JPH0339599B2 - - Google Patents

Info

Publication number
JPH0339599B2
JPH0339599B2 JP57230403A JP23040382A JPH0339599B2 JP H0339599 B2 JPH0339599 B2 JP H0339599B2 JP 57230403 A JP57230403 A JP 57230403A JP 23040382 A JP23040382 A JP 23040382A JP H0339599 B2 JPH0339599 B2 JP H0339599B2
Authority
JP
Japan
Prior art keywords
water level
signal
integral
reactor
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57230403A
Other languages
Japanese (ja)
Other versions
JPS59116099A (en
Inventor
Akira Asamasu
Shiro Ootsuka
Susumu Sumita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57230403A priority Critical patent/JPS59116099A/en
Publication of JPS59116099A publication Critical patent/JPS59116099A/en
Publication of JPH0339599B2 publication Critical patent/JPH0339599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は沸騰水形原子力発電プラントの原子炉
水位制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reactor water level control device for a boiling water nuclear power plant.

[発明の技術的背景] 一般に沸騰水形原子力発電プラントには、原子
炉圧力容器内に冷却水を供給する原子炉給水ポン
プの給水流量を制御し、原子炉水位を設定値に保
つ原子炉水位制御装置が配設されている。
[Technical Background of the Invention] In general, boiling water nuclear power plants have a reactor water level system that controls the water flow rate of the reactor feed water pump that supplies cooling water into the reactor pressure vessel to maintain the reactor water level at a set value. A control device is provided.

第1図は従来のこのような原子炉水位制御装置
を示すもので、この原子炉水位制御装置ではいわ
ゆる3要素制御が採用されており、原子炉水位設
定信号lsetと原子炉水位信号lとの差信号である
水位偏差信号Δlと、主蒸気流量信号Wsと給水流
量信号Wfとの差信号にミスマツチゲインKmを
乗算したミスマツチ流量信号ΔWとの和が加算器
1を介してPI制御器2に入力され、このPI制御
器2の比例演算器3で比例演算が、および積分演
算器4で積分演算がされた後、加算器5で加算さ
れ給水流量要求信号S1として給水ポンプ制御系
6に出力され、例えばタービン駆動の2台の原子
炉給水ポンプ6a,6bとモータ駆動の2台の原
子炉給水ポンプ7a,7bが制御される。
Figure 1 shows such a conventional reactor water level control device. This reactor water level control device employs so-called three-element control, in which the reactor water level setting signal lset and the reactor water level signal l are The sum of the water level deviation signal Δl, which is a difference signal, and the mismatch flow rate signal ΔW, which is obtained by multiplying the difference signal between the main steam flow rate signal Ws and the feed water flow rate signal Wf by the mismatch gain Km, is sent to the PI controller 2 via the adder 1. After the proportional calculation is performed by the proportional calculation unit 3 of this PI controller 2, and the integral calculation is performed by the integral calculation unit 4, the sum is added by the adder 5 and sent to the water supply pump control system 6 as the water supply flow rate request signal S1. For example, two turbine-driven reactor feed water pumps 6a, 6b and two motor-driven reactor feed water pumps 7a, 7b are controlled.

第2図に示す原子炉水位制御装置は加算器8、
PI制御器9および加算器10とから主体部分が
構成されており、加算器8は原子炉水位設定信号
lsetと原子炉水位信号lとを入力し、この差信号
である水位偏差信号ΔlをPI制御器9に出力する。
The reactor water level control device shown in FIG. 2 includes an adder 8,
The main part consists of a PI controller 9 and an adder 10, and the adder 8 receives a reactor water level setting signal.
lset and the reactor water level signal l are input, and a water level deviation signal Δl, which is a difference signal between them, is output to the PI controller 9.

PI制御器9は水位偏差信号Δlを入力し、この
水位偏差信号Δlに比例演算器11により比例動
作を、および積分演算器12により積分動作を加
え、これを加算器13で加算した後、原子炉水位
要求信号S2として加算器10に出力する。
The PI controller 9 inputs the water level deviation signal Δl, adds a proportional operation to the water level deviation signal Δl by a proportional calculator 11, and an integral action by an integral calculator 12, and adds these to the water level deviation signal Δl by an adder 13. It is output to the adder 10 as the reactor water level request signal S2.

加算器10は原子炉水位要求信号S2と、主蒸
気流量信号Wsと給水流量信号Wfとの差信号にミ
スマツチゲインKmを乗算したミスマツチ流量信
号ΔWとを加算し、この信号を給水流量要求信号
S3として給水ポンプ制御系6に出力する。
The adder 10 adds the reactor water level request signal S2 and a mismatch flow rate signal ΔW obtained by multiplying the difference signal between the main steam flow rate signal Ws and the feed water flow rate signal Wf by a mismatch gain Km, and converts this signal into the feed water flow rate request signal. It is output to the water supply pump control system 6 as S3.

[背景技術の問題点] しかしながら、第1図および第2図に示される
ように構成された原子炉水位制御装置では、積分
演算器4,12の出力信号がそのまま給水流量要
求信号S1,S3となつているため、例えば原子
炉出力が大幅に減少するような外乱が入つた場合
には、原子炉水位が上昇し、またその継続時間が
長くなり、原子炉水位の上昇が、基準水位より約
30〜50cm上方に設定されるレベル8に達しタービ
ントリツプにより原子炉スクラムを引き起こすお
それがある。
[Problems in the Background Art] However, in the reactor water level control device configured as shown in FIGS. 1 and 2, the output signals of the integral calculators 4 and 12 are directly used as the feed water flow rate request signals S1 and S3. For example, in the event of a disturbance that significantly reduces the reactor output, the reactor water level will rise and its duration will become longer, causing the reactor water level to rise approximately below the standard water level.
There is a risk that level 8, which is set 30 to 50 cm above the ground, will be reached and a turbine trip will cause a reactor scram.

すなわち、従来のPI制御器2,9における制
御ゲインは水位設定点変更試験において、原子炉
水位の応答が最も良好となる値に決定されるた
め、従来この制御ゲインの値は、外乱抑制の面か
らは小さな値となつている。
In other words, the control gains in the conventional PI controllers 2 and 9 are determined to the value that gives the best response of the reactor water level in the water level set point change test. It becomes a small value from .

そして、原子炉の通常運転では、PI制御器2,
9の積分ゲインとしてこのようにして設定された
積分ゲインが使用されているため、大幅な原子炉
水位変動を伴つた異常事象が発生した場合には、
原子炉水位が設定された水位に整定するまでに要
する時間が長くなり、原子炉水位の変化幅が大き
くなるという問題がある。
During normal operation of the reactor, the PI controller 2,
Since the integral gain set in this way is used as the integral gain of
There is a problem in that it takes a long time for the reactor water level to settle to a set water level, and the range of change in the reactor water level increases.

[発明の目的] 本発明はかかる従来の事情に対処してなされた
もので、大幅な原子炉水位変動を伴つた異常事象
が生じた場合にPI制御器の制御ゲインを大きく
することにより、原子炉水位の大幅な変動を抑制
することのできる原子炉水位制御装置を提供しよ
うとするものである。
[Purpose of the Invention] The present invention has been made in response to the above-mentioned conventional situation.When an abnormal event accompanied by a large fluctuation in the reactor water level occurs, by increasing the control gain of the PI controller, the The present invention aims to provide a reactor water level control device that can suppress large fluctuations in reactor water level.

[発明の概要] すなわち本発明は、原子炉水位設定信号と原子
炉水位信号との差をとり水位偏差信号を出力する
第1の加算手段と、前記水位偏差信号に比例演算
を行い比例水位偏差信号を出力する比例演算手段
と、前記水位偏差信号に対して積分演算を行い積
分水位偏差信号を出力する積分演算手段と、前記
水位偏差信号に応じて前記積分演算手段のゲイン
を設定するものであり、外乱により原子炉水位が
変動した場合、前記積分演算手段のゲインを変更
し、前記原子炉水位が整定したのちは通常のゲイ
ンに戻す積分ゲイン設定手段と、前記比例水位偏
差信号と前記積分水位偏差信号とを加算して原子
炉水位要求信号を出力する第2の加算手段と、主
蒸気流量信号と給水流量信号との差からなるミス
マツチ流量信号と前記原子炉水位要求信号とを加
算して給水流量要求信号を出力し、この給水流量
要求信号を給水ポンプ制御系に送る第3の加算手
段と、を具備する原子炉水位制御装置である。
[Summary of the Invention] That is, the present invention includes a first addition means that calculates the difference between a reactor water level setting signal and a reactor water level signal and outputs a water level deviation signal, and a proportional operation that performs a proportional calculation on the water level deviation signal to obtain a proportional water level deviation. A proportional calculation means for outputting a signal, an integral calculation means for performing an integral calculation on the water level deviation signal and outputting an integral water level deviation signal, and a gain of the integral calculation means is set according to the water level deviation signal. integral gain setting means for changing the gain of the integral calculating means when the reactor water level fluctuates due to disturbance and returning to the normal gain after the reactor water level has stabilized; a second adding means for adding the water level deviation signal and outputting the reactor water level request signal; and adding the reactor water level request signal to a mismatch flow rate signal consisting of the difference between the main steam flow rate signal and the feed water flow rate signal. This is a nuclear reactor water level control device comprising: third adding means for outputting a feed water flow rate request signal from the feed water pump control system and sending the feed water flow rate request signal to a feed water pump control system.

[発明の実施例] 以下本発明の詳細を図面に示す一実施例につい
て説明する。
[Embodiment of the Invention] The details of the present invention will be described below with reference to an embodiment shown in the drawings.

第3図は本発明の一実施例の原子炉水位制御装
置を示すもので、この原子炉水位制御装置はPI
制御器14と、このPI制御器14の積分演算器
15の積分ゲインの設定を行なう積分ゲイン設定
器16とから主体部分が構成されている。
Figure 3 shows a reactor water level control system according to an embodiment of the present invention.
The main part is composed of a controller 14 and an integral gain setter 16 that sets the integral gain of the integral calculator 15 of the PI controller 14.

すなわち、加算器17は原子炉水位設定信号
lsetと原子炉水位信号lとを入力し、この偏差信
号である水位偏差信号ΔlをPI制御器14および
積分ゲイン設定器16に出力する。
In other words, the adder 17 receives the reactor water level setting signal.
lset and the reactor water level signal l are input, and the water level deviation signal Δl, which is this deviation signal, is output to the PI controller 14 and the integral gain setter 16.

PI制御器14は比例処理を行なう比例演算器
18と、積分処理を行なう積分演算器15とから
構成されており、比例演算器18に入力された水
位偏差信号Δlはここで比例処理され比例水位偏
差信号S5として加算器19に出力される。そし
て、積分演算器15に入力された水位偏差信号
Δlはここで積分処理され、積分水位偏差信号S
6として加算器19に出力される。
The PI controller 14 is composed of a proportional calculator 18 that performs proportional processing and an integral calculator 15 that performs integral processing, and the water level deviation signal Δl input to the proportional calculator 18 is proportionally processed here to produce a proportional water level. It is output to the adder 19 as a deviation signal S5. Then, the water level deviation signal Δl input to the integral calculator 15 is integrated here, and the integrated water level deviation signal S
6 is output to the adder 19.

しかして、積分演算器15の積分ゲインは積分
ゲイン設定器16により与えられており、この積
分ゲイン設定器16は原子炉通常運転中は原子炉
水位設定点変更試験で設定された積分ゲインを積
分演算器15に出力する。
Therefore, the integral gain of the integral calculator 15 is given by the integral gain setter 16, and during normal reactor operation, the integral gain setter 16 integrates the integral gain set in the reactor water level set point change test. It is output to the arithmetic unit 15.

一方、この積分ゲイン設定器16には水位偏差
信号Δlが入力されており、積分ゲイン設定器1
6がこの水位偏差信号Δlに基づいて原子炉水位
が基準水位から大幅に変動したと判断した場合に
は、積分ゲイン設定器16は原子炉水位設定点変
更試験で設定された積分ゲインより大きなゲイン
を積分演算器15に出力する。
On the other hand, the water level deviation signal Δl is input to the integral gain setter 16, and the integral gain setter 16 receives the water level deviation signal Δl.
6 determines that the reactor water level has significantly fluctuated from the reference water level based on this water level deviation signal Δl, the integral gain setter 16 sets a gain larger than the integral gain set in the reactor water level set point change test. is output to the integral calculator 15.

第4図はこのような積分ゲイン設定器16に設
定される積分ゲインの一例を示すもので、図にお
いて横軸には水位偏差信号Δlが縦幅には積分ゲ
インがとられている。
FIG. 4 shows an example of an integral gain set in such an integral gain setting device 16, in which the horizontal axis represents the water level deviation signal Δl, and the vertical axis represents the integral gain.

すなわち、この例では水位偏差が−11cm〜11cm
の間は積分ゲインは直線aで示される初期ゲイン
とされ、水位偏差が−11cm未満または11cmを越え
る場合には、直線bで示される積分ゲインは初期
理ゲインの2倍とされている。したがつて、この
積分ゲイン設定器16では、原子炉水位が整定す
ると水位偏差信号Δlは−11cm〜11cmの間に収ま
るため、積分ゲインは自動的に初期ゲインにリセ
ツトされることになる。
In other words, in this example, the water level deviation is between -11cm and 11cm.
During this period, the integral gain is the initial gain shown by the straight line a, and when the water level deviation is less than -11 cm or exceeds 11 cm, the integral gain shown by the straight line b is twice the initial gain. Therefore, in this integral gain setter 16, when the reactor water level is stabilized, the water level deviation signal Δl falls within the range of -11 cm to 11 cm, so that the integral gain is automatically reset to the initial gain.

加算器19は比例演算器18から比例水位偏差
信号S5を、積分演算器15から積分水位偏差信
号S6を入力し、これらの信号を加算しこれを原
子炉水位要求信号S7として加算器21に出力す
る。
The adder 19 inputs the proportional water level deviation signal S5 from the proportional calculator 18 and the integral water level deviation signal S6 from the integral calculator 15, adds these signals, and outputs it to the adder 21 as a reactor water level request signal S7. do.

加算器21はこの原子炉水位要求信号S7と、
主蒸気流量信号Wsと給水流量信号Wfとの偏差信
号にミスマツチゲインKmを乗算したいわゆるミ
スマツチ流量信号S8とを入力し、これらを加算
してこれを給水流量要求信号S9として給水ポン
プ制御系6に出力する。
The adder 21 receives this reactor water level request signal S7,
A so-called mismatch flow rate signal S8, which is obtained by multiplying the deviation signal between the main steam flow rate signal Ws and the feed water flow rate signal Wf by a mismatch gain Km, is input, and these are added together to form the feed water flow rate request signal S9 in the feed water pump control system 6. Output to.

以上のように構成された原子炉水位制御装置で
は、原子炉が通常運転水位で運転されている時に
は通常の応答と変りないが、積分ゲイン設定器1
6が原子炉水位が大幅に変動する事象が発生した
と判断した場合には、この積分ゲイン設定器16
は例えば第4図に直線bとして示す大きな積分ゲ
インを積分演算器15に出力し、この結果、積分
演算器15の積分能力が高められ、原子炉水位の
整定が早められることとなる。
In the reactor water level control system configured as described above, when the reactor is operated at the normal operating water level, the response is the same as normal, but the integral gain setting device 1
6 determines that an event in which the reactor water level fluctuates significantly has occurred, this integral gain setting device 16
For example, outputs a large integral gain shown as a straight line b in FIG. 4 to the integral calculator 15, and as a result, the integration ability of the integral calculator 15 is increased, and the reactor water level is quickly settled.

第5図は再循環ポンプがランバツクした時の原
子炉水位の応答比較を示すもので、横軸には時間
が縦軸には原子炉水位がとられており、図中曲線
cは第1図に示す従来の原子炉水位制御装置によ
る応答波形を、曲線bは第3図に示す原子炉水位
制御装置において積分ゲイン設定器16が第4図
に示すような積分ゲインの設定を積分演算器15
に与えた時の応答波形を示している。
Figure 5 shows a comparison of the response of the reactor water level when the recirculation pump runs back.The horizontal axis shows time and the vertical axis shows the reactor water level. Curve b represents the response waveform of the conventional reactor water level control device shown in FIG.
It shows the response waveform when applied to .

この図から明らかなように第3図に示す実施例
の原子炉水位制御装置では、従来の原子炉水位制
御装置に比較し原子炉水位の変動を大幅に抑制す
ることができ、また原子炉水位を速やかに基準水
位に回復させることができる。
As is clear from this figure, the reactor water level control device of the embodiment shown in FIG. can be quickly restored to the standard water level.

[発明の効果] 以上述べたように本発明の原子炉水位制御装置
によれば、原子炉出力が大幅に変動するような事
象の発生時において、主蒸気流量の変化に対する
給水流量の追従遅れを抑制することができ、これ
により原子炉水位の変化幅を極力小さくすること
ができ、この結果水位上昇による原子炉スクラム
等を回避することができる。
[Effects of the Invention] As described above, according to the reactor water level control device of the present invention, when an event that significantly fluctuates the reactor output occurs, the delay in follow-up of the feed water flow rate with respect to the change in the main steam flow rate can be reduced. As a result, the range of change in the reactor water level can be made as small as possible, and as a result, it is possible to avoid reactor scrams and the like due to a rise in the water level.

なお、本発明は各給水ポンプにポンプ流量制御
装置が設けられているいないに係わらず適用する
ことができ、どちらの場合にもその制御性能を大
幅に改善することができる。
Note that the present invention can be applied regardless of whether or not each water supply pump is provided with a pump flow rate control device, and in either case, the control performance can be significantly improved.

また、以上述べた実施例では、積分演算器15
と積分ゲイン設定器16とを並列に配設し積分ゲ
イン設定器16から積分演算器15に積分ゲイン
を出力する例について述べたが、本発明はかかる
実施例に限定されるものではなく、積分演算器1
5の前段に積分ゲイン設定器16を直列に介挿し
てもよいことは勿論である。
Further, in the embodiment described above, the integral calculator 15
Although an example has been described in which the integral gain setter 16 and the integral gain setter 16 are arranged in parallel and the integral gain is output from the integral gain setter 16 to the integral calculator 15, the present invention is not limited to such an embodiment. Arithmetic unit 1
It goes without saying that the integral gain setter 16 may be inserted in series upstream of the controller 5.

さらに、以上述べた実施例では、積分演算器1
5の積分ゲインを変化させた例について述べた
が、比例演算器18および積分演算器15の比例
ゲインおよび積分ゲインをそれぞれ変化させるよ
うに構成してもよいことは勿論である。但し比例
演算器18の比例ゲインを変化させる場合には給
水流量に振動性が出てくるおそれがある。
Furthermore, in the embodiment described above, the integral calculator 1
Although an example has been described in which the integral gain of 5 is changed, it goes without saying that the proportional gain and the integral gain of the proportional calculator 18 and the integral calculator 15 may be changed respectively. However, if the proportional gain of the proportional calculator 18 is changed, there is a risk that the water supply flow rate may become oscillatory.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来の原子炉水
位制御装置の一実施例を示すブロツク図、第3図
は本発明の一実施例の原子炉水位制御装置を示す
ブロツク図、第4図は積分ゲイン設定の一例を示
すグラフ、第5図は再循環ポンプのランバツク時
における原子炉水位の応答を示すグラフである。 14……PI制御器、15……積分演算器、1
6……積分ゲイン設定器、18……、比例演算
器、S5……比例水位偏差信号、S6……積分水
位偏差信号、S7……原子炉水位要求信号、S8
……ミスマツチ流量信号、S9……給水流量要求
信号、lset……原子炉水位設定信号、l……原子
炉水位信号、Δl……水位偏差信号。
1 and 2 are block diagrams showing an embodiment of a conventional reactor water level control system, FIG. 3 is a block diagram showing a reactor water level control system according to an embodiment of the present invention, and FIG. 4 is a block diagram showing an embodiment of a conventional reactor water level control system. FIG. 5 is a graph showing an example of the integral gain setting, and is a graph showing the response of the reactor water level during runback of the recirculation pump. 14...PI controller, 15...Integral calculator, 1
6... Integral gain setting device, 18... Proportional calculator, S5... Proportional water level deviation signal, S6... Integral water level deviation signal, S7... Reactor water level request signal, S8
...Mismatch flow rate signal, S9...Water supply flow rate request signal, lset...Reactor water level setting signal, l...Reactor water level signal, Δl...Water level deviation signal.

Claims (1)

【特許請求の範囲】 1 原子炉水位設定信号と原子炉水位信号との差
をとり水位偏差信号を出力する第1の加算手段
と、 前記水位偏差信号に比例演算を行い比例水位偏
差信号を出力する比例演算手段と、 前記水位偏差信号に対して積分演算を行い積分
水位偏差信号を出力する積分演算手段と、 前記水位偏差信号に応じて前記積分演算手段の
ゲインを設定するものであり、外乱により原子炉
水位が変動した場合、前記積分演算手段のゲイン
を変更し、前記原子炉水位が整定したのちは通常
のゲインに戻す積分ゲイン設定手段と、 前記比例水位偏差信号と前記積分水位偏差信号
とを加算して原子炉水位要求信号を出力する第2
の加算手段と、 主蒸気流量信号と給水流量信号との差からなる
ミスマツチ流量信号と前記原子炉水位要求信号と
を加算して給水流量要求信号を出力し、この給水
流量要求信号を給水ポンプ制御系に送る第3の加
算手段と、 を具備する原子炉水位制御装置。
[Scope of Claims] 1. A first addition means that calculates the difference between the reactor water level setting signal and the reactor water level signal and outputs a water level deviation signal, and performs a proportional calculation on the water level deviation signal and outputs a proportional water level deviation signal. a proportional calculation means for performing an integral calculation on the water level deviation signal and outputting an integral water level deviation signal; and a gain of the integral calculation means for setting the gain of the integral calculation means according to the water level deviation signal; integral gain setting means for changing the gain of the integral calculation means when the reactor water level fluctuates due to the change in the reactor water level, and returning the gain to the normal gain after the reactor water level has stabilized; and the proportional water level deviation signal and the integral water level deviation signal. A second signal that outputs a reactor water level request signal by adding the
adding means for adding the mismatched flow rate signal consisting of the difference between the main steam flow rate signal and the feed water flow rate signal and the reactor water level request signal to output a feed water flow rate request signal, and controlling the feed water pump by using this feed water flow rate request signal. A nuclear reactor water level control device comprising: third addition means for sending data to the system;
JP57230403A 1982-12-23 1982-12-23 Reactor water level control device Granted JPS59116099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230403A JPS59116099A (en) 1982-12-23 1982-12-23 Reactor water level control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230403A JPS59116099A (en) 1982-12-23 1982-12-23 Reactor water level control device

Publications (2)

Publication Number Publication Date
JPS59116099A JPS59116099A (en) 1984-07-04
JPH0339599B2 true JPH0339599B2 (en) 1991-06-14

Family

ID=16907330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230403A Granted JPS59116099A (en) 1982-12-23 1982-12-23 Reactor water level control device

Country Status (1)

Country Link
JP (1) JPS59116099A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660958B2 (en) * 1988-01-12 1994-08-10 株式会社日立製作所 Water supply controller for nuclear power plant
JPH02173597A (en) * 1988-12-26 1990-07-05 Nippon Atom Ind Group Co Ltd Nuclear reactor feed water controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135195A (en) * 1980-03-27 1981-10-22 Tokyo Shibaura Electric Co Adjustment forecast feedwater control device of atomic power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135195A (en) * 1980-03-27 1981-10-22 Tokyo Shibaura Electric Co Adjustment forecast feedwater control device of atomic power plant

Also Published As

Publication number Publication date
JPS59116099A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
JPH0339599B2 (en)
JPH0339279B2 (en)
JP2799068B2 (en) Reactor power control method and apparatus
JPH0464099A (en) Feed water controller of steam generation plant
JPH0371677B2 (en)
JPS59230195A (en) Controller for water level of nuclear reactor
JPS6176993A (en) Method and device for controlling feed water to nuclear reactor
JPH06337298A (en) Condensate flow rate controller for pwr plant
JPH0371679B2 (en)
JPS5849647B2 (en) Hatsudenshiyo no Uten Seigiyosouchi
JPS6248763B2 (en)
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JPS6175296A (en) Controller for water level of nuclear reactor
JPH0335922Y2 (en)
JPH05240997A (en) Reactor water supply control device
JPS6314002A (en) Feedwater controller for steam generator
JPH0446323B2 (en)
JPH05172991A (en) Suppression device of nuclear reactor water level
JPH0566557B2 (en)
JPS5838897A (en) Reactor feedwater control device
JPH0368360B2 (en)
JPS63285205A (en) Load setting device for turbine control device
JPS6343529A (en) Load regulating controller of hydro-electric power station
JPS6214046B2 (en)