JPH0339402A - Manufacture of metal powder sintered body - Google Patents

Manufacture of metal powder sintered body

Info

Publication number
JPH0339402A
JPH0339402A JP17420789A JP17420789A JPH0339402A JP H0339402 A JPH0339402 A JP H0339402A JP 17420789 A JP17420789 A JP 17420789A JP 17420789 A JP17420789 A JP 17420789A JP H0339402 A JPH0339402 A JP H0339402A
Authority
JP
Japan
Prior art keywords
powder
metal powder
sintered body
oxygen
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17420789A
Other languages
Japanese (ja)
Inventor
Hirofumi Furukawa
洋文 古河
Shigeyuki Matsuda
松田 茂行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17420789A priority Critical patent/JPH0339402A/en
Publication of JPH0339402A publication Critical patent/JPH0339402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered body having excellent performance even if metal powder easy to be oxidized is used by degreasing raw material powder with mixed graphite under non-oxidizing atmosphere after injection-molding and successively, heating under vacuum. CONSTITUTION:In the metal powder, the graphite powder of amt. corresponding to stoichiometrically oxygen in the powder, is blended and in this mixed powder, thermoplastic binder is added. This raw material powder is injection-molded and the formed body is held at the prescribed temp. under non-oxidizing atmosphere to degrease and after that, this is heated under vacuum to execute reduction and sintering to the metal powder. By this method, water atomized fine powder of low carbon low alloy steel having comparatively much content of oxygen can be used as the raw material. Further, the oxygen content in the sintered body is reduced and the mechanical property of the material is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は射出成形を利用した金属粉末焼結体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a metal powder sintered body using injection molding.

〔従来の技術〕[Conventional technology]

通常の粉末冶金法は金属粉末に粉末の充填性を向上させ
る目的で僅かのバインダーを添加してなるものをプレス
成形し、真空中あるいは非酸化性雰囲気中にて焼結して
目的の素材あるいは部品を製造する方法である。このプ
レス成形粉末冶金法では使用する金属粉末の粒径が制限
され、微細な粉末は充填性が悪いので使用することがで
きない。そのため、焼結時に金属粉末の緻密化が充分で
なく一般的に機械的性質が劣る。また金属粉末を直接金
型中にてプレス成形するために製品の形状にも制限があ
り、あ筐り複雑なものの製造は困難であるという欠点も
ある。
In the normal powder metallurgy method, metal powder is press-molded with a small amount of binder added to improve the filling properties of the powder, and then sintered in a vacuum or non-oxidizing atmosphere to form the desired material or material. It is a method of manufacturing parts. In this press molding powder metallurgy method, the particle size of the metal powder used is limited, and fine powder cannot be used because it has poor filling properties. Therefore, the metal powder is not sufficiently densified during sintering, and mechanical properties are generally inferior. In addition, since the metal powder is directly press-molded in a mold, there are restrictions on the shape of the product, and it is difficult to manufacture products with complicated housings.

これに対して、金属粉末に熱可塑性のバインダーを配合
してスラリー化したものを金型中へ押出し成形する射出
成形法は微細な金属粉末を使用できるので焼結時に緻密
化し良好な機械的性質を得ることができ、lた複雑形状
の品物の製造も可能で有るという特徴を有している。
On the other hand, the injection molding method, in which a slurry of metal powder mixed with a thermoplastic binder is extruded into a mold, can use fine metal powder, which becomes dense during sintering and has good mechanical properties. It has the characteristics that it is possible to obtain products with complex shapes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

射出成形を利用した粉末冶金法すなわち射出成形粉末冶
金法は微細な金属粉末を使用できる特徴を有している反
面、以下のような問題点も併せもっている。
Although the powder metallurgy method using injection molding, that is, the injection molding powder metallurgy method, has the feature of being able to use fine metal powder, it also has the following problems.

平均粒径が10μm程度の微細金属粉末は一般に水アト
マイズ法にて製造されるために製造時に酸化され、粒径
が小さい程比表面積が大きいので酸化の程度が大きくな
る。そのため、従来の射出成形粉末冶金では、鉄粉を例
にとって説明すると素材粉末としてカーボニル鉄粉ある
いはステンレス鋼粉末が使用され、特に高強度等が要求
される機械部品等の製造には酸化されやすい低炭素、低
合金鋼の水アトマイズ微粉末を使用することは困難であ
る。
Fine metal powder with an average particle diameter of about 10 μm is generally produced by a water atomization method and is therefore oxidized during production, and the smaller the particle diameter, the greater the specific surface area and therefore the greater the degree of oxidation. Therefore, in conventional injection molding powder metallurgy, carbonyl iron powder or stainless steel powder is used as the raw material powder, taking iron powder as an example. It is difficult to use water atomized fine powder of carbon and low alloy steel.

本発明は上記技術水準に鑑み、酸化されやすい金属粉末
でも射出成形を利用して性能の優れた金属粉末焼結体を
得ることができる方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention seeks to provide a method for obtaining a metal powder sintered body with excellent performance using injection molding even with metal powder that is easily oxidized.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は金属粉末中の酸素に化学量論的に相当するグラ
ファイト粉末を配合した混合粉末に熱可塑性バインダー
を添加した原料粉末を、射出成形によう成形した後、非
酸化性雰囲気中にて脱脂し、その後真空中で加熱して金
属粉末の還元と焼結を行なうことを特徴とする金属粉末
焼結体の製造方法である。
In the present invention, raw material powder is made by adding a thermoplastic binder to a mixed powder containing graphite powder that is stoichiometrically equivalent to oxygen in metal powder, and then molded by injection molding, and then degreased in a non-oxidizing atmosphere. This method of manufacturing a metal powder sintered body is characterized in that the metal powder is reduced and sintered by heating in vacuum.

すなわち、本発明は例えば比較的多量の酸素を含有した
水アトマイズ微粉末に、含有酸素と化学量論的に一致す
る量の炭素粉末(グラファイト粉末)を配合し、真空中
で加熱することによυグラファイトと酸素を反応させて
還元して焼結体中の酸素を除去して所期の目的の金属粉
末焼結体を得る方法である。
That is, the present invention, for example, mixes carbon powder (graphite powder) in an amount stoichiometrically equal to the oxygen content into water atomized fine powder containing a relatively large amount of oxygen, and heats the mixture in a vacuum. υ This is a method of reacting graphite with oxygen and reducing it to remove oxygen from the sintered body to obtain the desired metal powder sintered body.

〔作用〕[Effect]

以下に示す化学反応式によう炭素と酸素が反応し、反応
生成物は気体になって、焼結体外へ逸散して還元される
。この反応速度は高温でかつ、00分圧が小さい程大き
く、圧力が1O−4Torr程度では約800°C以上
にて反応が進行する。従って真空中にて約800〜11
00°Cで還元を行ない、その後引続き昇温して120
0〜1300°Cにて焼結を行なえば低酸素で緻密な焼
結体、すなわち機械的性質の優れた焼結体を得ることが
できる。
Carbon and oxygen react according to the chemical reaction formula shown below, and the reaction product becomes a gas, which escapes to the outside of the sintered body and is reduced. The rate of this reaction increases as the temperature and partial pressure decrease, and at a pressure of about 10-4 Torr, the reaction proceeds at about 800°C or higher. Therefore, approximately 800 to 11
Reduction was carried out at 00°C, and then the temperature was raised to 120°C.
If sintering is performed at 0 to 1300°C, a dense sintered body with low oxygen content, that is, a sintered body with excellent mechanical properties, can be obtained.

C+○= c o             (1)〔
実施例〕 本発明の一実施態様を以下に説明する。第1表に化学組
成、第1図に粒度構成を示す845C相当の水アトマイ
ズ金属粉末に、次式で示す量のグラファイト微粉末(平
均粒径4μm)を添加してロッキングミキサーにて3時
間混合し、グラファイト添加量=Q、45X12/16
=O14(重量%)(2) これに変性ワックスと熱可塑性プラヌテイックからなる
バインダーを8重量%配合して加圧ニーダ中でQ、5詩
間混練した。これを粉砕後、温度約140°C1圧力1
500〜1800kgf/d2にて射出成形し、更に成
形体を窒素雰囲気中にて圧力8 kg f / 52、
最高加熱温度600°C1最高温度での保持5時間にて
脱脂を行なった。
C+○=c o (1) [
Example] One embodiment of the present invention will be described below. To water atomized metal powder equivalent to 845C whose chemical composition is shown in Table 1 and particle size structure shown in Figure 1, fine graphite powder (average particle size 4 μm) in the amount shown by the following formula is added and mixed for 3 hours in a rocking mixer. Graphite addition amount = Q, 45X12/16
=O14 (% by weight) (2) 8% by weight of a binder consisting of modified wax and thermoplastic planutic was blended with this and kneaded in a pressure kneader for 5 hours. After pulverizing this, the temperature is about 140°C, the pressure is 1
Injection molding is performed at 500 to 1800 kgf/d2, and the molded body is further heated at a pressure of 8 kgf/52 in a nitrogen atmosphere.
Degreasing was carried out at a maximum heating temperature of 600°C and holding at the maximum temperature for 5 hours.

第1表 原料粉末の化学組成 (wt%)これを第2図
に示すヒートパターンで、真空度(圧力)が10−’ 
Torrオーダにて還元及び真空焼結を実施した。第2
図にかいて1000 ’Cで2時間保持したのは、焼結
が進行して緻密化する以前に還元反応を促進するためで
ある。
Table 1 Chemical composition of raw material powder (wt%) This is shown in the heat pattern shown in Figure 2 at a vacuum degree (pressure) of 10-'
Reduction and vacuum sintering were performed at Torr order. Second
The reason why the temperature was maintained at 1000'C for 2 hours as shown in the figure is to promote the reduction reaction before sintering progresses and becomes densified.

真空焼結後の化学組成は第2表に示すとかりてあシ、原
料粉末中の酸素の99.2%カニ除去されてh5.グラ
ファイトを配合して真空中で加熱することによυ充分な
還元が行なわれていることが判る。また、との巣作での
焼結体の相対密度は約97%であり、機械的性質はグラ
ファイトを添加しない場合に比較して、引張強さは約1
.5倍、伸びは2.3倍に向上し、特に酸素を低減する
ことにより材料の靭性が向上することが判明した。
The chemical composition after vacuum sintering is shown in Table 2. After 99.2% of the oxygen in the raw material powder has been removed, the chemical composition is as shown in Table 2. It can be seen that sufficient reduction is achieved by blending graphite and heating in vacuum. In addition, the relative density of the sintered body made with graphite is about 97%, and the tensile strength is about 1% compared to the case where no graphite is added.
.. It was found that the toughness of the material was improved by 5 times, and the elongation was improved by 2.3 times, especially by reducing oxygen.

第2表 グラファイト添加還元・焼結後の化学紙e、(
wt%)以上、本発明につき特殊な実施例によって本発
明を説明したが、本発明は鉄粉焼結体の製造ばかうでな
く、他の金属粉末焼結体の製造にも適用しうるものであ
る。
Table 2 Chemical paper e after graphite addition reduction and sintering (
wt%) The present invention has been described above with reference to specific examples, but the present invention can be applied not only to the production of iron powder sintered bodies but also to the production of other metal powder sintered bodies. It is.

〔発明の効果〕〔Effect of the invention〕

本発明により以下の効果が発揮される。 The present invention exhibits the following effects.

(1)例えば、比較的酸素含有量の多い低炭素、低合金
鋼の水アトマイズ微粉末が使用できる。
(1) For example, water atomized fine powder of low carbon, low alloy steel with a relatively high oxygen content can be used.

この結果、任意の組成の焼結体を射出成形粉末冶金法に
て製造可能である。
As a result, a sintered body of any composition can be manufactured by injection molding powder metallurgy.

(2)焼結体中の酸素量が低減し、材料の機械的性質が
著しく向上する。
(2) The amount of oxygen in the sintered body is reduced, and the mechanical properties of the material are significantly improved.

(3)比較的低置な水アトマイズ粉末を使用できるため
製造コストが低下する。
(3) Production costs are reduced because water atomized powder can be used at a relatively low location.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例にかいて使用する原料粉末の粒
度分布を示す図表、第2図は本発明の実施例にかいて採
用した還元、焼結時のヒートパターンを示す図表である
Fig. 1 is a chart showing the particle size distribution of the raw material powder used in the embodiment of the present invention, and Fig. 2 is a chart showing the heat pattern during reduction and sintering employed in the embodiment of the present invention. .

Claims (1)

【特許請求の範囲】[Claims] 金属粉末中の酸素に化学量論的に相当するグラファイト
粉末を配合した混合粉末に熱可塑性バインダーを添加し
た原料粉末を、射出成形により成形した後、非酸化性雰
囲気中にて脱脂し、その後真空中で加熱して金属粉末の
還元と焼結を行なうことを特徴とする金属粉末焼結体の
製造方法。
The raw material powder is made by adding a thermoplastic binder to a mixed powder containing graphite powder that is stoichiometrically equivalent to the oxygen in the metal powder. After molding by injection molding, it is degreased in a non-oxidizing atmosphere, and then vacuum molded. A method for producing a metal powder sintered body, which comprises heating the metal powder inside to reduce and sinter the metal powder.
JP17420789A 1989-07-07 1989-07-07 Manufacture of metal powder sintered body Pending JPH0339402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17420789A JPH0339402A (en) 1989-07-07 1989-07-07 Manufacture of metal powder sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17420789A JPH0339402A (en) 1989-07-07 1989-07-07 Manufacture of metal powder sintered body

Publications (1)

Publication Number Publication Date
JPH0339402A true JPH0339402A (en) 1991-02-20

Family

ID=15974598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17420789A Pending JPH0339402A (en) 1989-07-07 1989-07-07 Manufacture of metal powder sintered body

Country Status (1)

Country Link
JP (1) JPH0339402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109531A (en) * 2011-11-18 2013-06-06 Fujitsu Fip Corp Apparatus and program for nutrition management
CN105251998A (en) * 2015-11-04 2016-01-20 深圳艾利门特科技有限公司 Sintering method for controlling carbon and oxygen content of powder metallurgy products
CN106825559A (en) * 2017-01-07 2017-06-13 东莞易力禾电子有限公司 resistor copper electrode sintering process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109531A (en) * 2011-11-18 2013-06-06 Fujitsu Fip Corp Apparatus and program for nutrition management
CN105251998A (en) * 2015-11-04 2016-01-20 深圳艾利门特科技有限公司 Sintering method for controlling carbon and oxygen content of powder metallurgy products
CN106825559A (en) * 2017-01-07 2017-06-13 东莞易力禾电子有限公司 resistor copper electrode sintering process

Similar Documents

Publication Publication Date Title
KR100584113B1 (en) Method of making a fecral material and such material
JP3559382B2 (en) Method for producing silicon nitride based sintered body
JPH0339402A (en) Manufacture of metal powder sintered body
JP2743090B2 (en) How to control the carbon content of metal injection products
JPH02107703A (en) Composition for injection molding
JP4493738B2 (en) Composite ceramics and method for producing the same
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS5895658A (en) Manufacture of silicon nitride sintered body
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH01184203A (en) Alloy powder for injected-compacting
JPH06279124A (en) Production of silicon nitride sintered compact
JPH06172810A (en) Production of tungsten alloy sintered compact
JPH04280903A (en) Manufacture of cemented carbide powder for injection molding and cemented carbide sintered product
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
KR970002092B1 (en) Method of manufacturing iron powder
JPH0257613A (en) Production of sintered metallic material and its raw powder
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH01184204A (en) Method for pretreating injecting molded body for producing sintered member
JPH07188801A (en) Production of titanium sintered compact
JPH0734154A (en) Manufacure of sintered hard alloy by injection molding
JPH01168845A (en) Iron-iron oxide sintered compact and its production
KR950014356B1 (en) Method of manufacturing composite materials of iron-siliconcarbide
KR930006442B1 (en) Sintered fe-co type magnetic materials
JP3564164B2 (en) Silicon nitride sintered body and method for producing the same
JP2020037735A (en) Alloy powder composition