2 \ - :' ·■· ( 2) T 0 / T = 1 + {(γ-1) / 2 \- : '
T O :流れの全温度 (加熱部であるスロート部 3の温度にほぼ等しい) τ :流れの静温度 (いわゆる温度) T O: Total temperature of the flow (approximately equal to the temperature of the throat 3 which is the heating part) τ: Static temperature of the flow (so-called temperature)
y : ガスの比熱比  y: Specific heat ratio of gas
R :ガス定数  R: gas constant
u :流れの流速  u: Flow velocity
M:マツハ数  M: Matsuha number
である。 It is.
上記 (2) 式は、 上記 (1 ) 式をマッハ数 (uZa、 a :音速) を用いて書き 換えたものである。 また、 マッハ数 Mは、 末広比 A 2/A 1の関数として一義 的に決定される。  The above equation (2) is obtained by rewriting the above equation (1) using Mach numbers (uZa, a: sound velocity). Further, the Mach number M is uniquely determined as a function of the suehiro ratio A2 / A1.
上記 ( 1)式より断熱膨張過程では、 全温度 T Oの値が一定に保たれるため、 流 速 uの増加ととともに、 静温度 Tの低下が起こることがわかる。 つまり、 流れの 速度が大きいほど、 急速な温度低下が起こる。  From the above equation (1), it can be seen that in the adiabatic expansion process, the value of the total temperature T O is kept constant, so that the static temperature T decreases as the flow velocity u increases. In other words, the higher the flow speed, the more rapid the temperature drops.
また、 上記 (2) 式より、 温度比 T OZTの値は、 マッハ数 Mの 2乗に比例し て増加する。 たとえば、 2原子気体 (γ = 1. 4 ) の場合、 マッハ数 Μ= 5のと き、 温度比 Τ 0/Τ= 6となる。 すなわち、 高温に加熱された反応性プラズマを ラバールノズル 1を用いて高マッハ数まで断熱膨張加速させることにより、 ブラ ズマ温度 Τを被処理基体である単結晶シリコン基板 1 1に適する温度まで下げる ことができるのがわかる。 また、 このときプラズマ粒子は極めて高速に加速され るため (たとえば、 T= 1500 (Κ) 、 7 = 1. 4、 R= 500 ( J/k g K) M=5の場合、 u=5123 (m/ s ) となる) 、 被処理基体に到達するまでの 時間が非常に短く、 ブラズマは初期活性状態をほぼ維持したまま低温で被処理基 体に到達することができる。 From the above equation (2), the value of the temperature ratio T OZT increases in proportion to the square of the Mach number M. For example, in the case of diatomic gas (γ = 1.4), when Mach number Μ = 5, temperature ratio Τ 0 / Τ = 6. That is, the reactive plasma heated to a high temperature is adiabatically expanded and accelerated to a high Mach number using the Laval nozzle 1, thereby lowering the plasma temperature ま で to a temperature suitable for the single-crystal silicon substrate 11 as the substrate to be processed. We can see that we can do it. At this time, the plasma particles are accelerated at an extremely high speed (for example, when T = 1500 (Κ), 7 = 1.4, R = 500 (J / kg K), when M = 5, u = 5123 (m / s)), but the time required to reach the substrate to be treated is very short, and the plasma can reach the substrate to be treated at a low temperature while almost maintaining the initial active state.
なお前記実施例では基板として単結晶シリコン基板を用いた例について説明し たが、 単結晶シリコンに限定されることなく、 他の材料を用いるようにしてもよ く、 また Cu、 Aし Mo, N i , F eなどの金属基板あるいは絶縁性基板上に も形成可能である。  In the above embodiment, an example in which a single-crystal silicon substrate is used as the substrate has been described.However, the present invention is not limited to single-crystal silicon, and other materials may be used. It can also be formed on a metal substrate such as Ni or Fe or an insulating substrate.
図 9乃至図 1 1に Mo基板上に前記実施例と同一条件でグラフアイ ト薄膜を形 成した場合の電子顕微鏡写真を示す。 ここで図 9は、 3 O k倍の平面拡大写真、 図 10は傾斜角 40度の方向からとった 30 k倍の拡大写真、 図 1 1は傾斜角 4 0度の方向からとった 50 k倍の拡大写真である。 これらの写真からわかるよう に Mo基板上にも同様に平面薄膜部とこれに対して垂直方向に起立せしめられ、 規則的に配列された多角形網面構造をもつ起立薄膜部とからなるグラフアイ 卜薄 膜が形成されていることがわかる。  9 to 11 show electron micrographs when a graphite thin film was formed on a Mo substrate under the same conditions as in the above example. Here, Fig. 9 is a magnified image of 3Ok times, Fig. 10 is a magnified photo of 30k times taken from a direction of 40 degrees, and Fig. 11 is 50k taken from a direction of 40 degrees. It is a 2 times enlarged photograph. As can be seen from these photographs, a graph eye composed of a planar thin film part and a vertically oriented thin film part having a regular polygonal mesh structure is similarly formed on the Mo substrate. It can be seen that a thin film was formed.
ここで条件は種々変更可能であるが、 プラズマ励起に際して投入電力を 800 〜 1000 w程度と大きくする必要ある。 また、 温度についても 600〜800 °Cとするのが望ましい。 さらに真空チャンバ一の圧力は 0. 1以下とするのが望 ましい。  Here, the conditions can be changed in various ways, but it is necessary to increase the input power to about 800 to 1000 w at the time of plasma excitation. Also, it is desirable that the temperature be 600 to 800 ° C. Further, it is desirable that the pressure in the vacuum chamber be 0.1 or less.
また、 実施例では、 誘導コイルによってガスを、 プラズマ励起しているが、 プ ラズマ励起に際しては、 ECRプラズマ、 ヘリコンプラズマ等、 他のプラズマ励 起手段を使用してもよレ、。  Further, in the embodiment, the gas is plasma-excited by the induction coil, but other plasma-excitation means such as ECR plasma and helicon plasma may be used for plasma excitation.
このようにして得られたグラフアイ 卜薄膜を負極として用い、 図 12に示すよ うなボタン型構造のリチウム二次電池を形成した場合、 90 OmAhZg以上の 容量と 100%放電深度で、 1500サイクル以上の寿命を達成することができ た。 これはスポンジのような微細なグラフアイ ト構造を有する負極 14を用いた ことによる電極面積の大幅な向上と、 少し乱れた黒鉛化度のためであると考えら れる。 ここで負極に本発明のグラフアイ ト薄膜を用いた他は図 16に示した従来 例のリチウム二次電池と同様であり、 微多孔性ポリプロピレンのセバレータ 1 0 7に電解液を含浸させこれを正極 1 0 3とで挟むように構成したものである。 な お、 図 1 6で示したリチウム二次電池の構成要素と同一の要素には同一符号を付 し、 説明は省略した。 When a lithium secondary battery with a button-type structure as shown in Fig. 12 is formed by using the graphite thin film thus obtained as a negative electrode, a capacity of more than 90 OmAhZg and a depth of 100% discharge will result in more than 1,500 cycles. Service life was achieved. This is considered to be due to the use of the negative electrode 14 having a fine graphite structure such as a sponge to greatly improve the electrode area and the degree of graphitization being slightly disturbed. Here, except that the graphite thin film of the present invention was used for the negative electrode, This is the same as the lithium secondary battery of the example, in which a microporous polypropylene separator 107 is impregnated with an electrolytic solution and sandwiched between the positive electrode 103 and the electrolyte. Note that the same components as those of the lithium secondary battery shown in FIG. 16 are denoted by the same reference numerals, and description thereof is omitted.
また、 本発明のグラフアイ 卜膜は金属箔上に直接形成することができ、 結着剤 が不溶となり、 蓄電容量を向上することができる。 また、 製造が容易であり、 ま た畜電容量の向上もグラフアイ ト膜付き負極とセパレ一タ正極を単純に積層する だけで極めて容易に形成可能である。  Further, the graphite film of the present invention can be formed directly on a metal foil, the binder becomes insoluble, and the storage capacity can be improved. Further, the production is easy, and the storage capacity can be extremely easily formed by simply laminating the negative electrode with the graphite electrode and the separator positive electrode.
ちなみに従来は、 天然黒鉛と酸化第二銅と結着剤を混合して金属箔ゃ金属メッ シュ、 三次元多孔体等に塗布して乾燥、 熱処理後プレスして、 さらに減圧乾燥し て水分除去を行うことによって形成され、 製造工程が極めて複雑であるという問 題があった。 また、 結着材が 9 0 : 1より大きくなければ結着力が発揮されず黒 鉛などの脱落が発生するため、 結着材が必要不可欠であり、 結着材の体積分黒鉛 量が少なく、 蓄積容量を十分に大きくすることができないという問題があった。 これに対し、 本発明のリチウム二次電池によれば、 上述したような問題は解決 され、 小型で蓄積容量の大きい二次電池を得ることができる。 また本発明はこの ほか円筒型構造のリチウムニ次電池にも適用可能である。  Conventionally, natural graphite, cupric oxide, and a binder are mixed and applied to metal foil, metal mesh, three-dimensional porous material, etc., dried, heat-treated, pressed, and then dried under reduced pressure to remove moisture. And the manufacturing process is extremely complicated. In addition, if the binder is not larger than 90: 1, the binding force is not exerted and graphite or the like falls off. Therefore, the binder is indispensable, and the amount of graphite by volume of the binder is small. There is a problem that the storage capacity cannot be sufficiently increased. On the other hand, according to the lithium secondary battery of the present invention, the above-described problems are solved, and a small-sized secondary battery having a large storage capacity can be obtained. In addition, the present invention is also applicable to a lithium secondary battery having a cylindrical structure.
また図 1 3に示すように、 このグラフアイ 卜薄膜を電気二重層コンデンサの内 部電極 2 4として用いた場合にも大容量化を図ることが可能となる。 ここで 2 5 は微多孔性ポリプロピレン製セパレータであり、 2 6は電極である。  In addition, as shown in FIG. 13, when the graphite thin film is used as the internal electrode 24 of an electric double layer capacitor, it is possible to increase the capacity. Here, 25 is a microporous polypropylene separator, and 26 is an electrode.
ここで、 内部電極 2 4は直径 2 O mm、 厚さ 1 mmの銅板の表面に 流 量 5 0 0 s c c m、 C H .,流量 5 0 s c c m、 高周波出力 1 k w、 加熱温度 8 0 0 °Cの条件にて片面 1時間づっ厚さ 1 μ ηιの本発明のグラフアイ ト薄膜を形成し たものを用いた。 また (C 2 H ) , ? 8 ? ,の0 . 5 Mプロピレンカポネ一ト溶液 を電解液として微多孔性ポリプロピレン製セパレ一タを間に挟んだ電極板を 1 0 0層積層し、 交互に負極、 正極とする。 Here, the inner electrode 24 is placed on a copper plate having a diameter of 2 O mm and a thickness of 1 mm with a flow rate of 500 sccm, CH., A flow rate of 50 sccm, a high-frequency output of 1 kw, and a heating temperature of 800 ° C. Under the conditions, a graphite thin film of the present invention having a thickness of 1 μηι formed on one side for one hour was used. In addition, 100 layers of electrode plates sandwiching a microporous polypropylene separator are laminated using a 0.5 M propylene captone solution of (C 2 H),? 8? Negative electrode and positive electrode.
このようにして形成した電気二重層コンデンサに充電電圧を 3 Vにて充電を行 い容量密度を計測したところ 3 0〜4 O W h Z Lを得た。 また、 充放電サイクル を 1 0万回以上くり返し実施して容量密度の低下を測定したが 5 %以下の容量密 度低下しかなく、 極めて長寿命であった。 The electric double layer capacitor thus formed was charged at a charging voltage of 3 V, and the capacity density was measured. As a result, 30 to 4 OWh ZL was obtained. The charge / discharge cycle was repeated 100,000 times or more, and the decrease in capacity density was measured. It had a very long life with only a drop in temperature.
また、 その他、 本発明のグラフアイ ト薄膜は、 触媒担体として用いることによ り広大な接触面積を提供することができる。 図 1 4に示すように基体 3 1の表面 および裏面に平面薄膜部 3 2と起立薄膜部 3 3とからなるグラフアイ 卜薄膜 Gを 形成することにより、 極めて表面積の大きい触媒担体を構成することができる。 例えばこの触媒担体に、 L i 、 K、 H— H g、 K— F e C h、 B r H 2 S〇 F eをィンタ一力レ一シヨンして、 有機反応の触媒として使用した場合従来に比 ベて 1 0倍以上の速度で反応を進行することができた。 In addition, the graphite thin film of the present invention can provide a large contact area when used as a catalyst carrier. By forming a graphite thin film G composed of a flat thin film portion 32 and a standing thin film portion 33 on the front and back surfaces of the substrate 31 as shown in FIG. 14, a catalyst support having an extremely large surface area can be formed. Can be. For example, this catalyst carrier, L i, K, H- H g, K- F e C h, B r H 2 S_〇 F e to one force, single Chillon Inta the conventional case of using as a catalyst for organic reactions The reaction was able to proceed at a rate of 10 times or more as compared to
また、 本発明のグラフアイ ト薄膜は、 水素吸蔵材料としても有効である。 図 1 5に示すように、 所望の粒径のグラフアイ トからなる粒子 4 1の表面に平面薄膜 部 4 2と起立薄膜部 3とからなるグラフアイ ト薄膜 Gを形成することにより、 極 めて表面積の大きい水素吸蔵材料を構成することができる。 グラフアイ ト薄膜は、 カリウムにより層間化合物を形成することで、 水素吸蔵、 放出を繰り返すが、 本 発明のグラフアイ 卜薄膜を用いルことにより、 水素吸蔵、 放出速度が従来に比べ 1 0倍以上になった。 またサイクル寿命を 1 0 0 0 0サイクルに高めることがで きた。  Further, the graphite thin film of the present invention is also effective as a hydrogen storage material. As shown in FIG. 15, by forming a graphite thin film G composed of a flat thin film portion 42 and an upright thin film portion 3 on the surface of a particle 41 composed of graphite having a desired particle size, Thus, a hydrogen storage material having a large surface area can be formed. The graphite thin film repeatedly absorbs and releases hydrogen by forming an intercalation compound with potassium, but the use of the graphite thin film of the present invention results in a hydrogen absorption and desorption rate of 10 times or more as compared with the conventional one. Became. Also, the cycle life could be increased to 100,000 cycles.
さらにまた、 図 8で示した装置を用いたグラフアイ ト薄膜の形成に際し基板を モリブデンおよびシリコンとした場合にそれぞれ C H ,ガス流量と濃度とを変化さ せ、 グラフアイ ト膜を顕微鏡写真で判定した。 その結果、 本発明の良好なグラフ アイ ト薄膜が形成されるのは、 図 1 7に示す表のようにメタン濃度が所定量以上 である時であり、 またモリブデン基板を用いた場合の方がシリコン基板に比べて 良好な高比表面積グラフアイ ト薄膜を形成することができることがわかる。 ここ で高周波出力は 1 k w基板温度は 8 0 0 °Cとした。  In addition, when forming a graphite thin film using the apparatus shown in Fig. 8, when the substrate was made of molybdenum and silicon, the CH and gas flow rates and concentrations were changed respectively, and the graphite film was judged by a micrograph. did. As a result, a good graphite thin film of the present invention is formed when the methane concentration is equal to or higher than a predetermined amount as shown in the table of FIG. 17, and when a molybdenum substrate is used. It can be seen that a better high specific surface area graphite thin film can be formed than a silicon substrate. Here, the high-frequency output was 1 kw and the substrate temperature was 800 ° C.
産業上の利用可能性 Industrial applicability
以上説明してきたように、 本発明によれば、 表面積が極めて大きく、 黒鉛度の 高いグラフアイ ト薄膜を得ることができ、 これはリチウム二次電池の電極材料な ど種々の素子材料として極めて有効である。 また本発明の方法によれば極めて容 易に再現性良くグラフアイ 卜薄膜を得ることができる。  As described above, according to the present invention, a graphite thin film having an extremely large surface area and a high degree of graphiticity can be obtained, which is extremely effective as various element materials such as an electrode material for a lithium secondary battery. It is. According to the method of the present invention, a graphite thin film can be obtained very easily and with good reproducibility.

Claims

請求の範囲 The scope of the claims
1 . 平面薄膜部と、  1. Flat film part,
前記平面薄膜部に対し垂直方向に起立せしめられた起立薄膜部とから構成され たことを特徴とするグラフアイ ト薄膜。  A graphite thin film, comprising: an upright thin film portion that stands upright in a direction perpendicular to the planar thin film portion.
2 . 前記起立薄膜部は、 規則的に配列された多角形網面構造をもつことを特徴 とする請求の範囲第 1項記載のグラフアイ ト薄膜。  2. The graphite thin film according to claim 1, wherein the standing thin film portion has a regularly arranged polygonal network structure.
3 . 基体表面に形成されたグラフアイ ト薄膜において、  3. In the graphite thin film formed on the substrate surface,
前記基体表面を覆うように形成された平面薄膜部と、  A planar thin film portion formed so as to cover the substrate surface,
前記平面薄膜部に対して垂直方向に起立せしめられ、 規則的に配列された多角 形網面構造をもつ起立薄膜部と力 ら構成されたことを特徴とするグラフアイ 卜薄 膜。  A graphitic thin film comprising an upright thin film portion having a polygonal mesh surface structure and a force, which is erected in a direction perpendicular to the planar thin film portion, and a force.
4 . 原料ガスとして炭素を含む化合物ガスあるいは前記化合物ガスと水素また は不活性ガスとの混合ガスを、 プラズマ励起してガスプラズマを生成するブラズ マ生成工程と、  4. a plasma generation step of generating plasma by exciting a plasma of a compound gas containing carbon as a source gas or a mixed gas of the compound gas and hydrogen or an inert gas;
前記ガスプラズマを音速よりも大きい流速をもつように加速する工程と、 所望の温度に加熱せしめられ、 減圧下におかれた被処理基体表面に前記ガスブ ラズマを導き、 グラフアイ ト薄膜を形成するようにしたことを特徴とするプラズ マジヱット法を用いたグラフアイ ト薄膜の製造方法。  Accelerating the gas plasma to have a flow velocity greater than the speed of sound; heating the gas plasma to a desired temperature, guiding the gas plasma to the surface of the substrate to be processed under reduced pressure, and forming a graphite thin film A method for producing a graphite thin film using a plasm-jet method, characterized in that:
5 . 原料ガスとして、 C H .IとH 2との混合ガスを、 プラズマ励起してガスプ ラズマを生成するプラズマ生成工程と、 5. As the raw material gas, a mixed gas of CH. I and H 2, a plasma generating step of generating Gasupu plasma by plasma excitation,
前記ガスプラズマを音速よりも大きい流速をもつように加速する工程と、 所望の温度に加熱せしめられた被処理基体表面に前記ガスプラズマを導き、 平 面薄膜部と、 前記平面薄膜部に対して垂直方向に起立せしめられ、 規則的に配列 された多角形網面構造をもつ起立薄膜部とからなるグラフアイ 卜薄膜を形成する ようにしたことを特徴とするプラズマジヱット法を用いたグラフアイ ト薄膜の製 造方法。  Accelerating the gas plasma to have a flow velocity greater than the speed of sound; guiding the gas plasma to the surface of the substrate to be heated heated to a desired temperature; A graphit thin film using a plasma jet method characterized by forming a graphit thin film comprising a vertically thin, vertically arranged, thin film portion having a polygonal mesh surface structure arranged regularly. Manufacturing method.
6 . 基体表面に形成された第 1の電極と、 前記第 1の電極の上層に形成された ィオン伝導体材料と、 このィォン伝導体材料の上層に形成された第 2の電極とか ら構成され、 前記第 1の電極が、 平面薄膜部と、 前記平面薄膜部に対して垂直方向に起立せ しめられ、 規則的に配列された多角形網面構造をもつ起立薄膜部とからなるグラ ファイ ト薄膜で構成されていることを特徴とする二次電池。 6. Consists of a first electrode formed on the surface of the base, an ion conductive material formed on the first electrode, and a second electrode formed on the ion conductive material. , The first electrode is a graphite thin film comprising a flat thin film portion, and an upright thin film portion having a polygonal mesh structure, which is erected in a direction perpendicular to the flat thin film portion, and is regularly arranged. A secondary battery comprising:
7 . 電解液を含浸させたセパレータを挟んで多数の内部電極を形成した電気二 重層コンデンサにおいて、  7. In an electric double layer capacitor in which many internal electrodes are formed with a separator impregnated with electrolyte
前記内部電極が、 平面薄膜部と、 前記平面薄膜部に对して垂直方向に起立せし められ、 規則的に配列された多角形網面構造をもつ起立薄膜部とからなるグラフ アイ 卜薄膜で構成されていることを特徴とするコンデンサ。  The graph electrode thin film, wherein the internal electrode includes a flat thin film portion, and an upright thin film portion having a polygonal mesh structure that is vertically erected perpendicular to the flat thin film portion. A capacitor characterized by comprising:
PCT/JP1997/001845 1996-05-30 1997-05-30 Graphite thin film, method for manufacturing the same, and secondary battery and capacitor using the same WO1997045364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/136894 1996-05-30
JP13689496A JP3874208B2 (en) 1996-05-30 1996-05-30 Graphite thin film, method for producing graphite thin film, and secondary battery and capacitor using the same

Publications (1)

Publication Number Publication Date
WO1997045364A1 true WO1997045364A1 (en) 1997-12-04

Family

ID=15186049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001845 WO1997045364A1 (en) 1996-05-30 1997-05-30 Graphite thin film, method for manufacturing the same, and secondary battery and capacitor using the same

Country Status (2)

Country Link
JP (1) JP3874208B2 (en)
WO (1) WO1997045364A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379470B1 (en) * 2000-07-18 2003-04-10 엘지전자 주식회사 Method for developing carbon nanotube horizontally
JP2002146533A (en) * 2000-11-06 2002-05-22 Mitsubishi Electric Corp Carbon thin body, method for forming carbon thin body, and field-emission-type electron source
JPWO2005006469A1 (en) * 2003-07-15 2007-09-20 伊藤忠商事株式会社 Current collecting structure and electrode structure
JP4400141B2 (en) * 2003-08-13 2010-01-20 株式会社Ihi Method for manufacturing charge supply device
JP5900039B2 (en) * 2012-03-08 2016-04-06 富士通株式会社 Method for producing structure containing thin film graphite, and electric component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275019A (en) * 1993-01-21 1994-09-30 Hitachi Ltd Output rate conversion function incorporated disk reproducing device and its integrated circuit
JPH07118627A (en) * 1993-09-06 1995-05-09 Nippon Pillar Packing Co Ltd Sheet for gasket and its production
JPH07165470A (en) * 1993-12-14 1995-06-27 Nippon Pillar Packing Co Ltd Sealing material made of expanded graphite, its production and sheet for gasket
JPH08203503A (en) * 1995-01-26 1996-08-09 Matsushita Electric Ind Co Ltd Graphite electrode material and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275019A (en) * 1993-01-21 1994-09-30 Hitachi Ltd Output rate conversion function incorporated disk reproducing device and its integrated circuit
JPH07118627A (en) * 1993-09-06 1995-05-09 Nippon Pillar Packing Co Ltd Sheet for gasket and its production
JPH07165470A (en) * 1993-12-14 1995-06-27 Nippon Pillar Packing Co Ltd Sealing material made of expanded graphite, its production and sheet for gasket
JPH08203503A (en) * 1995-01-26 1996-08-09 Matsushita Electric Ind Co Ltd Graphite electrode material and its manufacture

Also Published As

Publication number Publication date
JPH09315808A (en) 1997-12-09
JP3874208B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
US9774033B2 (en) Process for producing silicon nanowires directly from silicon particles
CN100423327C (en) Negative pole for lithium ion secondary battery and producing method thereof
US9960225B2 (en) Manufacturing method of power storage device
JP5885940B2 (en) Method for manufacturing power storage device
TW201203668A (en) Power storage device and method for manufacturing the same
JP2004214162A (en) Lithium ion secondary battery
TW201212358A (en) Power storage device and method for manufacturing the same
KR20120062935A (en) Negative electrode for lithium secondary battery, method for preparing the negative electrode, lithium secondary battery having the negative electrode, and vehicle having the lithium secondary battery
TW201244235A (en) Electrical appliance
WO2011080901A1 (en) Positive electrode for a nonaqueous-electrolyte secondary battery and nonaqueous-electrolyte secondary battery using said positive electrode
Qin et al. Binder‐free nanoparticulate coating of a polyethylene separator via a reactive atmospheric pressure plasma for lithium‐ion batteries with improved performances
US20200071820A1 (en) Direct liquid injection system for thin film deposition
JP4206058B2 (en) Method for producing catalyst layer for fuel cell
JP2007194354A (en) Polarizable electrode, and electric double layer capacitor comprising same
CN110957475B (en) Lithium ion battery and material and method for manufacturing same
JP3874208B2 (en) Graphite thin film, method for producing graphite thin film, and secondary battery and capacitor using the same
JPS58163157A (en) Metal oxide-hydrogen cell
US8821601B2 (en) Hydrogen generating element, hydrogen generation device, power generation device, and driving device
WO2022259870A1 (en) Metal substrate for carbon nanowall growth, metal substrate equipped with carbon nanowalls, and production methods therefor
JP2022187895A (en) Negative electrode of lithium-ion secondary battery, method for manufacturing the same and manufacturing apparatus, and lithium-ion secondary battery
JP2012195086A (en) Electrode active material, and positive electrode for secondary battery equipped with the same, as well as secondary battery
JP2009088394A (en) Structure and electrode, and their manufacturing method
JPS60212958A (en) Hydrogen absorption electrode
JP2003290653A (en) Fine reaction part constitution body and manufacture method therefor
JPH04179064A (en) Activation processing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase