JPH0340046B2 - - Google Patents

Info

Publication number
JPH0340046B2
JPH0340046B2 JP11546382A JP11546382A JPH0340046B2 JP H0340046 B2 JPH0340046 B2 JP H0340046B2 JP 11546382 A JP11546382 A JP 11546382A JP 11546382 A JP11546382 A JP 11546382A JP H0340046 B2 JPH0340046 B2 JP H0340046B2
Authority
JP
Japan
Prior art keywords
butene
polymerization
titanium
catalyst component
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11546382A
Other languages
Japanese (ja)
Other versions
JPS596205A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11546382A priority Critical patent/JPS596205A/en
Publication of JPS596205A publication Critical patent/JPS596205A/en
Publication of JPH0340046B2 publication Critical patent/JPH0340046B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は気相重合によつてポリ−1−ブテンを
製造する方法に関する。 従来、高結晶性のポリ−1−ブテンを製造する
方法についての提案は、触媒として三塩化チタン
系触媒を用いてスラリー重合で行う方式のものが
多かつた。これに対しポリ−1−ブテンを気相重
合によつて製造できれば、プロセスの簡略化がで
き製造コストの低減が期待できる。このため従来
からも1−ブテンの気相重合の可能性を示唆する
提案も多かつたが、実際に工業的規模で行うには
多くの問題点があつた。例えばポリ−1−ブテン
は、ポリエチレンやポリプロピレンと比較して炭
化水素系溶媒に対する親和性が強く、気相重合系
に少量の液成分が存在すると重合体同志が凝集し
易く、したがつて気相重合としても最も典型的な
流動層や撹拌流動層を用いる重合において、長期
間、安定した運転を行うことが難しかつた。とく
に液化し易い1−ブテンが少量液状で存在する場
合や、触媒又は触媒成分は往々にして不活性溶媒
に溶解もしくは懸濁して気相重合系に供給される
ことが多いが、このようにして同伴される少量の
不活性溶媒が存在する場合に、前記のような凝集
傾向が顕著に現われた。またこのような傾向は、
工業的に有利な重合温度である40℃以上の温度で
の重合においてとくに顕著であつた。さらに従来
多用されていた三塩化チタン系触媒を用いて気相
重合を行うと、触媒形状が良好でないことから流
動性が悪く、同様に重合操作性が良くない上に、
触媒活性が低く、重合後に脱灰処理を施さねばな
らず操作が煩雑となり、気相重合の利点を充分に
生かすことができなかつた。 本発明者らは1−ブテンの気相重合における上
記欠点を改善し、触媒活性が高く重合速度が早
く、比較的高温度においても重合操作性が良好で
長期連続運転を安定して行うことのできる方法を
検討した結果、本発明に到達した。すなわち本発
明は、チーグラー型触媒の存在下で1−ブテンを
重合してポリ−1−ブテンを製造する方法におい
て、チーグラー型触媒として、(A)マグネシウム、
チタン、ハロゲン及び電子供与体を必須成分とし
て含み、平均粒径が1ないし200μ、粒度分布の
幾何標準偏差σgが2.1未満である高活性固体状
チタン触媒成分と(B)有機アルミニウム化合物触媒
成分とから形成される触媒を用い、1−ブテンの
重合に先立つて該固体触媒成分(A)中のチタン1m
mol当り、0.1ないし1000gのプロピレンを予備
重合させておくとともに、1−ブテンの少なくと
も一部は40ないし100℃の温度で気相状態で重合
を行うことを特徴とするポリ−1−ブテンの製造
方法である。 本発明で用いられる固体状チタン触媒成分(A)
は、マグネシウム、チタン、ハロゲン及び電子供
与体を必須成分として含有するもので、マゲネシ
ウム/チタン(原子比)が好ましくは2ないし
100、とくに好ましくは4ないし70、ハロゲン/
チタン(原子比)が好ましくは4ないし100、と
くに好ましくは6ないし40、電子供与体/チタン
(モル比)が好ましくは0.2ないし10、とくに好ま
しくは0.4ないし6の範囲にある。その比表面積
は、好ましくは3m2/g以上、一層好ましくは約
40m2/g以上、さらに好ましくは100m2/gない
し800m2/gである。通常、常温におけるヘキサ
ン洗浄のような簡単な手段ではチタン化合物を脱
離しない。そしてそのX線スペクトルが、触媒調
整に用いた原料マグネシウム化合物の如何にかか
わらずマグネシウム化合物に関して非晶性を示す
か、又はマグネシウムジハライドの通常の市販品
のそれに比べ、望ましくは非常に非晶化された状
態にある。 固体状チタン触媒成分(A)は、平均粒径が1ない
し200μ、好ましくは5ないし100μ、とくに好ま
しくは8ないし50μであつて粒度分布の幾何標準
偏差が2.1未満、好ましくは1.95以下である。こ
こにチタン触媒成分粒子の粒度分布の測定は光透
過法により行いうる。具体的にはデカリン等の不
活性溶媒中に0.01〜0.5%の前後の濃度に触媒成
分を希釈し、測定用セルに入れ、セルに細光をあ
て、粒子のある沈降状態での液体を通過する光の
強さを連続的に測定して粒度分布を測定する。こ
の粒度分布を基にして標準偏差σgは対数正規分
布関数から求められる。なお触媒の平均粒子径は
重量平均径で示してあり、粒度分布の測定は、重
量平均粒子径の10〜20%の範囲でふるい分けを行
つて計算した。 平均粒子径が前記範囲より小さい固体触媒成分
を用いた場合には、重合体の凝集や重合槽の排ガ
ス系への同伴によるトラブルが生じ易くなり好ま
しくなく、平均粒子径が前記範囲より大きいもの
を用いた場合には、流動層等における流動状態が
悪くなり、器璧への付着や重合体の凝集が起つて
均一な重合を行うことが困難となる。また粒度分
布の幾何標準偏差σgが2.1以上のような分布の
広いものを用いると、流動状態の悪化や重合体凝
集、璧付着などが生じ易く、運転操作や重合体品
質の面で好ましくない。チタン触媒成分としては
真球状、楕円球状のような球状のものが好まし
い。 該高活性固体状チタン触媒成分(A)は、前記必須
成分以外に、他の元素、金属、官能基などを含有
していてもよい。さらに無機や有機の希釈剤で希
釈されていてもよい。該成分(A)はまた、チタン1
mmol当り約1000g以上の高立体規則性ポリ−1
−ブテンを製造しうる高性能のものであることが
望ましい。 このような条件を全て満足するようなチタン触
媒成分(A)は、例えば平均粒子径及び粒度分布、さ
らに好ましくは形状が前述のような範囲にあるよ
うなマグネシウム化合物を形成した後、触媒調製
を行う方法、或いは液状のマグネシウム化合物と
液状のチタン化合物を接触させて、前述のような
粒子性状となるように固体状触媒を形成させる方
法などによつて得ることができる。かかる方法は
例えば特開昭55−135102号、同55−135103号、同
56−811号、同56−67311号などに開示されてい
る。 これらの方法の数例を簡単に述べる。 (1) 平均粒子径が1ないし200μ、粒度分布の幾
何標準偏差σgが2.1未満のマグネシウム化合
物・電子供与体錯体を、電子供与体及び/又は
有機アルミニウム化合物やハロゲン含有ケイ素
化合物のような反応助剤で予備処理し、又は予
備処理せず反応条件下に液相をなすハロゲン化
チタン化合物、好ましくは四塩化チタンと反応
させる。 (2) 還元能を有しないマグネシウム化合物の液状
物と液状のチタン化合物を電子供与体の存在下
で反応させて、平均粒子径が1ないし200μ、
粒度分布の幾何標準偏差σgが2.1未満の固体
成分を析出させる。必要に応じさらに液状のチ
タン化合物、好ましくは四塩化チタンあるいは
これと電子供与体と反応させる。 チタン触媒成分の調製に用いられるマグネシウ
ム化合物としては、酸化マグネシウム、水酸化マ
グネシウム、ハイドロタルサイト、マグネシウム
のカルボン酸塩、アルコキシマグネシウム、アリ
ロキシマグネシウム、アルコキシマグネシウムハ
ライド、アリロキシマグネシウムハライド、マグ
ネシウムジハライド、有機マグネシウム化合物、
有機マグネシウム化合物と電子供与体、ハロシラ
ン、アルコキシシラン、シラノール、アルミニウ
ム化合物などとの反応物などを例示することがで
きる。 上記チタン酸媒成分の調製に用いられることの
ある有機アルミニウム化合物としては、後記オレ
フイン重合に用いることのできる有機アルミニウ
ム化合物の中から選ぶことができる。さらにチタ
ン触媒成分調製に用いられることのあるハロゲン
含有ケイ素化合物としては、テトラハロゲン化ケ
イ素、アルコキシハロゲン化ケイ素、アルキルハ
ロゲン化ケイ素、ハロポリシロキサンなどであ
る。 チタン触媒成分調製に用いられるチタン化合物
は、テトラハロゲン化チタン、アルコキシチタン
ハライド、アリロキシチタンハライド、アルコキ
シチタン、アリロキシチタンなどであつてもよ
く、とくにテトラハロゲン化チタン中でも四塩化
チタンが好ましい。 またチタン触媒成分製造に利用できる電子供与
体としては、アルコール、フエノール類、ケト
ン、アルデヒド、カルボン酸、有機酸又は無機酸
のエステル、エーテル、酸アミド、酸無水物、ア
ルコキシシランの如き含酸素電子供与体、アンモ
ニア、アミン、ニトリル、イソシアネートの如き
含窒素電子供与体などを用いることができる。 より具体的には、メタノール、エタノール、プ
ロパノール、ペンタノール、ヘキサノール、オク
タノール、ドデカノール、オクタデシルアルコー
ル、ベンジルアルコール、フエニルエチルアルコ
ール、クミルアルコール、イソプロピルベンジル
アルコールなどの炭素数1ないし18のアルコール
類;フエノール、クレゾール、キシレノール、エ
チルフエノール、プロピルフエノール、ノニルフ
エノール、クミルフエノール、ナフトールなどの
低級アルキル基を有してよい炭素数6ないし20の
フエノール類;アセトン、メチルエチルケトン、
メチルイソブチルケトン、アセトフエノン、ベン
ゾフエノンなどの炭素数3ないし15のケトン類;
アセトアルデヒド、プロピオンアルデヒド、オク
チルアルデヒド、ベンズアルデヒド、トリアルデ
ヒド、ナフトアルデヒドなどの炭素数2ないし15
のアルデヒド類;ギ酸メチル、酢酸メチル、酢酸
エチル、酢酸ビニル、酢酸プロピル、酢酸オクチ
ル、酢酸シクロヘキシル、プロピオン酸エチル、
酪酸メチル、吉草酸エチル、クロル酢酸メチル、
ジクロル酢酸エチル、メタクリル酸メチル、クロ
トン酸エチル、シクロヘキサンカルボン酸エチル
安息香酸メチル、安息香酸エチル、安息香酸プロ
ピル、安息香酸ブチル、安息香酸オクチル、安息
香酸シクロヘキシル、安息香酸フエニル、安息香
酸ベンジル、トルイル酸メチル、トルイル酸エチ
ル、トルイル酸アミル、エチル安息香酸エチル、
アニス酸メチル、アニス酸エチル、エトキシ安息
香酸エチル、フタル酸ジイソブチル、フタル酸ジ
エチル、フタル酸ジ2−エチルヘキシル、γ−ブ
チロラクトン、δ−バレロラクトン、クマリン、
フタリド、炭酸エチレンなどの炭素数2ないし30
の有機酸エステル類;アセチルクロリド、ベンゾ
イルクロリド、トルイル酸クロリド、アニス酸ク
ロリドなどの炭素数2ないし15の酸ハライド類;
メチルエーテル、エチルエーテル、イソプロピル
エーテル、ブチルエーテル、アミルエーテル、テ
トラヒドロフラン、アニソール、ジフエニルエー
テルなどの炭素数2ないし20のエーテル類;酢酸
アミド、安息香酸アミド、トルイル酸アミドなど
の酸アミド類;メチルアミン、エチルアミン、ジ
エチルアミン、トリブチルアミン、ピペリジン、
トリベンジルアミン、アニリン、ピリジン、ピコ
リン、テトラメチルエチレンジアミンなどのアミ
ン類;アセトニトリル、ベンゾニトリル、トリニ
トリルなどのニトリル類;ケイ素エチル、ジフエ
ニルジメトキシシランなどのアルコキシシラン
類;などを挙げることができる。これらの電子供
与体は、2種以上用いることができる。 チタン触媒成分に含有されることが望ましい電
子供与体は、有機酸又は無機酸のエステル、エー
テル、ケトン、第三アミン、酸ハライド、酸無水
物、アルコキシシランのような活性水素を有しな
いものであり、とくに有機酸エステルが好まし
く、中でも芳香族カルボン酸エステルがもつとも
好ましい。好適な芳香族カルボン酸エステルの代
表例としては、炭素数8ないし24のもので、とく
に安息香酸、低級アルキル安息香酸、低級アルコ
キシ安息香酸、フタル酸等のアルキルエステルを
挙げることができる。 本発明に使用される有機アルミニウム化合物(B)
は、少なくとも分子内に1個のAl−炭素結合を
有する化合物が利用でき、例えば()一般式
R1 nAl(OR2oHpXq(ここでR1およびR2は炭素原子
通常1ないし15個、好ましくは1ないし4個を含
む炭化水素基で互いに同一でも異なつてもよい。
Xはハロゲン、mは0<m≦3、nは0≦n<
3、pは0≦p<3、qは0≦p<3の数であつ
て、しかもm+n+p+q=3である)で表わさ
れる有機アルミニウム化合物()一般式
M1AlR1 4(ここでM1はLi、Na、Kであり、R1
前記と同じ)で表わされる第族金属とアルミニ
ウムとの錯アルキル化物などを挙げることができ
る。 前記の()に属する有機アルミニウム化合物
としては、次のものを例示できる。一般式R1 nAl
(OR23-n(ここでR1およびR2は前記と同じ。m
は好ましくは1.5≦m≦3の数である)。一般式
R1 nAlX3-n(ここでR1は前記と同じ。Xはハロゲ
ン、mは好ましくは0<m<3である)、一般式
R1 nAlH3-n(ここでR1は前記と同じ。mは好まし
くは2≦m<3である)、一般式R1 nAl(OR2)n
Xq(ここでR1およびR2は前記と同じ。Xはハロゲ
ン、0<m≦3、0≦n<3、0≦q<3で、m
+n+p+q=3である)で表わされるものなど
を例示できる。 ()に属するアルミニウム化合物において、
より具体的にはトリエチルアルミニウム、トリブ
チルアルミニウムなどのトリアルキルアルミニウ
ム、トリイソプレニルアルミニウムのようなトリ
アルケニルアルミニウム、ジエチルアルミニウム
エトキシド、ジブチルアルミニウムブトキシドな
どのジアルキルアルミニウムアルコキシド、エチ
ルアルミニウムセスキエトキシド、ブチルアルミ
ニウムセスキブトキシドなどのアルキルアルミニ
ウムセスキアルコキシドのほかに、Al1 2.5Al
(OR20.5などで表わされる平均組成を有する部分
的にアルコキシ化されたアルキルアルミニウム、
ジエチルアルミニウムクロリド、ジブチルアルミ
ニウムクロリド、ジエチルアルミニウムブロミド
のようなジアルキルアルミニウムハライド、エチ
ルアルミニウムセスキクロリド、ブチルアルミニ
ウムセスキクロリド、エチルアルミニウムセスキ
ブロミドのようなアルキルアルミニウムセスキハ
ライド、エチルアルミニウムジクロリド、プロピ
ルアルミニウムジクロリド、ブチルアルミニウム
ブロミドなどのようなアルキルアルミニウムジハ
ライドなどの部分的にハロゲン化されたアルキル
アルミニウム、ジエチルアルミニウムヒドリド、
ジブチルアルミニウムヒドリドなどのジアルキル
アルミニウムヒドリド、エチルアルミニウムジヒ
ドリド、プロピルアルミニウムジヒドリドなどの
アルキルアルミニウムジヒドリドなどの部分的に
水素化されたアルキルアルミニウム、エチルアル
ミニウムエトキシクロリド、ブチルアルミニウム
ブトキシクロリド、エチルアルミニウムエトキシ
ブロミドなどの部分的にアルコキシ化およびハロ
ゲン化されたアルキルアルミニウムである。また
()に類似する化合物として、酸素原子や窒素
原子を介して2以上のアルミニウムが結合した有
機アルミニウム化合物であつてもよい。このよう
な化合物として例えば(C2H52AlOAl(C2H52
(C4H92AlOAl(C4H92
The present invention relates to a method for producing poly-1-butene by gas phase polymerization. Conventionally, many proposals for producing highly crystalline poly-1-butene have involved slurry polymerization using a titanium trichloride catalyst as a catalyst. On the other hand, if poly-1-butene can be produced by gas phase polymerization, the process can be simplified and production costs can be expected to be reduced. For this reason, there have been many proposals suggesting the possibility of gas phase polymerization of 1-butene, but there were many problems in actually carrying out the process on an industrial scale. For example, poly-1-butene has a stronger affinity for hydrocarbon solvents than polyethylene or polypropylene, and if a small amount of liquid component is present in the gas phase polymerization system, the polymers tend to coagulate among themselves, and therefore the gas phase In polymerization using a fluidized bed or an agitated fluidized bed, which is the most typical type of polymerization, it has been difficult to operate stably for a long period of time. In particular, when 1-butene, which is easily liquefied, is present in a small amount in liquid form, the catalyst or catalyst components are often dissolved or suspended in an inert solvent and then supplied to the gas phase polymerization system. In the presence of a small amount of entrained inert solvent, the above-mentioned aggregation tendency was noticeable. Also, this tendency is
This was particularly noticeable in polymerizations at temperatures of 40°C or higher, which are industrially advantageous polymerization temperatures. Furthermore, when gas phase polymerization is carried out using the titanium trichloride catalyst that has been widely used in the past, the catalyst shape is not good, resulting in poor fluidity and similarly poor polymerization operability.
The catalytic activity was low, and deashing treatment had to be performed after polymerization, making the operation complicated, and the advantages of gas phase polymerization could not be fully utilized. The present inventors have improved the above-mentioned drawbacks in the gas-phase polymerization of 1-butene, and achieved a method that has high catalytic activity, a fast polymerization rate, good polymerization operability even at relatively high temperatures, and stable long-term continuous operation. As a result of studying possible methods, we have arrived at the present invention. That is, the present invention provides a method for producing poly-1-butene by polymerizing 1-butene in the presence of a Ziegler-type catalyst, in which (A) magnesium,
A highly active solid titanium catalyst component containing titanium, a halogen, and an electron donor as essential components, having an average particle size of 1 to 200μ, and a geometric standard deviation of particle size distribution σg of less than 2.1; and (B) an organoaluminum compound catalyst component. 1 m of titanium in the solid catalyst component (A) prior to the polymerization of 1-butene.
Production of poly-1-butene, characterized in that 0.1 to 1000 g of propylene per mol is prepolymerized, and at least a portion of the 1-butene is polymerized in a gas phase at a temperature of 40 to 100°C. It's a method. Solid titanium catalyst component (A) used in the present invention
contains magnesium, titanium, halogen and an electron donor as essential components, and the magnesium/titanium (atomic ratio) is preferably 2 to 2.
100, particularly preferably 4 to 70, halogen/
The titanium (atomic ratio) is preferably in the range from 4 to 100, particularly preferably from 6 to 40, and the electron donor/titanium (molar ratio) is preferably in the range from 0.2 to 10, particularly preferably from 0.4 to 6. The specific surface area is preferably 3 m 2 /g or more, more preferably about
It is 40 m 2 /g or more, more preferably 100 m 2 /g to 800 m 2 /g. Usually, titanium compounds are not removed by simple means such as washing with hexane at room temperature. The X-ray spectrum of the magnesium compound exhibits amorphous properties regardless of the raw material magnesium compound used for catalyst preparation, or is desirably highly amorphous compared to that of ordinary commercially available magnesium dihalides. is in a state of being The solid titanium catalyst component (A) has an average particle size of 1 to 200μ, preferably 5 to 100μ, particularly preferably 8 to 50μ, and a geometric standard deviation of particle size distribution of less than 2.1, preferably 1.95 or less. Here, the particle size distribution of the titanium catalyst component particles can be measured by a light transmission method. Specifically, the catalyst component is diluted in an inert solvent such as decalin to a concentration of around 0.01 to 0.5%, placed in a measurement cell, and the cell is illuminated with a narrow light, passing through the liquid in a sedimented state with particles. The particle size distribution is determined by continuously measuring the intensity of the light emitted. Based on this particle size distribution, the standard deviation σg is determined from a lognormal distribution function. Note that the average particle diameter of the catalyst is shown as a weight average diameter, and the particle size distribution was calculated by sieving in the range of 10 to 20% of the weight average particle diameter. If a solid catalyst component with an average particle size smaller than the above range is used, problems such as agglomeration of the polymer or entrainment into the exhaust gas system of the polymerization tank are likely to occur, which is undesirable. When used, the fluidization state in a fluidized bed or the like deteriorates, causing adhesion to vessel walls and aggregation of the polymer, making it difficult to carry out uniform polymerization. Furthermore, if a particle size distribution having a wide geometric standard deviation σg of 2.1 or more is used, deterioration of the flow state, polymer aggregation, wall adhesion, etc. are likely to occur, which is unfavorable in terms of operation and polymer quality. The titanium catalyst component is preferably spherical, such as a true sphere or an elliptical sphere. The highly active solid titanium catalyst component (A) may contain other elements, metals, functional groups, etc. in addition to the above-mentioned essential components. Furthermore, it may be diluted with an inorganic or organic diluent. The component (A) also contains titanium 1
High stereoregular poly-1 of about 1000g or more per mmol
- It is desirable to have a high performance capable of producing butene. A titanium catalyst component (A) that satisfies all of these conditions can be prepared by forming a magnesium compound having an average particle size and particle size distribution, and more preferably a shape within the above-mentioned range, and then preparing the catalyst. Alternatively, a liquid magnesium compound and a liquid titanium compound may be brought into contact with each other to form a solid catalyst having particle properties as described above. Such methods are described, for example, in Japanese Patent Application Laid-Open Nos. 55-135102, 55-135103, and
It is disclosed in No. 56-811, No. 56-67311, etc. A few examples of these methods will be briefly described. (1) A magnesium compound/electron donor complex with an average particle diameter of 1 to 200μ and a geometric standard deviation of particle size distribution σg of less than 2.1 is combined with an electron donor and/or a reaction aid such as an organoaluminum compound or a halogen-containing silicon compound. or without pretreatment with a halogenated titanium compound, preferably titanium tetrachloride, which forms a liquid phase under the reaction conditions. (2) A liquid magnesium compound that does not have reducing ability and a liquid titanium compound are reacted in the presence of an electron donor to form particles with an average particle size of 1 to 200μ,
A solid component having a geometric standard deviation σg of particle size distribution of less than 2.1 is precipitated. If necessary, it is further reacted with a liquid titanium compound, preferably titanium tetrachloride, or with an electron donor. Magnesium compounds used in the preparation of the titanium catalyst component include magnesium oxide, magnesium hydroxide, hydrotalcite, magnesium carboxylate, alkoxymagnesium, allyloxymagnesium, alkoxymagnesium halide, allyloxymagnesium halide, magnesium dihalide, organomagnesium compounds,
Examples include reactants of organomagnesium compounds and electron donors, halosilanes, alkoxysilanes, silanols, aluminum compounds, and the like. The organoaluminum compound that may be used in the preparation of the titanium acid medium component can be selected from organoaluminum compounds that can be used in the olefin polymerization described below. Furthermore, halogen-containing silicon compounds that may be used for preparing the titanium catalyst component include silicon tetrahalides, silicon alkoxy halides, silicon alkyl halides, and halopolysiloxanes. The titanium compound used for preparing the titanium catalyst component may be titanium tetrahalide, alkoxytitanium halide, allyloxytitanium halide, alkoxytitanium, allyloxytitanium, etc. Among titanium tetrahalides, titanium tetrachloride is particularly preferred. Electron donors that can be used in the production of titanium catalyst components include oxygen-containing electron donors such as alcohols, phenols, ketones, aldehydes, carboxylic acids, esters of organic or inorganic acids, ethers, acid amides, acid anhydrides, and alkoxysilanes. Donors, nitrogen-containing electron donors such as ammonia, amines, nitriles, isocyanates, and the like can be used. More specifically, alcohols having 1 to 18 carbon atoms such as methanol, ethanol, propanol, pentanol, hexanol, octanol, dodecanol, octadecyl alcohol, benzyl alcohol, phenylethyl alcohol, cumyl alcohol, isopropylbenzyl alcohol; Phenols having 6 to 20 carbon atoms which may have a lower alkyl group such as phenol, cresol, xylenol, ethylphenol, propylphenol, nonylphenol, cumylphenol, naphthol; acetone, methyl ethyl ketone,
Ketones having 3 to 15 carbon atoms such as methyl isobutyl ketone, acetophenone, and benzophenone;
2 to 15 carbon atoms such as acetaldehyde, propionaldehyde, octylaldehyde, benzaldehyde, trialdehyde, naphthaldehyde, etc.
aldehydes; methyl formate, methyl acetate, ethyl acetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, ethyl propionate,
Methyl butyrate, ethyl valerate, methyl chloroacetate,
Ethyl dichloroacetate, methyl methacrylate, ethyl crotonate, ethyl cyclohexanecarboxylate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, cyclohexyl benzoate, phenyl benzoate, benzyl benzoate, toluic acid Methyl, ethyl toluate, amyl toluate, ethyl ethylbenzoate,
Methyl anisate, ethyl anisate, ethyl ethoxybenzoate, diisobutyl phthalate, diethyl phthalate, di-2-ethylhexyl phthalate, γ-butyrolactone, δ-valerolactone, coumarin,
Phthalide, ethylene carbonate, etc. with 2 to 30 carbon atoms
organic acid esters; acid halides having 2 to 15 carbon atoms such as acetyl chloride, benzoyl chloride, toluyl chloride, anisyl chloride;
Ethers with 2 to 20 carbon atoms such as methyl ether, ethyl ether, isopropyl ether, butyl ether, amyl ether, tetrahydrofuran, anisole, and diphenyl ether; Acid amides such as acetic acid amide, benzoic acid amide, and toluic acid amide; Methyl amine , ethylamine, diethylamine, tributylamine, piperidine,
Examples include amines such as tribenzylamine, aniline, pyridine, picoline, and tetramethylethylenediamine; nitrites such as acetonitrile, benzonitrile, and trinitrile; and alkoxysilanes such as silicon ethyl and diphenyldimethoxysilane. Two or more types of these electron donors can be used. Electron donors preferably included in the titanium catalyst component are those that do not have active hydrogen, such as esters of organic or inorganic acids, ethers, ketones, tertiary amines, acid halides, acid anhydrides, and alkoxysilanes. Organic acid esters are particularly preferred, and aromatic carboxylic acid esters are particularly preferred. Representative examples of suitable aromatic carboxylic acid esters include those having 8 to 24 carbon atoms, particularly alkyl esters such as benzoic acid, lower alkylbenzoic acid, lower alkoxybenzoic acid, and phthalic acid. Organoaluminum compound (B) used in the present invention
For example, a compound having at least one Al-carbon bond in the molecule can be used, for example, the general formula ()
R 1 n Al( OR 2 ) o H p
X is halogen, m is 0<m≦3, n is 0≦n<
3, p is a number of 0≦p<3, q is a number of 0≦p<3, and m+n+p+q=3) General formula
Examples include complex alkylated products of a group metal and aluminum represented by M 1 AlR 1 4 (where M 1 is Li, Na, or K, and R 1 is the same as above). Examples of the organoaluminum compounds belonging to the above () include the following. General formula R 1 n Al
(OR 2 ) 3-n (where R 1 and R 2 are the same as above. m
is preferably a number of 1.5≦m≦3). general formula
R 1 n AlX 3-n (where R 1 is the same as above, X is halogen, m is preferably 0<m<3), general formula
R 1 n AlH 3-n (where R 1 is the same as above, m is preferably 2≦m<3), general formula R 1 n Al(OR 2 )n
X q (Here, R 1 and R 2 are the same as above. X is halogen, 0<m≦3, 0≦n<3, 0≦q<3, m
+n+p+q=3). In aluminum compounds belonging to (),
More specifically, trialkyl aluminum such as triethyl aluminum and tributyl aluminum, trialkenyl aluminum such as triisoprenyl aluminum, dialkyl aluminum alkoxide such as diethyl aluminum ethoxide, dibutyl aluminum butoxide, ethyl aluminum sesquiethoxide, butyl aluminum sesqui In addition to alkyl aluminum sesquialkoxides such as butoxide, Al 1 2.5 Al
a partially alkoxylated alkyl aluminum having an average composition expressed as (OR 2 ) 0.5 ,
Dialkyl aluminum halides such as diethylaluminum chloride, dibutyl aluminum chloride, diethylaluminum bromide, alkyl aluminum sesquihalides such as ethyl aluminum sesquichloride, butyl aluminum sesquichloride, ethyl aluminum sesquibromide, ethyl aluminum dichloride, propyl aluminum dichloride, butyl aluminum Partially halogenated alkylaluminiums, such as alkylaluminum dihalides, diethylaluminum hydrides, such as bromides, etc.
Dialkyl aluminum hydrides such as dibutyl aluminum hydride, partially hydrogenated alkylaluminums such as alkyl aluminum dihydrides such as ethyl aluminum dihydride, propyl aluminum dihydride, ethyl aluminum ethoxy chloride, butyl aluminum butoxy chloride, ethyl aluminum ethoxy bromide partially alkoxylated and halogenated alkyl aluminums such as Moreover, as a compound similar to (), an organic aluminum compound in which two or more aluminum atoms are bonded via an oxygen atom or a nitrogen atom may be used. Examples of such compounds include (C 2 H 5 ) 2 AlOAl(C 2 H 5 ) 2 ,
( C4H9 ) 2AlOAl ( C4H9 ) 2 ,

【式】などを例示できる。 前記()に属する化合物としては、LiAl
(C2H54、LiAl(C7H154などを例示できる。これ
らの中では、とくにトリアルキルアルミニウム又
はトリアルキルアルミニウムとアルキルアルミニ
ウムハライド又はアルミニウムハライドの混合物
を用いるのが好ましい。 本発明の重合においては、前記(A)、(B)成分の他
に、電子供与体触媒成分(C)を存在させることが好
ましい。 重合に用いることのできる電子供与体触媒成分
(C)としては、例えば、有機酸又は無機酸のエステ
ル、エーテル、ケトン、第三アミン、酸ハライ
ド、酸無水物、アルコキシシランなどが好適に利
用できる。とくに有機酸エステルやアルコキシシ
ラン類、中でも芳香剤カルボン酸エステルがより
好適である。このような芳香族カルボン酸エステ
ルの代表例としては、炭素数8ないし18のものが
好ましく例示でき、とりわけ、安息香酸、低級ア
ルキル安息香酸、低級アルコキシ安息香酸のエス
テルの利用が好ましい。これらの具体的として
は、例えば.固体状チタン触媒成分(A)調整の際に
用いることができる前記例示の電子供与体を挙げ
ることができる。このような電子供与体(C)は使用
に先立つて有機アルミニウム化合物と錯化合物を
形成させておいて用いてもよく、あるいは塩化ア
ルミニウムのようなルイス酸と錯体を形成させて
使用してもよい。 本発明においては、1−ブテンの重合に用いる
チタン触媒成分(A)中のチタン1mmol当り、プロ
ピレン0.1ないし1000g、好ましくは1ないし500
gを予備重合させ、触媒成分(A)上にポリプロピレ
ンを製造させておく。予備重合処理においては勿
論有機アルミニウム化合物触媒成分(B)の存在が必
要であるが、必ずしも1−ブテンの重合に用いる
全量をこの段階で用いる必要はなく、例えば(A)成
分中のチタン1mmol当り、アルミニウム原子換
算で(B)成分を0.5ないし10mmol程度となる割合
で用いればよい。また前述した電子供与体触媒成
分(C)を1−ブテンの重合に使用する場合にもその
一部又は全部をこの予備重合段階で存在させても
よいが、その量は触媒を失活させない程度である
べきで、その種類によつても異なるが、(B)成分中
のアルミニウム1mmol当り、例えば(C)成分を0
ないし1.0mmolの範囲とすることができる。プ
ロピレンの予備重合量はまた、製造するポリ−1
−ブテン中0.001ないし10重量%程度、とくに
0.01ないし1重量%とするのが好ましい。プロピ
レンの予備重合量が少なすぎたり、あるいはプロ
ピレン以外のオレフインを予備重合した場合に
は、気相重合におけるポリ−1−ブテン粒子の凝
集などに対して充分満足すべき効果を示さない。
一方、プロピレン予備重合量を過大とするとポリ
−1−ブテンの優れた特性を維持できなくなるの
で避けるべきであるが、上述したように適量であ
れば気相重合における操作性も顕著に改善される
のみならず、ポリ−1−ブテンの物性がそれ程変
化なくその上ポリ−1−ブテンの結晶変態速度を
早めることができるという利益も享受できる。 プロピレンの予備重合は、好ましくは不活性溶
媒中で行われる。不活性溶媒の好適例は、例えば
プロパン、ブタン、ペンタン、ヘキサン、ヘプタ
ン、オクタン、デカン、灯油などである。このよ
うな不活性溶媒1に対し、チタン触媒成分0.5
ないし50mmol程度、有機アルミニウム化合物触
媒成分(B)、必要に応じ用いられることのある電子
供与体触媒成分(C)を既述した割合で用い、通常0
ないし50℃程度でプロピレンを重合させればよ
い。この際、高結晶ポリプロピレンを製造できる
範囲において少量の他のα−オレフインを共重合
させてもよいが、一般にはプロピレンの単独重合
を行う方が好ましい。またポリプロピレンの分子
量を調節する目的で水素を共存させてもよい。予
備重合処理はまた、上述のスラリー重合で行う以
外に、気相重合で行つてもよい。予備重合処理を
終了した後、重合混合物はそのまま1−ブテンの
重合に供してもよく、あるいは濃縮、乾燥等の操
作を施した後に1−ブテンの重合に使用してもよ
い。 本発明によれば、プロピレン予備重合処理され
た触媒を用いて1−ブテンの気相重合を行うもの
であるが、この気相重合に先立つて、1−ブテン
のスラリー重合を行う工程を設けてもよい。しか
しながらこの場合は、1−ブテンの全重合量の10
%以上を気相重合によつて重合させるのが好まし
い。 1−ブテンの気相重合は40ないし100℃、好ま
しくは50ないし80℃の温度で行われる。40℃より
低い温度では、液化を防止するためには1−ブテ
ンの分圧をあまり高くすることができないため重
合速度を充分大きくすることができず、しかも工
業的に重合熱除去が容易でないので好ましくな
い。また100℃を越えるような高い重合温度では、
ポリ−1−ブテン粒子同志の凝集や壁付着を生じ
易く、円滑な重合操作を行うことが難かしいので
好ましくない。 気相重合系における触媒濃度は、重合容積1
当り、チタン原子換算で0.001ないし0.8mmol、
とくに0.005ないし0.4mmolのチタン触媒成分(A)
と、(A)成分中のチタン1mmolに対し、アルミニ
ウム原子に換算して4ないし1000mmol、とくに
5ないし400mmolの有機アルミニウム化合物触
媒成分(B)と、(B)成分中のアルミニウム原子1m
mol当り0ないし1.0mmol、とくに0.05ないし0.5
mmolの電子供与体触媒成分(C)に相当する量とな
るように、予備重合処理し、少なくとも成分(A)及
び(B)を含有する重合体成分と、必要に応じ追加量
の成分(B)及び/又は成分(C)とを供給することによ
つて調整される。 1−ブテンの分圧は、重合温度によつても異な
るが液化が実質的量で起こらない範囲であつて、
通常1ないし15Kg/cm2程度である。重合に際し、
少量の他のオレフインを共存させて、1−ブテン
を主体とする高結晶性、高立体規則性の1−ブテ
ン共重合体を製造してもよい。また分子量を調節
する目的で水素のような分子量調節剤を共存させ
てもよい。さらにまた1−ブテンより沸点の低い
不活性ガス、例えば窒素、メタン、エタン、プロ
パン等を共存させることもできる。これら不活性
ガスの共存によつて重合体の凝集傾向が一層軽減
され、しかも重合熱除去が容易となる。不活性ガ
スの効果的の共存量は、1−ブテンに対し0.2モ
ル倍以上である。 気相重合は、流動層や撹拌流動層を用いて行う
ことができる。あるいは管状重合器にガス成分を
流通させながら行うこともできる。 気相重合に先立つて1−ブテンのスラリー重合
を行う場合には、ポリ−1−ブテンが液媒によつ
て軟化ないしは溶解することのない条件を選ぶべ
きである。液媒としては、後の工程で気相重合を
行うために1−ブテン自身かあるいは気化の容易
なプロパン、ブタンの如き不活性炭化水素を選ぶ
のが好ましく、また重合温度は0ないし50℃程度
の低温で行うべきである。そして液相1当りの
各触媒成分の濃度、その他の重合条件は、気相重
合において説明したのと同様である。 本発明によれば気相重合系に触媒などに伴なつ
て少量の液成分が混入したとしても、重合温度が
比較的高いにもかかわらず重合体同志の凝集や重
合体の壁付着が少なく、安定した連続重合が可能
である。このように液成分の存在は、一般に気相
重合の反応速度を早めるので、本発明においては
むしろ好ましい態様と言える。 次に実施例を示す。 実施例 1 〔触媒合成〕 200mlのフラスコに無水MgCl27.2g、デカン23
mlおよび2−エチルヘキサノール23mlを入れ、
120℃で2時間加熱反応を行い、均一溶液とした
のち、安息香酸エチル1.68mlを添加した。 400mlのフラスコにTiCl4200mlを入れ、−20℃
に冷却保持した状態で上記均一溶液を全量、1時
間に渡つて滴下したのち、80℃に昇温した。80℃
で2時間撹拌後、固体部を過により採取し、こ
れを新たなTiCl4200mlに懸濁させ、90℃で2時
間撹拌した。撹拌終了後、熱過により採取した
固体部を熱灯油およびヘキサンで十分洗浄し、チ
タン触媒成分を得た。該触媒はTi4.5wt%、
Cl60wt%、Mg18wt%を含み、平均粒子径15μ、
σg1.25、比表面積は195m2/gであつた。 〔触媒前処理〕 得られた触媒スラリーを、Ti原子に換算した
5mmol/となるようにヘキサン中に再懸濁し
た後、トリエチルアルミニウムを15mmol/、
p−トルイル酸メチルを5mmol/となるよう
に添加し、さらにプロピレンをチタン触媒成分1
g当り3gとなるような割合で供給し、40℃で処
理を行つた。 〔重合〕 直径300mm、反応部容積100の流動層重合器を
用い、これにTi原子換算で3.6mmol/−ヘキ
サンに再調整したTi触媒スラリーを、撹拌機付
触媒ドラムから0.3/hrの速度で、またトリエ
チルアルミニウムを30mmol/hr、p−トルイル
酸メチルを7.5mmol/hrの速度で供給した。一
方1−ブテン、水素及び窒素を水素/1−ブテン
(モル比)=0.05、窒素/1−ブテン(モル比)=
1の割合で、ガス空塔速度が35cm/secの速度で
供給した。重合器中のポリ−1−ブテン量がほぼ
一定となるように重合体を抜き出した。重合温度
は72℃、重合圧力は4.1Kg/cm2Gであつた。かく
してメルトインデツクス(190℃、荷重10Kg)70
g/10分、嵩比重390Kg/m3、平均粒径340μの白
色ポリ−1−ブテン粉末を3.5Kg/hrの速度で得
た。粒径が1mm以上の凝集物は1%以内にすぎな
かつた。 実施例 2 実施例1の重合において、下記の如き条件変更
を行つた。 プロピレン予備重合量…Ti触媒成分1g当り45
g 触媒成分供給量 Ti触媒成分 0.42/hr トリイソブチルアルミニウム 45mmol/hr p−トルイル酸メチル 9mmol/hr 供給ガス…1−ブテン、水素及びプロパン 水素/1−ブテン(モル比)=0.03 プロパン/1−ブテン(モル比)=0.8 ガス空塔速度37cm/sec 重合条件…圧力4.7Kg/cm2G 温度71℃ この結果、嵩比重430Kg/m3、メルトインデツ
クス20g/10分、平均粒径290μのポリ−1−ブ
テン白色粉末を4.2Kg/hrの速度で得た。粒径が
1mm以上の凝集物は皆無であつた。 比較例 1 実施例1において、触媒前処理を省略したとこ
ろ、触媒供給開始後3時間して重合器内がメルト
して運転不能となつた。開放後メルト物を調べて
みると、一つ一つの粒は丸い形状をしておらず、
かつ凸凹の激しい表面状態であつた。 比較例 2 実施例1において、触媒前処理をプロピレンか
ら1−ブテンに変更したところ、触媒供給開始後
4時間頃より1mm以上の凝集物が生成し始め、10
時間後、生成パウダーの抜き出しライン閉塞のた
め運転不能となつた。 重合器開放してみると分散板直上に多量のポリ
ブテン凝集物があつた。 比較例 3 〔触媒合成〕 市販の無水塩化マグネシウム20gと安息香酸エ
チル6.0mlとを窒素雰囲気中、直径15mmのステン
レス鋼(SUS−302)製ボール100個を収容した
内容積800ml、内直径100mmのステンレス鋼製容器
内に装入し、能力7Gの振動ミル装置にて50時間
共粉砕を行つた。得られた固体処理物を四塩化チ
タン中に懸濁させ100℃で2時間反応させた後、
固体成分を別し、ヘキサンでくり返し洗浄し
た。得られた固体触媒成分の組成分析を行つたと
ころ、固体1g当りTi21mg、Mg210mg、塩素670
mg、安息香酸エチル88mgであつた。また得られた
Ti触媒成分の触媒平均粒径は17.8μ、触媒粒度分
布の幾何標準偏差σgは2.24、触媒の比表面積は
185m2/gであつた。 <重合> 実施例2と同様の方法で行つたところ、重合開
始後5時間後に重合温度が90℃まで急上昇し運転
不能となつた。重合器を開放してみると、約5Kg
の溶融ポリマーが得られた。
Examples include [Formula]. Compounds belonging to the above () include LiAl
Examples include (C 2 H 5 ) 4 and LiAl(C 7 H 15 ) 4 . Among these, it is particularly preferable to use trialkylaluminum or a mixture of trialkylaluminum and alkyl aluminum halide or aluminum halide. In the polymerization of the present invention, an electron donor catalyst component (C) is preferably present in addition to the components (A) and (B). Electron donor catalyst components that can be used in polymerization
As (C), for example, esters of organic acids or inorganic acids, ethers, ketones, tertiary amines, acid halides, acid anhydrides, alkoxysilanes, etc. can be suitably used. Among organic acid esters and alkoxysilanes, aromatic carboxylic acid esters are particularly preferred. As representative examples of such aromatic carboxylic acid esters, those having 8 to 18 carbon atoms are preferred, and esters of benzoic acid, lower alkylbenzoic acid, and lower alkoxybenzoic acid are particularly preferred. Specific examples of these include: The above-mentioned electron donors that can be used in preparing the solid titanium catalyst component (A) can be mentioned. Such an electron donor (C) may be used by forming a complex with an organoaluminum compound before use, or may be used by forming a complex with a Lewis acid such as aluminum chloride. . In the present invention, 0.1 to 1000 g of propylene, preferably 1 to 500 g, of propylene is used per 1 mmol of titanium in the titanium catalyst component (A) used for the polymerization of 1-butene.
g is prepolymerized to produce polypropylene on the catalyst component (A). The presence of the organoaluminum compound catalyst component (B) is of course necessary in the prepolymerization treatment, but it is not necessarily necessary to use the entire amount used in the polymerization of 1-butene at this stage. , component (B) may be used in a proportion of about 0.5 to 10 mmol in terms of aluminum atoms. Furthermore, when the electron donor catalyst component (C) described above is used in the polymerization of 1-butene, part or all of it may be present in this prepolymerization step, but the amount is limited to a level that does not deactivate the catalyst. For example, 0 mmol of aluminum in component (B) should be used for component (C), although it varies depending on the type.
It can be in the range of 1.0 mmol to 1.0 mmol. The amount of propylene prepolymerized also depends on the amount of poly-1 to be produced.
- About 0.001 to 10% by weight in butene, especially
It is preferably 0.01 to 1% by weight. If the amount of propylene prepolymerized is too small, or if an olefin other than propylene is prepolymerized, a sufficiently satisfactory effect on agglomeration of poly-1-butene particles during gas phase polymerization will not be exhibited.
On the other hand, if the amount of propylene prepolymerized is too large, it will not be possible to maintain the excellent properties of poly-1-butene, so it should be avoided, but as mentioned above, if the amount is appropriate, the operability in gas phase polymerization will be significantly improved. In addition, the physical properties of poly-1-butene do not change much, and the crystal transformation rate of poly-1-butene can be accelerated. Prepolymerization of propylene is preferably carried out in an inert solvent. Suitable examples of inert solvents are, for example, propane, butane, pentane, hexane, heptane, octane, decane, kerosene, and the like. For every 1 part of such inert solvent, 0.5 part of the titanium catalyst component is added.
to about 50 mmol, the organoaluminum compound catalyst component (B), and the electron donor catalyst component (C), which may be used as necessary, in the proportions described above, and usually 0.
Propylene may be polymerized at about 50 to 50°C. At this time, a small amount of other α-olefin may be copolymerized as long as highly crystalline polypropylene can be produced, but it is generally preferable to carry out homopolymerization of propylene. Further, hydrogen may be present in order to adjust the molecular weight of polypropylene. The prepolymerization treatment may also be performed by gas phase polymerization in addition to the slurry polymerization described above. After completing the prepolymerization treatment, the polymerization mixture may be used as it is for polymerization of 1-butene, or may be subjected to operations such as concentration and drying before being used for polymerization of 1-butene. According to the present invention, gas phase polymerization of 1-butene is performed using a catalyst prepolymerized with propylene, but prior to this gas phase polymerization, a step of slurry polymerization of 1-butene is provided. Good too. However, in this case, 10 of the total polymerized amount of 1-butene
% or more is preferably polymerized by gas phase polymerization. The gas phase polymerization of 1-butene is carried out at temperatures of 40 to 100°C, preferably 50 to 80°C. At temperatures lower than 40°C, the partial pressure of 1-butene cannot be made too high to prevent liquefaction, so the polymerization rate cannot be increased sufficiently, and furthermore, it is not easy to remove the polymerization heat industrially. Undesirable. In addition, at high polymerization temperatures exceeding 100℃,
This is not preferable because poly-1-butene particles tend to aggregate or adhere to walls, making it difficult to carry out a smooth polymerization operation. The catalyst concentration in the gas phase polymerization system is
0.001 to 0.8 mmol per titanium atom,
In particular, 0.005 to 0.4 mmol of titanium catalyst component (A)
and, per 1 mmol of titanium in component (A), 4 to 1000 mmol, especially 5 to 400 mmol of organoaluminum compound catalyst component (B) in terms of aluminum atoms, and 1 m of aluminum atoms in component (B).
0 to 1.0 mmol per mol, especially 0.05 to 0.5
A polymer component containing at least components (A) and (B), which has been prepolymerized in an amount equivalent to mmol of electron donor catalyst component (C), and an additional amount of component (B) as necessary. ) and/or component (C). The partial pressure of 1-butene varies depending on the polymerization temperature, but is within a range where liquefaction does not occur in a substantial amount,
It is usually about 1 to 15 kg/cm 2 . During polymerization,
A highly crystalline, highly stereoregular 1-butene copolymer mainly composed of 1-butene may be produced by coexisting a small amount of other olefins. Further, a molecular weight regulator such as hydrogen may be present in order to control the molecular weight. Furthermore, an inert gas having a boiling point lower than that of 1-butene, such as nitrogen, methane, ethane, propane, etc., may also be present. The coexistence of these inert gases further reduces the tendency of the polymer to agglomerate, and also facilitates the removal of polymerization heat. The effective coexistence amount of the inert gas is 0.2 moles or more relative to 1-butene. Gas phase polymerization can be carried out using a fluidized bed or a stirred fluidized bed. Alternatively, the reaction can be carried out while the gas component is flowing through a tubular polymerization vessel. When carrying out slurry polymerization of 1-butene prior to gas phase polymerization, conditions should be selected so that poly-1-butene is not softened or dissolved by the liquid medium. As the liquid medium, it is preferable to select 1-butene itself or an easily vaporized inert hydrocarbon such as propane or butane in order to perform gas phase polymerization in a later step, and the polymerization temperature is about 0 to 50°C. Should be done at low temperatures. The concentration of each catalyst component per liquid phase and other polymerization conditions are the same as those described for gas phase polymerization. According to the present invention, even if a small amount of liquid components are mixed into the gas phase polymerization system along with a catalyst, there will be little aggregation of polymers and adhesion of polymers to walls despite the relatively high polymerization temperature. Stable continuous polymerization is possible. As described above, the presence of a liquid component generally accelerates the reaction rate of gas phase polymerization, and therefore can be said to be a rather preferable embodiment in the present invention. Next, examples will be shown. Example 1 [Catalyst synthesis] 7.2 g of anhydrous MgCl 2 and 23 decane in a 200 ml flask
ml and 23 ml of 2-ethylhexanol,
A heating reaction was carried out at 120° C. for 2 hours to obtain a homogeneous solution, and then 1.68 ml of ethyl benzoate was added. Pour 200ml of TiCl 4 into a 400ml flask and heat to -20°C.
The entire amount of the above homogeneous solution was added dropwise over 1 hour while the solution was kept cooled to 80°C, and then the temperature was raised to 80°C. 80℃
After stirring for 2 hours at 90° C., the solid portion was collected by filtration, suspended in 200 ml of fresh TiCl 4 and stirred at 90° C. for 2 hours. After the stirring was completed, the solid portion collected by heating was thoroughly washed with hot kerosene and hexane to obtain a titanium catalyst component. The catalyst contains Ti4.5wt%,
Contains Cl60wt%, Mg18wt%, average particle size 15μ,
The σg was 1.25, and the specific surface area was 195 m 2 /g. [Catalyst pretreatment] After resuspending the obtained catalyst slurry in hexane to give 5 mmol/converted to Ti atoms, triethylaluminum was added to 15 mmol/,
Methyl p-toluate was added at a concentration of 5 mmol, and propylene was added to titanium catalyst component 1.
It was supplied at a rate of 3 g/g, and the treatment was carried out at 40°C. [Polymerization] Using a fluidized bed polymerization vessel with a diameter of 300 mm and a reaction volume of 100 mm, a Ti catalyst slurry readjusted to 3.6 mmol/hexane in terms of Ti atoms was added to the vessel at a rate of 0.3/hr from a catalyst drum equipped with a stirrer. , triethylaluminum was supplied at a rate of 30 mmol/hr, and methyl p-toluate was supplied at a rate of 7.5 mmol/hr. On the other hand, 1-butene, hydrogen and nitrogen are hydrogen/1-butene (mole ratio) = 0.05, nitrogen/1-butene (mole ratio) =
1, and gas was supplied at a superficial velocity of 35 cm/sec. The polymer was extracted so that the amount of poly-1-butene in the polymerization vessel remained approximately constant. The polymerization temperature was 72°C and the polymerization pressure was 4.1Kg/cm 2 G. Thus the melt index (190℃, load 10Kg) 70
White poly-1-butene powder having a bulk specific gravity of 390 Kg/m 3 and an average particle size of 340 μm was obtained at a rate of 3.5 Kg/hr. Only less than 1% of the particles had a particle size of 1 mm or more. Example 2 In the polymerization of Example 1, the following conditions were changed. Propylene prepolymerization amount...45 per 1g of Ti catalyst component
g Catalyst component supply amount Ti catalyst component 0.42/hr Triisobutylaluminum 45 mmol/hr p-Methyl toluate 9 mmol/hr Supply gas...1-butene, hydrogen and propane Hydrogen/1-butene (molar ratio) = 0.03 Propane/1- Butene (mole ratio) = 0.8 Gas superficial velocity 37cm/sec Polymerization conditions...Pressure 4.7Kg/ cm2G Temperature 71℃ As a result, bulk specific gravity 430Kg/ m3 , melt index 20g/10 minutes, average particle size 290μ. Poly-1-butene white powder was obtained at a rate of 4.2 Kg/hr. There were no aggregates with a particle size of 1 mm or more. Comparative Example 1 In Example 1, when the catalyst pretreatment was omitted, the interior of the polymerization vessel melted 3 hours after the start of catalyst supply, making it impossible to operate. When I examined the melted material after opening it, I found that each grain was not round in shape.
Moreover, the surface was extremely uneven. Comparative Example 2 In Example 1, when the catalyst pretreatment was changed from propylene to 1-butene, aggregates of 1 mm or more began to form around 4 hours after the start of catalyst supply.
After several hours, the plant became inoperable due to a blockage in the extraction line for the produced powder. When the polymerization vessel was opened, a large amount of polybutene aggregates were found directly above the dispersion plate. Comparative Example 3 [Catalyst Synthesis] 20 g of commercially available anhydrous magnesium chloride and 6.0 ml of ethyl benzoate were mixed in a nitrogen atmosphere in a container with an internal volume of 800 ml and an inner diameter of 100 mm containing 100 stainless steel (SUS-302) balls with a diameter of 15 mm. It was charged into a stainless steel container and co-pulverized for 50 hours using a vibration mill device with a capacity of 7G. The obtained solid treated product was suspended in titanium tetrachloride and reacted at 100°C for 2 hours.
The solid components were separated and washed repeatedly with hexane. A composition analysis of the obtained solid catalyst component revealed that per gram of solid, Ti was 21 mg, Mg was 210 mg, and chlorine was 670 mg.
mg, and ethyl benzoate 88 mg. Also obtained
The catalyst average particle diameter of the Ti catalyst component is 17.8μ, the geometric standard deviation σg of the catalyst particle size distribution is 2.24, and the specific surface area of the catalyst is
It was 185m 2 /g. <Polymerization> When the same method as in Example 2 was carried out, the polymerization temperature suddenly rose to 90° C. 5 hours after the start of polymerization, and operation became impossible. When the polymerization vessel was opened, approximately 5 kg was found.
of molten polymer was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に使用する触媒の調製
工程を模式的に示すフローチヤートである。
FIG. 1 is a flowchart schematically showing the steps for preparing a catalyst used in the method of the present invention.

Claims (1)

【特許請求の範囲】 1 チーグラー型触媒の存在下で1−ブテンを重
合してポリ−1−ブテンを製造する方法におい
て、チーグラー型触媒として、(A)マグネシウム、
チタン、ハロゲン及び電子供与体を必須成分とし
て含み、平均粒径が1ないし200μ、粒度分布の
幾何標準偏差σgが2.1未満である高活性固体状
チタン触媒成分と(B)有機アルミニウム化合物触媒
成分とから形成される触媒を用い、1−ブテンの
重合に先立つて該固体触媒成分(A)中のチタン1m
mol当り、0.1ないし1000gのプロピレンを予備
重合させておくとともに、1−ブテンの少なくと
も一部は、40ないし100℃の温度で気相状態で重
合を行うことを特徴とするポリ−1−ブテンの製
造方法。 2 1−ブテンの重合を全て気相で行う特許請求
の範囲1記載の方法。 3 1−ブテンの重合を、最初スラリー状で行
い、次いで気相で行う特許請求の範囲1記載の方
法。
[Claims] 1. A method for producing poly-1-butene by polymerizing 1-butene in the presence of a Ziegler-type catalyst, in which (A) magnesium,
A highly active solid titanium catalyst component containing titanium, a halogen, and an electron donor as essential components, having an average particle size of 1 to 200μ, and a geometric standard deviation of particle size distribution σg of less than 2.1; and (B) an organoaluminum compound catalyst component. 1 m of titanium in the solid catalyst component (A) prior to the polymerization of 1-butene.
A method of producing poly-1-butene, characterized in that 0.1 to 1000 g of propylene per mol is prepolymerized, and at least a part of the 1-butene is polymerized in a gas phase at a temperature of 40 to 100°C. Production method. 2. The method according to claim 1, wherein the polymerization of 1-butene is entirely carried out in the gas phase. 3. The method according to claim 1, wherein the polymerization of 1-butene is first carried out in a slurry state and then in a gas phase.
JP11546382A 1982-07-05 1982-07-05 Production of poly-1-butene Granted JPS596205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11546382A JPS596205A (en) 1982-07-05 1982-07-05 Production of poly-1-butene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11546382A JPS596205A (en) 1982-07-05 1982-07-05 Production of poly-1-butene

Publications (2)

Publication Number Publication Date
JPS596205A JPS596205A (en) 1984-01-13
JPH0340046B2 true JPH0340046B2 (en) 1991-06-17

Family

ID=14663158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11546382A Granted JPS596205A (en) 1982-07-05 1982-07-05 Production of poly-1-butene

Country Status (1)

Country Link
JP (1) JPS596205A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386708A (en) * 1989-08-30 1991-04-11 Idemitsu Petrochem Co Ltd Polybutene-1 composition and its production

Also Published As

Publication number Publication date
JPS596205A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
JP3239184B2 (en) Manufacturing method of linear low density polyethylene
JPS631968B2 (en)
JPH072798B2 (en) Solid catalyst component for olefin polymerization
JPS5883006A (en) Polymerization of olefin
JPH04306203A (en) Improved drying catalyst for olefin polymerization
JPS6324001B2 (en)
EP0037291B1 (en) Improved process for the production of a propylene-containing block copolymer
JP4624986B2 (en) Olefin polymerization catalyst containing cycloalkanedicarboxylate as electron donor
JPS62104810A (en) Production of olefin polymer
JPH0364306A (en) Production of polyoflefin
JP3580001B2 (en) Method for producing propylene-olefin block copolymer
JPH03252407A (en) Production of polyolefin
JPH0261483B2 (en)
JPS6347723B2 (en)
JPH0340046B2 (en)
JPS59215301A (en) Polymerization or copolymerization of ethylene
JPH03121103A (en) Production of polyolefin
JP2008163188A (en) Propylene random copolymer particle and its preparation method
JPS647088B2 (en)
JPS6410532B2 (en)
JPH0368045B2 (en)
JPH032166B2 (en)
JPH0421685B2 (en)
JP3273216B2 (en) Method for producing polyolefin
JP3055079B2 (en) Method for producing polyolefin