JPH01184203A - Alloy powder for injected-compacting - Google Patents

Alloy powder for injected-compacting

Info

Publication number
JPH01184203A
JPH01184203A JP63009235A JP923588A JPH01184203A JP H01184203 A JPH01184203 A JP H01184203A JP 63009235 A JP63009235 A JP 63009235A JP 923588 A JP923588 A JP 923588A JP H01184203 A JPH01184203 A JP H01184203A
Authority
JP
Japan
Prior art keywords
powder
alloy
oxygen content
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63009235A
Other languages
Japanese (ja)
Inventor
Koshiro Ueda
上田 公志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63009235A priority Critical patent/JPH01184203A/en
Publication of JPH01184203A publication Critical patent/JPH01184203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture alloy powder having excellent fluidity at the time of injecting molding by mixing oxide powder of each metal element as alloy component and carbon powder, reducing and making the alloy powder specifying average particle size and oxygen content. CONSTITUTION:Each metal powder as the alloy component is mixed with the carbon powder, and this mixed powder is reduced to make the alloy powder having 1-30mum average particle size and 0.8-3wt.% oxygen content. By this method, the alloy powder for injecting molding, which has excellent fluidity at the time of injecting molding and can easily crush even if secondary particle is developed, is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、射出成形法による焼結部材の製造に適した
合金粉末に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy powder suitable for manufacturing sintered members by injection molding.

〔従来の技術〕[Conventional technology]

一般に、焼結部品を製造するためには、まず原料粉末を
バインダーと混合してプレス成形し、圧粉体としたのち
、この圧粉体を焼結することにより焼結部品を製造して
いた。しかし、かかる原料粉末とバインダーの混合粉末
をプレス成形して圧粉体とする形状付与方法は、焼結部
品が薄肉または複雑形状の場合には十分な形状付与が行
なわれず、歩留りも悪く、生産性の向上は望めなかった
Generally, in order to manufacture sintered parts, raw material powder is first mixed with a binder and press-formed to form a green compact, and then this green compact is sintered to produce sintered parts. . However, this shape-imparting method in which a mixed powder of raw material powder and binder is press-molded into a green compact does not provide sufficient shape when the sintered part is thin or has a complicated shape, resulting in poor yield and production. There was no hope for sexual improvement.

そこで、近年、プラスチックの射出成形法を金属粉末の
部品の形状付与に応用して、複雑形状の一部品の形状付
与した射出成形体を作製し、この射出成形体のバインダ
ーの除去を行なったのち焼結する技術が開発されてきた
。この射出成形に適した粉末は、比較的微細であること
が必要なため、カーボニル法による微細粉末または水ア
トマイズ法による粉末中の微細粉末を篩分して得られた
微細粉末が用いられている。上記射出成形用に適した粉
末の形状は流動性の点から球形が好ましいことが知られ
ている。
Therefore, in recent years, the plastic injection molding method has been applied to shaping parts of metal powder to produce injection molded parts with complex shapes, and after removing the binder from these injection molded parts, Sintering techniques have been developed. Powder suitable for this injection molding needs to be relatively fine, so fine powder obtained by sieving fine powder from carbonyl method or water atomization method is used. . It is known that the shape of the powder suitable for injection molding is preferably spherical from the viewpoint of fluidity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、カーボニル粉末を使用する場合には、粉末が高
価であり、かつ合金部材を製造する場合には合金成分の
粉末を添加混合する必要があるので、合金成分の偏析や
、焼結時の合金成分の拡散が不十分になり、所望の特性
が得られないことがある。
However, when carbonyl powder is used, the powder is expensive, and when manufacturing alloy parts, it is necessary to add and mix powders of alloying components, which may cause problems such as segregation of alloying components and Diffusion of components may become insufficient and desired properties may not be obtained.

一方、水アトマイズ法による合金粉末を使用する場合に
は、射出成形に適した粒径の粉末の歩留りが低いため、
やはり原料粉末が高価になる。
On the other hand, when using alloy powder produced by water atomization, the yield of powder with a particle size suitable for injection molding is low.
After all, the raw material powder is expensive.

これらの欠点を解決する粉末として、比較的安価で合金
成分の偏析がなく、焼結時に合金成分の拡散が十分に得
られる共還元粉末が考えられる。
A possible powder that can solve these drawbacks is a co-reduced powder that is relatively inexpensive, has no segregation of alloy components, and allows sufficient diffusion of alloy components during sintering.

ところが、通常の共還元粉末は、焼結性を向上させるた
めに、比較的高温で還元して酸素含有量を低くしている
ため微細な一次粒子は二次粒子を形成しやすく、かかる
二次粒子の存在は粉末の流動性を低下させるため射出成
形性を悪化させ、この二次粒子をボールミル等で粉砕し
ても完全には粉砕されず、偏平粒子が生成し、かかる偏
平粒子の存在する共還元粉末も流動性が悪いために射出
成形性は低くなるという問題点があった。
However, in order to improve sinterability, ordinary co-reduced powders are reduced at relatively high temperatures to lower the oxygen content, so fine primary particles tend to form secondary particles, and such secondary particles The presence of particles reduces the fluidity of the powder, thereby worsening injection moldability, and even if these secondary particles are crushed with a ball mill etc., they are not completely crushed and flat particles are generated, and the presence of such flat particles Co-reduced powder also has a problem in that injection moldability is low due to poor fluidity.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上記二次粒子を偏平粒子の生成
なく粉砕して、平均粒径:1〜30amの微粉末とする
ことができるならば、共還元粉末であっても射出成形性
は向上するという考えのもとi、5、この共還元粉末の
二次粒子を容易に解砕できるようにするため種々の研究
を行なった結果、酸素含有量=0.8〜3重量%の共還
元粉末は、二次粒子が生成しても、二次粒子の粉砕によ
り偏平粒子が生成することなく容易に解砕することがで
き、射出成形時の流動性のすぐれた粉末を製造すること
ができるという知見を得たのである。
Therefore, the present inventors believe that if the above-mentioned secondary particles can be pulverized to a fine powder with an average particle size of 1 to 30 am without the formation of flat particles, even if the co-reduced powder is injection moldable. Based on the idea that the secondary particles of this co-reduced powder can be easily crushed, we conducted various researches based on the idea that the secondary particles of this co-reduced powder can be easily crushed. Even if secondary particles are generated, co-reduced powder can be easily crushed without generating flat particles by crushing the secondary particles, producing a powder with excellent fluidity during injection molding. We obtained the knowledge that it is possible to do this.

この発明は、かかる知見にもとづいてなされたものであ
って、 合金成分となる各金属元素の酸化物粉末と炭素粉末との
混合粉末を還元して得られる平均粒径:1〜30μmの
合金粉末であって、酸素含有量:0.8〜3重量%の射
出成形用合金粉末に特徴を有するものである。
This invention was made based on this knowledge, and includes an alloy powder having an average particle size of 1 to 30 μm obtained by reducing a mixed powder of oxide powder of each metal element and carbon powder as alloy components. It is characterized by an alloy powder for injection molding having an oxygen content of 0.8 to 3% by weight.

つぎに、この発明の射出成形用合金粉末の平均粒径およ
び酸素含有量の限定理由について述べる。
Next, the reasons for limiting the average particle size and oxygen content of the alloy powder for injection molding of the present invention will be described.

(1)平均粒径 金属粉末は多量(一般には40vo、l)%程度)の樹
脂等のバインダーと混練した後、射出成形されるが、粉
末の平均粒径が30如を越えると所望の流動性が得られ
ず、金型のキャビティ内に十分充填されず、また、脱脂
後の粉末間の接触が少なくなって、形状の維持が困難と
なる。一方、平均粒径がIJljn未満となると多量の
バインダーの除去が困難となって、脱脂に長時間を要し
たり、成形体にクラックやふくれを生じる。
(1) Average particle size The metal powder is injection molded after being kneaded with a large amount (generally about 40 VO, L) of binder such as resin, but if the average particle size of the powder exceeds 30%, the desired flow It is difficult to maintain the shape of the powder due to insufficient contact between the powders after degreasing. On the other hand, if the average particle size is less than IJljn, it becomes difficult to remove a large amount of binder, requiring a long time for degreasing, or causing cracks and blisters in the molded product.

したがって、この発明の射出成形用合金粉末の平均粒径
:1〜30血と定めた。
Therefore, the average particle size of the alloy powder for injection molding of the present invention was determined to be 1 to 30 mm.

(2)酸素含有量 共還元粉末は、従来、一般のプレス成形、焼結工程によ
り真密度に近い焼結体としていたので、焼結体中に空孔
を残留させないためには、焼結過程で粉末中の酸素が炭
素によって還元されて生じるガスの発生をできるだけ少
なくする必要があり、このため粉末中の酸素含有量はで
きるだけ低く抑えられていた。しかし、このような低酸
素粉末では、既述のように二次粒子が強固となって粉砕
されにくい。すなわち粉末の酸素含有量を0.8重量%
未満とすると二次粒子の解砕が困難となり、所望の流動
性を有する粉末が得られない。一方その量が3重量%を
越えると、高温まで還元ガスによるガスが発生し、焼結
体中に空孔が残留しやすくなり、合金特性が低下する。
(2) Oxygen content co-reduced powder has conventionally been made into a sintered body close to true density through general press forming and sintering processes. It is necessary to minimize the generation of gas produced by the reduction of oxygen in the powder by carbon, and for this reason the oxygen content in the powder has been kept as low as possible. However, in such a low-oxygen powder, the secondary particles become strong and difficult to crush, as described above. That is, the oxygen content of the powder is 0.8% by weight.
If it is less than that, it will be difficult to crush the secondary particles and a powder with the desired fluidity will not be obtained. On the other hand, if the amount exceeds 3% by weight, gas is generated by the reducing gas up to high temperatures, pores tend to remain in the sintered body, and the alloy properties deteriorate.

なお、通常のプレス成形では、成形密度比が約70〜8
0%と高いため、酸素含有量が高いと上記のように焼結
時に発生する還元ガスが抜けに<<、焼結体中に空孔が
残留しやすいが、射出成形では成形体密度比が約60%
と低く、発生した還元ガスが抜けやすいので、0.8〜
3重量%程度の高い酸素量でも焼結体に空孔が残らない
In addition, in normal press molding, the molding density ratio is approximately 70 to 8.
Since the oxygen content is as high as 0%, as mentioned above, reducing gas generated during sintering cannot escape when the oxygen content is high, and pores tend to remain in the sintered body. However, in injection molding, the density ratio of the compact is Approximately 60%
Since the reducing gas generated is easy to escape, the temperature is 0.8~
Even with a high oxygen content of about 3% by weight, no pores remain in the sintered body.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

(1)原料粉末として、Cr:4%、Mo : 5%。(1) Raw material powder: Cr: 4%, Mo: 5%.

W:6%、v:2%、C:1%、残部二Feおよび不可
避不純物からなる成分組成(以上重量%)を有するFe
基共還元粉末を用意し、還元温度を変えて酸素含有量を
それぞれ第1表に示されるように調整した。
Fe having a component composition (wt%) consisting of W: 6%, v: 2%, C: 1%, the balance being diFe and unavoidable impurities.
Group co-reduced powders were prepared, and the oxygen content was adjusted as shown in Table 1 by varying the reduction temperature.

得られた粉末をボールミルを用いて10時間解砕した。The obtained powder was crushed using a ball mill for 10 hours.

解砕後の粉末の平均粒径も第1表に示した。The average particle size of the powder after crushing is also shown in Table 1.

これら粉末に、酸素含有量相当の炭素粉末を添加した後
、40vo、Q%の有機バインダー(具体的には、パラ
フィン、ワックス等)を加熱混練し、射出成形用の混合
原料を得、これら混合原料を第1図の射出成形体に射出
成形した。
After adding carbon powder equivalent to the oxygen content to these powders, 40vo, Q% organic binder (specifically, paraffin, wax, etc.) is heated and kneaded to obtain a mixed raw material for injection molding, and these are mixed. The raw material was injection molded into the injection molded body shown in FIG.

第1図は、射出成形体の斜視図、 第2図は、射出成形体の平面図、 第3図は、射出成形体の側面図、 である。この射出成形体は、クサビ形をしており、上記
第2図および第3図において、a : 10mmXb 
: 6mmX C: 3mmX d : 20mmの寸
法を有し、α:15度、β:30度の傾斜角度をもつ先
端部を有している。
FIG. 1 is a perspective view of the injection molded article, FIG. 2 is a plan view of the injection molded article, and FIG. 3 is a side view of the injection molded article. This injection molded product has a wedge shape, and in FIGS. 2 and 3 above, a: 10 mmXb
: 6 mm x C: 3 mm x d: 20 mm, and has a tip with an inclination angle of α: 15 degrees and β: 30 degrees.

かかる射出成形体の成形状態を調べ、この射出成形体を
水素気流中で脱脂してから、真空中、温度: 1230
℃、1時間保持の条件で焼結した。上記射出成形体の成
形状態、焼結体の密度比および空孔分布状態についても
調べて、それらの結果を第1表に示した。
The molding condition of the injection molded product was examined, and the injection molded product was degreased in a hydrogen stream, and then heated in a vacuum at a temperature of 1230°C.
Sintering was carried out under the conditions of holding at ℃ for 1 hour. The molding condition of the injection molded body, the density ratio of the sintered body, and the pore distribution condition were also investigated, and the results are shown in Table 1.

(2)原料粉末として、Cr:30%、W:12.5%
(2) As raw material powder, Cr: 30%, W: 12.5%
.

C: 2.5%、残部:Coおよび不可避不純物からな
る成分組成(以上重量%)を有するCo基共還元粉末を
用意し、還元温度を変えて酸素含有量をそれぞれ第2表
に示されるように調整した。
A Co-based co-reduced powder having a component composition (weight%) consisting of C: 2.5% and the remainder: Co and unavoidable impurities was prepared, and the oxygen content was adjusted by changing the reduction temperature as shown in Table 2. Adjusted to.

得られたCo基共還元粉末を、ボールミルを用いて10
時間解砕し、第2表に示される平均粒径を有する粉末を
得た。
The obtained Co-based co-reduced powder was milled using a ball mill for 10
After time crushing, powder having the average particle size shown in Table 2 was obtained.

これら粉末に、酸素含有量相当の炭素粉末を添加したの
ち、45voρ%の有機バインダー(具体的にはパラフ
ィン、ワックス等)を加熱混練し、射出成形用の混合原
料を得た。ついでこれらの混合原料を上記実施例(1)
で射出成形した条件と全く同一の条件で射出成形し、射
出成形体の成形状態を調べ、全く同様の方法で第1図に
示す脱脂体を得た。上記脱脂体を、真空中、温度: 1
250℃、1時間保持の条件で焼結し、焼結体の密度比
および空孔状態を調べた。
After adding carbon powder equivalent to the oxygen content to these powders, 45 voρ% of an organic binder (specifically, paraffin, wax, etc.) was heated and kneaded to obtain a mixed raw material for injection molding. Then, these mixed raw materials were used in Example (1) above.
Injection molding was carried out under exactly the same conditions as those for injection molding in 1, the molding state of the injection molded article was examined, and the degreased article shown in FIG. 1 was obtained in exactly the same manner. The above degreased body was heated in vacuum at a temperature of 1
The material was sintered at 250° C. for 1 hour, and the density ratio and pore state of the sintered material were examined.

上記射出成形体の成形状態、焼結体の密度比および空孔
状態を調べた結果も第2表に示した。
Table 2 also shows the results of examining the molding state of the injection molded body, the density ratio of the sintered body, and the pore state.

〔発明の効果〕〔Effect of the invention〕

第1表および第2表から明らかなように、平均粒径:1
〜30IIJnで酸素含有量二0.8〜3重量%の共還
元粉末は、射出成形時の流動性にすぐれており、たとえ
二次粒子が生成しても、酸素含有量が0.8〜3重量%
の範囲内にあると平均粒径:1〜30如に容易に解砕す
ることができ、射出成形時の流動性にすぐれた粉末とす
ることができる。
As is clear from Tables 1 and 2, average particle size: 1
Co-reduced powder with ~30IIJn and oxygen content of 20.8~3% by weight has excellent fluidity during injection molding, and even if secondary particles are generated, the oxygen content is 0.8~3% by weight. weight%
When the average particle size is within the range of 1 to 30, it can be easily crushed and a powder with excellent fluidity during injection molding can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、射出成形体の斜視図、 第2図は、射出成形体の平面図、 第3図は、射出成形体の側面図、 である。 年3図 FIG. 1 is a perspective view of an injection molded product; FIG. 2 is a plan view of the injection molded product; Figure 3 is a side view of the injection molded product; It is. Year 3 figure

Claims (1)

【特許請求の範囲】[Claims] (1)合金成分となる各金属元素の酸化物粉末と炭素粉
末との混合粉末を還元して得られる 平均粒径:1〜30μm、 の合金粉末であって、 酸素含有量:0.8〜3重量% であることを特徴とする射出成形用合金粉末。
(1) An alloy powder with an average particle size of 1 to 30 μm obtained by reducing a mixed powder of oxide powder of each metal element and carbon powder, which is an alloy component, and an oxygen content of 0.8 to 30 μm. An alloy powder for injection molding, characterized in that the content is 3% by weight.
JP63009235A 1988-01-19 1988-01-19 Alloy powder for injected-compacting Pending JPH01184203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63009235A JPH01184203A (en) 1988-01-19 1988-01-19 Alloy powder for injected-compacting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63009235A JPH01184203A (en) 1988-01-19 1988-01-19 Alloy powder for injected-compacting

Publications (1)

Publication Number Publication Date
JPH01184203A true JPH01184203A (en) 1989-07-21

Family

ID=11714739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63009235A Pending JPH01184203A (en) 1988-01-19 1988-01-19 Alloy powder for injected-compacting

Country Status (1)

Country Link
JP (1) JPH01184203A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1433554A1 (en) * 2002-12-23 2004-06-30 General Electric Company Production of injection-molded metallic articles using chemically reduced nonmetallic precursor compounds
US7329381B2 (en) 2002-06-14 2008-02-12 General Electric Company Method for fabricating a metallic article without any melting
US7410610B2 (en) 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US7531021B2 (en) 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329381B2 (en) 2002-06-14 2008-02-12 General Electric Company Method for fabricating a metallic article without any melting
US7410610B2 (en) 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US7655182B2 (en) 2002-06-14 2010-02-02 General Electric Company Method for fabricating a metallic article without any melting
US7842231B2 (en) 2002-06-14 2010-11-30 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
EP1433554A1 (en) * 2002-12-23 2004-06-30 General Electric Company Production of injection-molded metallic articles using chemically reduced nonmetallic precursor compounds
US6849229B2 (en) 2002-12-23 2005-02-01 General Electric Company Production of injection-molded metallic articles using chemically reduced nonmetallic precursor compounds
US7531021B2 (en) 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US8562714B2 (en) 2004-11-12 2013-10-22 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US10604452B2 (en) 2004-11-12 2020-03-31 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix

Similar Documents

Publication Publication Date Title
KR930002522B1 (en) Process for removal of oil of injection molding
US5689796A (en) Method of manufacturing molded copper-chromium family metal alloy article
JPH01142002A (en) Alloy steel powder for powder metallurgy
JPH01184203A (en) Alloy powder for injected-compacting
JPH093510A (en) Copper powder for injection-molding of metallic powder and production of injection-molded product using the same
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPH0762184B2 (en) Method for manufacturing Ti alloy product
JPH0987775A (en) Production of molded article made of copper-chromium family metal alloy
JPS61127848A (en) Manufacture of sintered alnico magnet
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH1046208A (en) Production of ti-ni base alloy sintered body
SE450876B (en) CHROME POWDER MIXED BASED ON IRON AND SET FOR ITS MANUFACTURING
JPH06172810A (en) Production of tungsten alloy sintered compact
JPH0257605A (en) Production of sintered alloy having excellent dimensional precision
JPH0257613A (en) Production of sintered metallic material and its raw powder
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JPS5823450B2 (en) Production method of C↓o-based sintered alloy for decorative parts with good machinability
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH01212702A (en) Manufacture of magnetic material
JPH0542172A (en) Artificial tooth root
JPH07188801A (en) Production of titanium sintered compact
CN116815031A (en) Fine-grain metal ceramic with multi-principal element alloy as bonding metal and preparation method thereof
JP2000034505A (en) SINTERING METHOD OF Fe-Si POWDER