JPH0340647B2 - - Google Patents

Info

Publication number
JPH0340647B2
JPH0340647B2 JP60100284A JP10028485A JPH0340647B2 JP H0340647 B2 JPH0340647 B2 JP H0340647B2 JP 60100284 A JP60100284 A JP 60100284A JP 10028485 A JP10028485 A JP 10028485A JP H0340647 B2 JPH0340647 B2 JP H0340647B2
Authority
JP
Japan
Prior art keywords
billet
aluminum alloy
pressure
wear
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60100284A
Other languages
Japanese (ja)
Other versions
JPS61259830A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10028485A priority Critical patent/JPS61259830A/en
Publication of JPS61259830A publication Critical patent/JPS61259830A/en
Publication of JPH0340647B2 publication Critical patent/JPH0340647B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、耐摩耗部品としての例えば内燃機
内のピストン、シリンダー、コンプレツサ・ベー
ン等に使用される耐摩耗性アルミニウム合金、特
にAl−Cu系合金をベースとして切削性を改善し
た耐摩耗性アルミニウム合金押出材に関する。 定 義 なお、この明細書において、「%」はいずれも
重量%を示すものである。 従来の技術 従来、耐摩耗部品用のアルミニウム合金展伸材
の代表的なものとしては、A4000番系のAl−Si系
合金が良く知られている。 発明が解決しようとする問題点 ところが、概してAl−Si系の耐摩耗性アルミ
ニウム合金は、マトリツクス中に分布する初晶及
び共晶のSi粒子がいずれも硬質粒子であるため切
削性、特に切削工具寿命の保持性に劣るという欠
点があつた。即ち、耐摩耗部品は、多くの場合最
終加工として切削加工が行われるが、この切削に
際して切削工具の摩耗が激しく、その頻繁な取替
えに多大の時間を要するのみならず、高速切削が
困難であり、しかも工具1個当りの被加工部品数
が少ないものとなるため、結果的にコスト高につ
き、使用される用途が限定されるというような問
題があつた。 問題点を解決するための手段 この発明は、上記のような問題点を解決するた
め、それ自体切削性の比較的良好な高力合金であ
るAl−Cu系合金をベースに用い、かつ耐摩耗性
の向上元素として従来用いられていたSiに代え
て、Mn、Cr、Niのうちの少なくとも1種以上を
添加してAl−Mn、Al−Cr等の金属間化合物を分
布せしめることにより、切削性を良好に保ちつつ
所要の耐摩耗性を付与すると共に、それらの金属
間化合物を、高圧凝固法を用いて作製したビレツ
トから押出加工を行うものとすることによつて均
一かつ微細に分布せしめるようにしたものであ
る。そしてそれにより機械的性質の均質な耐摩耗
性、切削性に優れたアルミニウム合金の提供を図
るものである。 即ち、この発明は、 Cu;2〜10%を含有し、かつ Cr;0.5〜20%、 Mn;1%を超え20%以下、 Ni;0.5〜20%のうちの1種または2種 以上を含有し、更に必要に応じて Mg;0.2〜1.8%、 Si;0.2%以上4%未満の1種または2種を含
有し、残部アルミニウム及び不可避不純物からな
るアルミニウム合金押出材を溶解し、その溶湯
を、300〜350℃に予熱した加圧凝固用金型に注湯
して300Kgf/cm2以上の高圧下に加圧凝固せしめ
ることによりビレツトに作製したのち、該ビレツ
トを押出加工することを特徴とする切削性に優れ
た耐摩耗性アルミニウム合金押出材の製造法を要
旨とするものである。 先ず、上記合金成分の限定理由について説明す
ると次のとおりである。 必須成分としてのCuは、既知のとおり主とし
て合金の強度向上に寄与するものであり、2%未
満では強度に不十分なものとなり、10%をこえる
とAl、Cu系晶出物が多く発生し、かえつて強度
の低下を招く。好適には4〜8%程度の含有量に
設定するのが良い。 Cr、Mn、Niは従のAl−Si系合金のSiに代わる
耐摩耗性の向上元素として有効に作用するもので
あり、この作用の上から本発明においては相互に
実質的に均等物として評価されるものである。こ
れらの含有量について、一般的にいえることは、
Cuの含有量との相対関係において、Cu量が少な
い場合にはCr、Mn、Niを多くするように配慮す
ることが望ましい。しかしながら、Crにおいて
0.5%未満、Mnにおいて1%以下、Niの場合に
おいて0.5%未満とそれらが少なすぎる場合には、
所期する良好な耐摩耗性を得ることができない。
逆に、いずれも上限値の20%をこえるこきは、そ
れらの粗大な金属間化合物の発生により押出性が
悪くなり著しくは押出しが困難になる。 任意的な含有成分として必要に応じて添加され
るMg、Siは、いずれも合金の強度向上に寄与す
るものであり、いずれも下限値とする0.2%未満
の場合にはその添加効果に充分でなく、逆に
Mg;1.8%超過、Si;4%以上のときは、かえつ
て強度の低下を招くと共に、切削性の低下、殊に
切削工具寿命の劣化を招く。 次に、製造工程について説明する。この発明は
展伸材としてのアルミニウム合金押出材の製造に
関して、その押出用ビレツトの作製に特に加圧凝
固法を採用し、Al−Mn、Al−Cr、Al−Ni等の
金属間化合物の微細化とその分布の均一性を向上
する。即ち、上記アルミニウム合金を溶解し、そ
の溶湯を加圧凝固用金型内に注湯して加圧凝固せ
しめることにより、欠陥のない結晶粒の均一かつ
微細なビレツトの作製を行うものである。加圧凝
固用金型は、これに押出機のコンテナを利用する
ものとしてもよい。即ち、アルミニウム合金溶湯
を直接該コンテナに注入し、ステム加圧しつつ凝
固させるものとしても良い。もちろん、この場
合、上記コンテナの前面は盲ダイスを付設して塞
ぎ、加圧凝固中の溶湯の噴き出しを防ぐものとす
ることが必要である。 また、上記の注湯に際しては、前記金型を予め
300〜350℃に加熱しておくものとする。これによ
りビレツトに一層微細な組織を得ることを可能に
する。即ち、300℃程度未満であると、注湯後前
記アルミニウムの凝固がすぐに開始してしまい、
加圧凝固による効果が充分に達成され難い。一方
350℃をこえる高温に加熱しておくと、冷却速度
が遅くなり、晶出物が成長して上記微細化効果を
充分に達成し難いものとなる。 注湯後、すぐさま前記金型内の溶湯を加圧ピス
トンにより加圧し、凝固を進行せしめることによ
つてビレツトを作製する。即ち、加圧凝固法によ
つてビレツトを作製する。この際の加圧力は十分
な加圧凝固の効果を得るためには少なくとも300
Kgf/cm2以上に設定することが必要であり、好ま
しくは500〜1000Kgf/cm2程度とするのが良い。
このように、所定の加圧状態下においてアルミニ
ウム合金を凝固させることにより、鋳造割れを生
じさせることなく、かつ晶出物の小さなビレツト
を作製しうる。従つて、従来の鋳造法によつてビ
レツトを作製する場合、組織の均一化と微細化を
はかるために必要とした爾後の加熱均質化処理を
省略することが可能となり、そのための熱エネル
ギー及び処理時間の節約を達成しうる。上記加圧
力の大小は、ビレツトの品質にさして大きな影響
を与えるものではない。しかしながら300Kgf/
cm2未満では、加圧凝固法による鋳造割れ防止及び
結晶粒の微細化効果に不十分であり、反面例えば
1500Kgf/cm2をこえるような高圧を付加しても、
それに要するエネルギーの増大に見合う効果の比
例的向上を見ることができないためむしろ無益で
ある。なお、加圧凝固により、晶出物の微細化を
はかりうる理由は、加圧により金型と溶湯の間及
び溶湯内の空〓が消減し、冷却速度が増大するこ
とが1つの要因になつているものと推測される。 上記の加圧凝固法により作製したビレツトは、
次にこれを押出加工して所期する高強度アルミニ
ウム合金材とする。ここに、ビレツトは一旦冷却
された固相状態のものを用いても良いが、好まし
くは前記加圧凝固の進行により、ビレツトの温度
が伸出加工に適する温度、例えば液相温度の約
1/2程度にまで低下し半溶融状態となつた時点
で、加圧凝固工程を終了し、すぐさまそのまま押
出機のコンテナに装填して押出しを開始するもの
となすことが推奨される。このような手順を採用
することにより、押出加工に際してのビレツトの
加熱工程を省くことが可能となり、その加熱に要
するエネルギー及び時間を節約し、合金押出材の
製造能率の向上及び製造コストの低減の利益を享
受しうる。 発明の効果 この発明は上述のように、組成面において、強
化元素としてCuを含有するAl−Cu系合金をベー
スにしながら、耐摩耗性向上元素としてCr、
Mn、Niのうちの少なくとも1種を所定量含有し
ているものであるから、従来のAl−Si系耐摩耗
性合金に較べて遜色のない耐摩耗性を保有しなが
ら、硬質のSi粒子を含む上記従来合金に較べて切
削性、特に切削工具寿命性の優れたものとするこ
とができる。かつ製造工程面では、上記組成のア
ルミニウム合金の溶湯を、300〜350℃に予熱した
加圧凝固用金型に注湯し300Kgf/cm2以上の高圧
凝固法によりビレツトの作製を行い、然る後該ビ
レツトの押出加工を行うものとしている。従つ
て、鋳造法では得られない均一で微細な組織の合
金材料を得ることができ、愈々機械的性質、耐摩
耗性、切削性の均一で安定した材料を得ることが
できる。従つて、この発明によつて得られる合金
押出材は、高速切削性が可能であること、切削工
具寿命が増大されることが相俟つて、耐摩耗部品
の加工歩留りの向上、製造コストの低減をはかり
うる。 実施例 実施例 1 次にこの発明の実施例を比較例とともに示す。
Industrial Application Field This invention improves machinability based on wear-resistant aluminum alloys, especially Al-Cu alloys, used for wear-resistant parts such as pistons, cylinders, compressor vanes, etc. in internal combustion engines. Concerning wear-resistant aluminum alloy extrusions. Definition In this specification, all "%" indicates weight %. BACKGROUND ART Conventionally, A4000 series Al-Si alloys are well known as a typical wrought aluminum alloy material for wear-resistant parts. Problems to be Solved by the Invention However, in general, Al-Si based wear-resistant aluminum alloys have poor machinability, especially cutting tools, because the primary and eutectic Si particles distributed in the matrix are both hard particles. The drawback was that it had poor longevity. In other words, wear-resistant parts are often subjected to cutting as the final process, but this cutting causes severe wear on cutting tools, which not only requires a great deal of time to replace frequently, but also makes high-speed cutting difficult. Moreover, the number of parts to be machined per tool is small, resulting in high costs and limited applications. Means for Solving the Problems In order to solve the above problems, the present invention uses an Al-Cu alloy as a base, which is a high-strength alloy with relatively good machinability, and has wear resistance. By adding at least one of Mn, Cr, and Ni to distribute intermetallic compounds such as Al-Mn and Al-Cr in place of Si, which has traditionally been used as an element to improve cutting properties, cutting In addition to imparting the required wear resistance while maintaining good properties, these intermetallic compounds are distributed uniformly and finely by extrusion processing from a billet made using a high-pressure coagulation method. This is how it was done. Thereby, the present invention aims to provide an aluminum alloy with uniform mechanical properties and excellent wear resistance and machinability. That is, this invention contains Cu; 2 to 10%, and one or more of the following: Cr; 0.5 to 20%; Mn; more than 1% to 20%; and Ni; 0.5 to 20%. and, if necessary, one or two of Mg; 0.2 to 1.8%, Si; 0.2% to less than 4%, and the balance consists of aluminum and inevitable impurities, and the molten metal is melted. is poured into a pressure solidification mold preheated to 300 to 350°C and solidified under high pressure of 300 kgf/cm 2 or more to form a billet, and then the billet is extruded. The gist of this paper is a method for producing wear-resistant aluminum alloy extrusions with excellent machinability. First, the reasons for limiting the alloy components are as follows. As is known, Cu as an essential component mainly contributes to improving the strength of the alloy, and if it is less than 2%, the strength will be insufficient, and if it exceeds 10%, a large amount of Al and Cu crystals will occur. , which actually leads to a decrease in strength. The content is preferably set to about 4 to 8%. Cr, Mn, and Ni act effectively as elements that improve wear resistance in place of Si in conventional Al-Si alloys, and based on this effect, they are evaluated as substantially equivalent to each other in the present invention. It is something that will be done. Regarding these contents, the following can be said in general:
In relation to the Cu content, if the Cu content is small, it is desirable to increase Cr, Mn, and Ni. However, in Cr
If they are too small, less than 0.5%, less than 1% for Mn, less than 0.5% for Ni,
The desired good wear resistance cannot be obtained.
On the other hand, if the amount exceeds 20% of the upper limit, the extrudability deteriorates due to the generation of coarse intermetallic compounds, making it extremely difficult to extrude. Mg and Si, which are added as optional ingredients as needed, both contribute to improving the strength of the alloy, and if they are less than the lower limit of 0.2%, the addition effect is sufficient. Not, on the contrary
When Mg exceeds 1.8% and Si exceeds 4%, the strength deteriorates and the machinability deteriorates, especially the life of the cutting tool. Next, the manufacturing process will be explained. This invention relates to the production of extruded aluminum alloy material as a wrought material, in which a pressure solidification method is particularly used to prepare billets for extrusion, and fine particles of intermetallic compounds such as Al-Mn, Al-Cr, and Al-Ni are produced. and improve the uniformity of its distribution. That is, by melting the above aluminum alloy, pouring the molten metal into a pressure solidification mold, and solidifying it under pressure, a billet with uniform and fine crystal grains free of defects is produced. The pressurized solidification mold may utilize a container of an extruder. That is, the molten aluminum alloy may be directly poured into the container and solidified while being pressurized by the stem. Of course, in this case, it is necessary to close the front surface of the container with a blind die to prevent the molten metal from spouting out during pressurized solidification. In addition, when pouring the metal, prepare the mold in advance.
It shall be heated to 300-350℃. This makes it possible to obtain a finer texture in the billet. That is, if the temperature is less than about 300°C, solidification of the aluminum will start immediately after pouring,
It is difficult to fully achieve the effect of pressure coagulation. on the other hand
If it is heated to a high temperature exceeding 350° C., the cooling rate will be slow and crystallized substances will grow, making it difficult to achieve the above-mentioned fineness effect sufficiently. Immediately after pouring, the molten metal in the mold is pressurized by a pressurizing piston to advance solidification, thereby producing a billet. That is, a billet is produced by a pressure coagulation method. The pressure at this time must be at least 300 to obtain a sufficient pressure coagulation effect.
It is necessary to set it to Kgf/cm 2 or more, preferably about 500 to 1000 Kgf/cm 2 .
In this way, by solidifying the aluminum alloy under a predetermined pressurized state, a small billet of crystallized material can be produced without causing casting cracks. Therefore, when billets are produced by conventional casting methods, it is possible to omit the subsequent heating homogenization treatment required to homogenize and refine the structure, and the thermal energy and treatment required for this purpose can be omitted. Time savings can be achieved. The magnitude of the above-mentioned pressing force does not have a great effect on the quality of the billet. However, 300Kgf/
If it is less than cm 2 , the effect of preventing casting cracks and refining crystal grains by the pressure solidification method is insufficient; on the other hand, for example,
Even if high pressure exceeding 1500Kgf/ cm2 is applied,
It is rather useless because it is not possible to see a proportional increase in effectiveness commensurate with the increase in energy required. One of the reasons why the crystallized material can be made finer by pressure solidification is that the pressure eliminates the voids between the mold and the molten metal and within the molten metal, increasing the cooling rate. It is assumed that The billet made by the above pressure coagulation method is
Next, this is extruded into the desired high-strength aluminum alloy material. Here, the billet may be used in a solid state that has been cooled once, but preferably, as the pressure solidification progresses, the temperature of the billet becomes a temperature suitable for stretching processing, for example, about 1/1/2 of the liquid phase temperature. It is recommended that the pressure solidification step be completed when the temperature has decreased to about 2.2°C and the melt has reached a semi-molten state, and that the extruder container be immediately loaded into the extruder container and extrusion be started. By adopting such a procedure, it is possible to omit the billet heating step during extrusion processing, saving the energy and time required for heating, improving the manufacturing efficiency of alloy extrusions, and reducing manufacturing costs. can enjoy benefits. Effects of the Invention As described above, this invention is based on an Al-Cu alloy containing Cu as a reinforcing element, and also contains Cr as an element for improving wear resistance.
Because it contains a predetermined amount of at least one of Mn and Ni, it has wear resistance that is comparable to that of conventional Al-Si wear-resistant alloys, while also containing hard Si particles. Compared to the above-mentioned conventional alloys, the cutting properties, especially the life of the cutting tool, can be improved. In terms of the manufacturing process, the molten aluminum alloy having the above composition is poured into a pressurized solidification mold preheated to 300 to 350°C, and a billet is produced using a high pressure solidification method of 300 kgf/cm 2 or more. After that, the billet is extruded. Therefore, it is possible to obtain an alloy material with a uniform and fine structure that cannot be obtained by the casting method, and it is possible to obtain a material with uniform and stable mechanical properties, wear resistance, and machinability. Therefore, the alloy extruded material obtained by the present invention is capable of high-speed machining and has an increased cutting tool life, thereby improving the machining yield of wear-resistant parts and reducing manufacturing costs. can be measured. Examples Example 1 Next, examples of the present invention will be shown together with comparative examples.

【表】【table】

【表】 上記第1表に示す各種化学組成の合金を液相温
度100℃に溶解し、その溶湯を約320℃に加熱した
加圧凝固用金型に注湯したのち、すぐさまこれを
1000Kgf/cm2に加圧し、該加圧下に凝固させた。
そして、およそ液相温度の2/1程度の温度にま
で冷却したとき、加圧凝固工程を終了し、得られ
た半溶融状態のビレツト(直径75mm、長さ100mm)
をすぐさま押出機のコンテナーに装入し、直径12
mmの丸棒に押出した。この押出しは、いずれのビ
レツトについても何ら支障なく良好に行い得るも
のであつた。 そこで次いで、この押出材を460℃で溶体化処
理し、更に120℃×24時間の時効処理を施したの
ち、得られた各試料について、耐摩耗性と、切削
工具の摩耗性とを調べた。結果を第2表に示す。 なお、耐摩耗性試験は、大越式耐摩耗試験機
(乾式)を用い、相手機:FC−30、耐摩速度
2m/secの条件で実施した。 また、切削工具耐摩耗性試験は、前すくい角:
0℃、横すくい角:10゜、前逃げ角:7゜横逃げ
角:7、前切刃角:8°、横切刃角:0゜、ノーズ半
径:0゜の刃先諸元を有する高速度硬バイト
(SKH−4)を使用し、自動切削機にて、切削速
度:322m/sec、送り速度:0.2mm/rev、切削距
離:564mの切削条件で各試料の切削を行つたの
ちのバイトの逃げ面の摩耗幅を測定することによ
つて行つた。
[Table] Alloys with various chemical compositions shown in Table 1 above are melted to a liquidus temperature of 100°C, and the molten metal is poured into a pressurized solidification mold heated to approximately 320°C.
It was pressurized to 1000 Kgf/cm 2 and solidified under the applied pressure.
When the billet is cooled to about 2/1 of the liquidus temperature, the pressure solidification process is completed and the resulting semi-molten billet (diameter 75 mm, length 100 mm) is obtained.
Immediately charge the container of the extruder to a diameter of 12
It was extruded into a mm round bar. This extrusion could be carried out satisfactorily for all billets without any problems. Therefore, this extruded material was then solution-treated at 460°C and further subjected to aging treatment at 120°C for 24 hours, and the wear resistance and abrasion resistance of cutting tools were investigated for each sample obtained. . The results are shown in Table 2. The abrasion resistance test was conducted using an Okoshi type abrasion tester (dry type), with a mating machine: FC-30, abrasion resistance speed
It was carried out under the condition of 2m/sec. In addition, the cutting tool wear resistance test was conducted at the front rake angle:
High cutting edge specifications of 0°, side rake angle: 10°, front relief angle: 7°, side relief angle: 7, front cutting edge angle: 8°, side cutting edge angle: 0°, nose radius: 0°. The bite after cutting each sample using a speed hard cutting tool (SKH-4) with an automatic cutting machine under the following cutting conditions: cutting speed: 322 m/sec, feed rate: 0.2 mm/rev, cutting distance: 564 m. This was done by measuring the wear width of the flank surface.

【表】 上記第2表の結果に示されるように、この発明
によつて製造されたアルミニウム合金押出材は、
比較例として示した従来のAl−Si系合金に較べ
て、何ら遜色のない耐摩耗性を示しながら、切削
工具の摩耗量を著しく減少し、該工具の耐用寿命
を大幅に向上しうるものである。 実施例 2 加圧凝固用金型の温度を300〜350℃に予熱して
おくことになる機械的性質の改善効果を確認する
ため、次のような試験を行つた。即ち、下記第3
表の組成のアルミニウム合金を用いて、本発明試
料と比較試料の2種類のアルミニウム合金押出材
を製造した。
[Table] As shown in the results in Table 2 above, the aluminum alloy extruded material produced according to the present invention is
Compared to the conventional Al-Si alloy shown as a comparative example, it exhibits comparable wear resistance, while significantly reducing the amount of wear on cutting tools and significantly improving the useful life of the tools. be. Example 2 In order to confirm the effect of improving mechanical properties by preheating the temperature of the pressurized solidification mold to 300 to 350°C, the following test was conducted. That is, the following third
Two types of aluminum alloy extruded materials, an inventive sample and a comparative sample, were manufactured using aluminum alloys having the compositions shown in the table.

【表】 (本発明試料) 第3表のAl合金を用い、加圧凝固用金型の温
度を340℃とした以外は実施例1と同様にして直
径12mmの丸棒状押出材からなる試料を得た。 (比較試料1) 第3表のAl合金を用い、加圧凝固用金型の温
度を280℃とした以外は実施例1と同様にして直
径12mmの丸棒状押出材からなる試料を得た。 (比較試料2) 第3表のAl合金を用い、加圧凝固用金型の温
度を370℃とした以外は実施例1と同様にして直
径12mmの丸棒状押出材からなる試料を得た。 上記の本発明試料と比較試料1、2につきそれ
らの機械的性質を調べたところ、下記第4表のと
おりであつた。
[Table] (Sample of the present invention) A sample consisting of a round bar-shaped extruded material with a diameter of 12 mm was prepared in the same manner as in Example 1, except that the Al alloy shown in Table 3 was used and the temperature of the pressure solidification mold was 340°C. Obtained. (Comparative Sample 1) A sample consisting of a round bar-shaped extruded material with a diameter of 12 mm was obtained in the same manner as in Example 1, except that the Al alloy shown in Table 3 was used and the temperature of the pressure solidification mold was 280°C. (Comparative Sample 2) A sample consisting of a round bar-shaped extruded material with a diameter of 12 mm was obtained in the same manner as in Example 1, except that the Al alloy shown in Table 3 was used and the temperature of the pressure solidification mold was 370°C. The mechanical properties of the above-mentioned samples of the present invention and comparative samples 1 and 2 were investigated, and the results were as shown in Table 4 below.

【表】 上記第4表の結果からわかるように、本発明試
料は加圧凝固用金型を300〜350℃の温度に予熱し
ておくことにより、上記予熱温度を逸脱する比較
試料の押出材に較べ、機械的性質において優れた
ものであることが確認された。 実施例 3 ビレツトの作製を高圧加圧凝固法を用いて行う
ことによる押出材の機械的性質の改善効果を確認
するため、上記第3表の合金組成のAl合金を用
いて、本発明試料と比較試料の2種類のアルミニ
ウム合金押出材を製造した。 (本発明試料) 第3表のAl合金を用い、ビレツト鋳造時の加
圧力を1300Kgf/cm2とした以外は実施例1と同様
にして直径12mmの丸棒状押出材からなる試料を得
た。 (比較試料) 第3表のAl合金溶湯を、金型鋳造法により、
加圧力を加えることなく凝固させてビレツトを作
製し、以降実施例1に準じて直径12mmの丸棒状押
出材からなる試料を得た。 そして、本発明試料と比較試料につき、それら
の機械的性質を調べたところ、下記第5表のとお
りであつた。
[Table] As can be seen from the results in Table 4 above, by preheating the pressurized solidification mold to a temperature of 300 to 350°C, the extruded material of the comparative sample deviates from the preheating temperature. It was confirmed that the mechanical properties were superior compared to the above. Example 3 In order to confirm the effect of improving the mechanical properties of the extruded material by producing billets using the high-pressure solidification method, samples of the present invention and the aluminum alloy having the alloy composition shown in Table 3 above were used. Two types of aluminum alloy extrusions were manufactured as comparative samples. (Sample of the present invention) A sample consisting of a round rod-shaped extruded material having a diameter of 12 mm was obtained in the same manner as in Example 1, except that the Al alloy shown in Table 3 was used and the pressing force during billet casting was 1300 Kgf/cm 2 . (Comparative sample) The Al alloy molten metal shown in Table 3 was molded using the die casting method.
A billet was produced by solidifying without applying any pressure, and then a sample consisting of a round bar-shaped extruded material with a diameter of 12 mm was obtained according to Example 1. The mechanical properties of the inventive sample and the comparative sample were investigated and were as shown in Table 5 below.

【表】 上記第5表の結果から、本発明試料は、ビレツ
トを高圧加圧凝固法で鋳造していることに基き、
無加圧金型鋳造によりビレツトを作製した比較試
料の押出材に較べ、機械的性質において顕著に優
れたものであることがわかる。
[Table] From the results in Table 5 above, it can be seen that the samples of the present invention are based on the fact that the billet is cast by the high-pressure solidification method.
It can be seen that the mechanical properties of this material are significantly superior to that of the comparative extruded material whose billet was produced by pressureless die casting.

Claims (1)

【特許請求の範囲】 1 Cu;2〜10%を含有し、かつ Cr;O.5〜20%、 Mn;1%を超え20%以下、 Ni;0.5〜20%のうちの1種または2種以上
を含有し、残部アルミニウム及び不可避不純物
からなるアルミニウム合金押出材を溶解し、そ
の溶湯を、300〜350℃に予熱した加圧凝固用金
型に注湯して300Kgf/cm2以上の高圧下に加圧
凝固せしめることによりビレツトに作製したの
ち、該ビレツトを押出加工することを特徴とす
る切削性に優れた耐摩耗性アルミニウム合金押
出材の製造法。 2 Cu;2〜10%を含有し、かつ Cr;0.5〜20%、 Mn;1%を超え20%以下、 Ni;0.5〜20%のうちの1種または2種以上
を含有し、更に Mg;0.2〜1.8%、 Si;0.2%以上4%未満の1種または2種を
含有し、残部アルミニウム及び不可避不銃物か
らなるアルミニウム合金押出材を溶解し、その
溶湯を、300〜350℃に予熱した加圧凝固用金型
に注湯して300Kgf/cm2以上の高圧下に加圧凝
固せしめることによりビレツトに作製したの
ち、該ビレツトを押出加工することを特徴とす
る切削性に優れた耐摩耗性アルミニウム合金押
出材の製造法。
[Claims] 1 Cu: 2 to 10%, Cr: O.5 to 20%, Mn: more than 1% to 20%, Ni: 0.5 to 20% or two. An extruded aluminum alloy containing at least 100% of aluminum and the remainder consisting of aluminum and unavoidable impurities is melted, and the molten metal is poured into a pressurized solidification mold preheated to 300 to 350°C and heated to a high pressure of 300Kgf/cm 2 or more. 1. A method for producing a wear-resistant aluminum alloy extruded material with excellent machinability, which comprises producing a billet by solidifying it under pressure, and then extruding the billet. 2 Contains Cu; 2 to 10%, and one or more of the following: Cr; 0.5 to 20%; Mn; more than 1% to 20%; Ni; 0.5 to 20%; and further Mg ; 0.2 to 1.8%, Si; 0.2% to less than 4%, an aluminum alloy extruded material containing 0.2% to 4%, the balance consisting of aluminum and unavoidable non-gun materials, is melted, and the molten metal is heated to 300 to 350°C. A billet with excellent machinability characterized by forming a billet by pouring it into a preheated pressure solidification mold and solidifying it under high pressure of 300 kgf/cm 2 or more, and then extruding the billet. Method for manufacturing wear-resistant aluminum alloy extrusions.
JP10028485A 1985-05-10 1985-05-10 Production of wear resistant aluminum alloy extrudate having excellent machineability Granted JPS61259830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10028485A JPS61259830A (en) 1985-05-10 1985-05-10 Production of wear resistant aluminum alloy extrudate having excellent machineability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10028485A JPS61259830A (en) 1985-05-10 1985-05-10 Production of wear resistant aluminum alloy extrudate having excellent machineability

Publications (2)

Publication Number Publication Date
JPS61259830A JPS61259830A (en) 1986-11-18
JPH0340647B2 true JPH0340647B2 (en) 1991-06-19

Family

ID=14269890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10028485A Granted JPS61259830A (en) 1985-05-10 1985-05-10 Production of wear resistant aluminum alloy extrudate having excellent machineability

Country Status (1)

Country Link
JP (1) JPS61259830A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222040A (en) * 1986-03-24 1987-09-30 Mitsubishi Alum Co Ltd Aluminum alloy excellent in wear resistance and cold forgeability
JPS6442550A (en) * 1987-08-07 1989-02-14 Mitsubishi Aluminium Aluminum alloy having excellent wear-resistance, machinability and cold forgeability
JPH01247550A (en) * 1988-03-29 1989-10-03 Ryobi Ltd High strength aluminum alloy for die casting
JPH01272741A (en) * 1988-04-25 1989-10-31 Showa Alum Corp Aluminum alloy having excellent wear resistance and machinability
JPH0717973B2 (en) * 1988-10-31 1995-03-01 本田技研工業株式会社 Method for casting silicon carbide reinforced aluminum alloy composite member
JPH02149631A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114635A (en) * 1981-01-07 1982-07-16 Mitsubishi Keikinzoku Kogyo Kk Aluminum alloy with superior machinability and wear resistance
JPS59157236A (en) * 1983-02-23 1984-09-06 Showa Alum Corp Production of fiber reinforced aluminum product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114635A (en) * 1981-01-07 1982-07-16 Mitsubishi Keikinzoku Kogyo Kk Aluminum alloy with superior machinability and wear resistance
JPS59157236A (en) * 1983-02-23 1984-09-06 Showa Alum Corp Production of fiber reinforced aluminum product

Also Published As

Publication number Publication date
JPS61259830A (en) 1986-11-18

Similar Documents

Publication Publication Date Title
JP3415987B2 (en) Molding method of heat-resistant magnesium alloy molded member
RU2463371C2 (en) Magnesium-containing high-silica aluminium alloys used as structural materials and method of their manufacturing
CN109385542B (en) Preparation method of aluminum-niobium-boron alloy rod for grain refinement
KR20090046868A (en) Process for production of aluminum alloy formings, aluminum alloy formings and production system
FR2788788A1 (en) Eutectic or hypereutectic aluminum-silicon alloy product for semisolid forming in forging and pressure injection operations
EP0302623A1 (en) Improvements in and relating to the preparation of alloys for extrusion
DE3344450A1 (en) ENGINE FASTENERS BASED ON ALUMINUM ALLOYS AND INTERMETALLIC COMPOUNDS AND METHOD FOR THE PRODUCTION THEREOF
CN114231802A (en) Rare earth aluminum alloy bar for forging aluminum alloy hub and preparation method thereof
JP3552577B2 (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same
JPH0340647B2 (en)
EP1680246B1 (en) Method for producing metal matrix composite materials
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JP2003311373A (en) Method for producing base material for semi-melting formation
JP2001515141A (en) Method for producing alloys and products comprising these alloys
JPS62235436A (en) Production of aluminum alloy extrudate for bearing
JPH0480108B2 (en)
JPS62218527A (en) Manufacture of extruded magnesium alloy material having superior modulus of elasticity
JPH03223437A (en) Low thermal expansion aluminum alloy excellent in wear resistance and elastic modulus
JPS62218526A (en) Manufacture of extruded aluminum alloy material having superior modulus of elasticity
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH0557344B2 (en)
JPH0116301B2 (en)