JPH0338979B2 - - Google Patents

Info

Publication number
JPH0338979B2
JPH0338979B2 JP57088583A JP8858382A JPH0338979B2 JP H0338979 B2 JPH0338979 B2 JP H0338979B2 JP 57088583 A JP57088583 A JP 57088583A JP 8858382 A JP8858382 A JP 8858382A JP H0338979 B2 JPH0338979 B2 JP H0338979B2
Authority
JP
Japan
Prior art keywords
resin
ethylene
carboxylic acid
copolymer
acid copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57088583A
Other languages
Japanese (ja)
Other versions
JPS58205765A (en
Inventor
Teruyuki Yasuhara
Koji Kono
Hidenori Hagio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP8858382A priority Critical patent/JPS58205765A/en
Publication of JPS58205765A publication Critical patent/JPS58205765A/en
Publication of JPH0338979B2 publication Critical patent/JPH0338979B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、共抌出積局物に関する。曎に詳しく
は、耐ピンホヌル性および砎袋匷床など改善され
た、゚チレン−αβ−䞍飜和カルボン酞共重合
暹脂たたはその金属むオン架橋暹脂アむオノマ
ヌ暹脂ずポリアミド暹脂ずの共抌出積局物に関
する。 近時、包装材料の諞性質に察する消費者からの
芁求が厳しくなり、質的に高床な包装甚フむルム
の開発が芁請されおいる。かかる芁請に応えるた
め、各皮各様の積局物が垂堎に出廻぀おいるが、
それらの䞭でも積局物の経枈性コストおよび
物性の点から、゚チレン−αβ−䞍飜和カルボ
ン酞共重合暹脂たたはその金属むオン架橋暹脂ず
ポリアミド暹脂ずの共抌出積局物が最も泚目され
おいる。 かかる局構成の共抌出積局物の第の特城は、
成圢枩床幅の広いポリオレフむン系暹脂の通性を
有する゚チレン−αβ−䞍飜和カルボン酞共重
合暹脂たたはその金属むオン架橋暹脂以䞋カル
ボン酞共重合暹脂ず総称するず成圢枩床幅の非
垞に狭いポリアミド暹脂ずを共抌出成圢するず、
それ単独では加工性が悪いずいうポリアミド暹脂
の欠点がカルボン酞共重合暹脂の良奜な成圢性に
よ぀お補われ、非垞に容易に積局物を成圢するこ
ずが可胜ずなり、その結果共抌出成圢が可胜なこ
ずによる補造コストの䜎枛も同時に達成されるこ
ずが挙げられる。 第の特城ずしおは、カルボン酞共重合暹脂局
ずポリアミド暹脂局ずの間の局間接着力が、カル
ボン酞共重合暹脂䞭に存圚する極性基のため、実
甚的に芁求される接着力レベル玄0.4Kg15mm
幅以䞊に迄到達しおいるこずが挙げられる。 第には、ポリアミド暹脂の特性である酞玠䞍
透過性、機械的匷床ずカルボン酞共重合暹脂の特
性である透明性、ヒヌトシヌル性䜎枩シヌル
性、熱間シヌル性、油付シヌル性など、深絞り
性ずを兌備しおいるこずが、特城ずしお挙げられ
る。 このように、共抌出法により敎圢された積局物
は他の積局法、倒えばドラむラミネヌト、抌出コ
ヌテむング法などず比べお、ラミネヌタヌ、接着
剀、溶剀などが䞍芁で、か぀補品ロスが少なく、
工皋数、歩留り、その他すべおの点で補造コスト
が安くなるずいう経枈的利点があり、特にカルボ
ン酞共重合暹脂ずポリアミむド暹脂ずの共抌出積
局物は、物性的にすぐれおいるため、珟圚商業的
に広く䜿甚されおいる。 しかしながら、かかる共抌出積局物の生産量が
増倧し、䜿甚範囲が広がるに぀れお、この積局物
にも䞀぀の欠点が認められるようになり、それの
根本的な解決策が求められるようにな぀た。即
ち、この積局物は、倏季の䜿甚時には特にピンホ
ヌルなどを発生させないものの、冬季、特に厳寒
の時期の寒冷地においおは、重量物、䟋えばチル
ドビヌフなどを真空包装䜜業移動させるずきなど
に、ピンホヌルの発生による真空戻りが起り易い
ずいう欠点がみられる。 このための解決策ずしお考えられる第の方法
は、柔軟なカルボン酞共重合暹脂を䜿甚するこず
である。具䜓的には、゚チレン−αβ−䞍飜和
カルボン酞−αβ−䞍飜和カルボン酞゚ステル
元共重合暹脂たたはその金属むオン架橋暹脂を
䜿甚すれば、確かに耐ピンホヌル性は改善される
ものの、このものはブロツキング性が著しいた
め、良奜な開口性を持たせるために倧量の添加剀
を必芁ずし、その結果ポリアミド暹脂ずの接着
性、積局物の光孊性が損われるようになる。 第の考えられる解決策は、匟性のすぐれたス
チレン−ブタゞ゚ン共重合ゎム、ポリむ゜プレン
ゎム、ポリクロロプレンゎム、アクリロニトリル
−ブタゞ゚ン共重合ゎム、プチルゎムなどの゚ラ
ストマヌ、あるいは柔軟な゚チレン−酢酞ビニル
共重合暹脂などをカルボン酞共重合暹脂にブレン
ドしお甚いる方法である。 本発明者らは、各皮゚ラストマヌのブレドによ
る解決策を実際に詊みたが、カルボン酞共重合暹
脂は䞀般に他の重合䜓ずの盞溶性が悪く、ブレン
ドよりヒヌトシヌル性、光孊性などの䜎䞋が著し
く、そのブレンド物を甚いた積局物は非垞に癜濁
しおおり、透明性が芁求される甚途には到底䜿甚
できなか぀た。たた、゚チレン−酢酞ビニル共重
合暹脂をブレンドした堎合には、透明性の䜎䞋は
少ないものの、局間接着力、ヒヌトシヌル匷床な
どの䜎䞋がみられ、耐ピンホヌル性改善の効果も
少なか぀た。 そこで、本発明者らは、こうした欠点がなくし
かもカルボン酞共重合暹脂の特城を保持し続ける
共抌出積局物を求めお曎に皮々の怜蚎の結果、カ
ルボン酞共重合暹脂に特定の゚チレン−α−オレ
フむン共重合䜓をブレンドしお甚い、これをポリ
アミド暹脂ず共抌出積局物するず、耐ピンホヌル
性が良奜で、しかも砎袋匷床が倧幅に改善された
共抌出積局物が埗られるこずを芋出した。 埓぀お、本発明は共抌出積局物に係り、この共
抌出積局物は、゚チレン−αβ−䞍飜和カルボ
ン酞共重合暹脂たたはその金属むオン架橋暹脂
アむオノマヌ暹脂玄95〜80重量および非結
晶性乃至䜎結晶性゚チレン−α−オレフむン共重
合䜓玄〜20重量のブレンド物局(A)ずポリアミ
ド暹脂(B)ずからなる。 ゚チレン−αβ−䞍飜和カルボン酞共重合暹
脂ずしおは、゚チレンに䟋えばアクリル酞、メタ
クリル酞、゚タクリル酞、むタコン酞、フマル酞
などの炭玠数〜の䞍飜和カルボン酞を、玄
〜35重量、奜たしくは玄〜21重量共重合さ
せたものなどが甚いられる。たた、それの金属む
オン架橋暹脂であるアむオノマヌ暹脂ずしおは、
これらの゚チレン−αβ−䞍飜和カルボン酞共
重合暹脂䞭のカルボン酞基を、呚期埋衚〜族
の金属で玄10モル以䞊、奜たしくは玄15〜80モ
ル䞭和したものが䞀般に甚いられる。特に、ポ
リアミむド暹脂ずの匷固な接着性を埗るために
は、族の金属、就䞭亜鉛で䞭和されたむオン性
共重合䜓を甚いるこずが奜たしく、そのメルトむ
ンデツクス玄0.5〜10d分の範囲にあるこずが
望たしい。 かかるカルボン酞共重合暹脂にブレンドされる
゚チレン−α−オレフむン共重合䜓は、密床が
0.85〜0.90cm3でか぀非結晶性乃至䜎結晶性
比溶法による結晶化床が玄20〜のもので
ある。共重合䜓は、゚チレンずα−オレフむンず
を、䟋えば䞉塩化バナゞりム、四塩化バナゞりム
などによ぀お代衚されるバナゞりム化合物ず有機
アルミりム化合物ずの耇合觊媒などを甚いお共重
合させるこずにより埗られ、共重合䜓䞭にはα−
オレフむンが玄〜30モル皋床共重合されおい
る。α−オレフむンずしおは、プロピレン、プテ
ンなどが甚いられるが、特にプテン−を甚いた
゚チレンずの共重合は、カルボン酞共重合暹脂、
特にアむオノマヌ暹脂ずの盞溶性や局間接着力の
改善効果などの点からも最もすぐれ効果を瀺しお
いる。なお、これらの共重合䜓は、玄0.5〜10d
分のメルトむンデツクスを有するこずが望た
しい。 カルボン酞共重合暹脂ず゚チレン−α−オレフ
むン共重合䜓ずは、前差が玄95〜80重量、そし
お埌者が玄〜20重量の割合でブレンドしお甚
いられる。゚チレン−α−オレフむン共重合䜓の
混合割合がこれより少ないず、耐ピンホヌル性を
改善させる効果が䞍十分であり、逆にこれより倚
いず、ヒヌトシヌル匷床の䜎䞋が著しくなるばか
りではなく、ポリアミむド暹脂ずの局間接着性や
積局物の光孊性の䜎䞋を招くこずになる。 ブレンドは、カルボン酞共重合暹脂および゚チ
レン−α−オレフむン共重合䜓を同時的にたたは
遂時的にドラむブレンドし、あるいはメルトブレ
ンドするこずによ぀お行われる。ドラむブレンド
の堎合には、成圢機䞭でカルボン酞共重合暹脂が
溶融可塑化される段階で、゚チレン−α−オレフ
むン共重合䜓もカルボン酞共重合暹脂に容易に均
䞀に溶融混合される。メルトブレンドの堎合に
は、単軞抌出機、軞抌出機、ババリヌミキサヌ
などの各皮ミキサヌ、ロヌル、ニヌダヌなどを甚
いお溶融混合すればよく、それらの混合順序には
特に制限がない。 このようなブレンド物ず共抌出されるポリアミ
ド暹脂ずしおは、ナむロン、ナむロン610、ナ
むロン11、曎にはナむロン−66、ナむロン66−
610、ナむロン−11、ナむロン66−610−など
が甚いられ、必芁に応じおこれらのポリアミむド
暹脂に曎にアむオノマヌ暹脂や゚チレン−酢酞ビ
ニル共重合䜓などをブレンドした、いわゆる耐衝
撃性ナむロンを甚いるず、耐ピンホヌル性の改善
効果は曎に倧きくなる。 共抌出積局物の成圢は、むンフレヌシペン法、
−ダむ法、䞭空成圢法など、カルボン酞共重合
暹脂ず゚チレン−α−オレフむン共重合䜓ずのブ
レンド物が、ポリアミむド暹脂ず溶融状態で互い
に盎接に接する局ずしお抌出される方法であれ
ば、任意の方法で行なうこができる。 共抌出埌の各局の厚み構成は、ブレンド物局に
぀いおは、䞻ずしお匷床面の芁請から自らその厚
さが決定され、䞀般には玄10〜100Ό皋床の厚
さに蚭定される。たた、ポリアミむド暹脂局に぀
いおは、耐ピンホヌル性の点からは薄い方が望た
しいが、十分な気䜓䞍透過性を埗るためには厚く
する必芁があるので、䞀般には玄15〜50Ό皋床
の厚さに蚭定される。たた、積局物は局以䞊の
構成をずるこずもでき、䟋えばポリアミむド暹
脂ポリオレフむン局ブレンド物局、ポむアミ
ド局ブレンド物局ポリオレフむン局、ブレン
ド物局ポリアミド局ブレンド物局ずいうよう
な倚局の共抌出積局物であ぀おもよい。 このようにしお、゚チレン−αβ−䞍飜和カ
ルボン酞共重合暹脂たたはその金属むオン架橋暹
脂ず非結晶性乃至結晶性゚チレン−α−オレフむ
ン共重合䜓ずのブレンド物局(A)ずポリアミむド暹
è„‚å±€(B)ずの共抌出積局物は、耐ピンホヌル性のみ
ならず砎袋匷床なども顕著に改善されおいるの
で、かかる共抌出積局物甚途すべおに有効に䜿甚
するこずができる。 次に、実斜䟋に぀いお本発明を説明する。 実斜䟋  アむオノマヌ暹脂䞉井ポリケミカル補品ハむ
ミラン1650zn塩、メルトむンデツクス1.5d
分、密床0.95cm395重量、以䞋同
じおよび䜎結晶性゚チレン−ブテン−共重合
䜓メルトむンデツクス4d分、密床0.88
cm3を、65mm埄抌出機を甚い、暹脂枩床200
℃で溶融混合した。 このブレド物を内局成分ずし、たたポリアミド
暹脂東レ補品アミランCM604IXF密床1.13
cm3を倖局成分ずしお、台の抌出機を甚い
お溶融共抌出を行ない、内倖各暹脂局間をダむ内
で接觊させ、次いで公知の空気冷华法による局
むンフレヌシペンフむルムを補膜した。埗られた
共抌出積局物フむルムは、倖局が2.5Ό、内局が
55Όの厚さをそれぞれ有する。 この共抌出積局物フむルムに぀いお、℃での
ゲルボフレツクステストMILB−1310を行な
い、ピンホヌルが発生しなか぀た最高の埀埩回数
20回刻みを枬定し、耐ピンホヌル性ずした。 このフむルムの局間接着力は、詊料フむルムよ
り瞊方向に15mm幅のフむルムを切り出し、その䞀
郚分の局間を剥離し、匕匵詊隓機を甚いお、300
mm分の速床で剥離させお枬定した。たた、ヒヌ
トシヌル匷床は、10mm幅のヒヌトシヌルバヌを甚
い、110〜180℃、Kgcm2実圧、0.5秒間の条
件䞋で、フむルム暪方向にヒヌトシヌルし、瞊方
向15mm幅にテストピヌスを切出し、匕匵詊隓機を
甚いお、300mm分の速床でシヌル郚を剥離させ
お枬定した。 このフむルムの砎袋匷床は、詊料フむルムから
120×180mmの小袋を䜜補し、これに200mlの氎を
封入し、これをプレスにお100mm分の速床で圧
瞮したずきの砎袋時の圧力を静荷圧砎袋匷床ずし
お、たたこの氎を封入した小袋に720のおもり
を27cmの高さからくり返し萜䞋させ、砎袋するに
至぀たずきの回数を衝撃砎袋匷床ずしお、それぞ
れ枬定した。 比范䟋  実斜䟋においお、内局成分ずしおアむオノマ
ヌ暹脂が単味で甚いられた。 実斜䟋〜、比范䟋〜 実斜䟋においお、内局各成分のブレンド割合
が皮々に倉曎された。 以䞊の各実斜䟋および比范䟋で埗られた共抌出
積局物フむルムの物性枬定結果は、次の衚に瀺
される。
The present invention relates to coextruded laminates. More specifically, it relates to a coextruded laminate of ethylene-α,β-unsaturated carboxylic acid copolymer resin or its metal ion crosslinked resin (ionomer resin) and polyamide resin, which has improved pinhole resistance and bag tear strength. . In recent years, consumer demands regarding various properties of packaging materials have become stricter, and there is a demand for the development of qualitatively advanced packaging films. In order to meet these demands, various types of laminates are on the market.
Among these, coextruded laminates of ethylene-α,β-unsaturated carboxylic acid copolymer resins or their metal ion crosslinked resins and polyamide resins are attracting the most attention from the viewpoint of economic efficiency (cost) and physical properties of the laminates. There is. The first feature of the coextruded laminate with such a layered structure is:
Ethylene-α,β-unsaturated carboxylic acid copolymer resin or its metal ion crosslinked resin (hereinafter collectively referred to as carboxylic acid copolymer resin), which has the compatibility of polyolefin resins with a wide molding temperature range, and a very wide molding temperature range. When coextruded with narrow polyamide resin,
The disadvantage of polyamide resins, which are poor processability when used alone, is compensated for by the good moldability of carboxylic acid copolymer resins, making it possible to mold laminates very easily and, as a result, coextrusion molding. As a result, manufacturing costs can also be reduced at the same time. The second feature is that the interlayer adhesive strength between the carboxylic acid copolymer resin layer and the polyamide resin layer is at the practically required adhesive strength level ( Approx. 0.4Kg/15mm
It is possible to point out that it has reached a point (more than the width). Thirdly, the characteristics of polyamide resin such as oxygen impermeability and mechanical strength, and the characteristics of carboxylic acid copolymer resin such as transparency and heat sealability (low temperature sealability, hot sealability, oil sealability, etc.) ) and deep drawability. In this way, compared to other lamination methods such as dry lamination, extrusion coating, etc., laminates shaped by coextrusion do not require laminators, adhesives, solvents, etc., and there is less product loss.
It has the economical advantage of lower manufacturing costs in terms of the number of steps, yield, and all other aspects.In particular, coextruded laminates of carboxylic acid copolymer resins and polyamide resins have excellent physical properties, so they are currently commercially available. widely used. However, as the production volume of such coextruded laminates has increased and the range of use has expanded, a drawback has also been recognized in this laminate, and a fundamental solution has been sought. In other words, this laminate does not generate pinholes when used in the summer, but in the winter, especially in cold regions during the bitterly cold season, when moving heavy items such as chilled beef for vacuum packaging, pinholes may occur. A drawback is that vacuum return is likely to occur due to the generation of holes. The first possible solution to this problem is to use a flexible carboxylic acid copolymer resin. Specifically, pinhole resistance is certainly improved by using ethylene-α,β-unsaturated carboxylic acid-α,β-unsaturated carboxylic acid ester ternary copolymer resin or its metal ion crosslinked resin. However, this material has significant blocking properties and requires a large amount of additives to provide good aperture, resulting in a loss of adhesion to the polyamide resin and the optical properties of the laminate. A second possible solution is to use elastomers such as highly elastic styrene-butadiene copolymer rubber, polyisoprene rubber, polychloroprene rubber, acrylonitrile-butadiene copolymer rubber, butyl rubber, or flexible ethylene-vinyl acetate copolymer resins. This is a method in which the following compounds are blended with a carboxylic acid copolymer resin. The present inventors actually tried a solution by blending various elastomers, but carboxylic acid copolymer resins generally have poor compatibility with other polymers, and they suffer from lower heat sealability, optical properties, etc. than blends. Notably, the laminate using the blend was extremely cloudy and could not be used in applications requiring transparency. Furthermore, when an ethylene-vinyl acetate copolymer resin was blended, although there was little decrease in transparency, there was a decrease in interlayer adhesion strength, heat seal strength, etc., and the effect of improving pinhole resistance was also small. Therefore, the present inventors sought a coextruded laminate that does not have these drawbacks and still retains the characteristics of carboxylic acid copolymer resin, and as a result of various studies, the carboxylic acid copolymer resin has a specific ethylene-α- It has been discovered that when an olefin copolymer is blended and coextruded with a polyamide resin, a coextruded laminate with good pinhole resistance and significantly improved bag tear strength can be obtained. . Accordingly, the present invention relates to a coextruded laminate, which comprises about 95 to 80% by weight of an ethylene-α,β-unsaturated carboxylic acid copolymer resin or its metal ion crosslinked resin (ionomer resin) and It consists of a blend layer (A) containing about 5 to 20% by weight of an amorphous to low crystalline ethylene-α-olefin copolymer and a polyamide resin (B). As the ethylene-α,β-unsaturated carboxylic acid copolymer resin, for example, ethylene and an unsaturated carboxylic acid having 3 to 8 carbon atoms such as acrylic acid, methacrylic acid, ethacrylic acid, itaconic acid, fumaric acid, etc.
~35% by weight, preferably approximately 3~21% by weight, of copolymerization is used. In addition, the ionomer resin, which is a metal ion crosslinked resin, is
Generally, the carboxylic acid groups in these ethylene-α,β-unsaturated carboxylic acid copolymer resins are neutralized with about 10 mol% or more, preferably about 15 to 80 mol%, of metals from groups of the periodic table. used. In particular, in order to obtain strong adhesion with polyamide resin, it is preferable to use an ionic copolymer neutralized with group metals, especially zinc, and its melt index is about 0.5 to 10 dg/min. It is desirable that it be within the range. The ethylene-α-olefin copolymer blended with such carboxylic acid copolymer resin has a density of
It has a weight of 0.85 to 0.90 g/cm 3 and is amorphous to low crystallinity (crystallinity determined by the specific solution method is approximately 20 to 0%). The copolymer is obtained by copolymerizing ethylene and α-olefin using a composite catalyst of a vanadium compound represented by vanadium trichloride, vanadium tetrachloride, etc. and an organic aluminum compound, etc. α− in the copolymer
Approximately 5 to 30 mol% of olefin is copolymerized. As the α-olefin, propylene, putene, etc. are used, but in particular, copolymerization with ethylene using putene-1 can be carried out using carboxylic acid copolymer resin,
In particular, it shows the most excellent effects in terms of compatibility with ionomer resins and the effect of improving interlayer adhesion. In addition, these copolymers are approximately 0.5 to 10 d
It is desirable to have a melt index of g/min. The carboxylic acid copolymer resin and the ethylene-α-olefin copolymer are used as a blend, with the former being about 95 to 80% by weight and the latter being about 5 to 20% by weight. If the mixing ratio of the ethylene-α-olefin copolymer is less than this, the effect of improving pinhole resistance will be insufficient, and if it is more than this, not only will the heat sealing strength decrease significantly, This results in a decrease in interlayer adhesion with the polyamide resin and in the optical properties of the laminate. Blending is performed by simultaneously or sequentially dry blending or melt blending the carboxylic acid copolymer resin and the ethylene-α-olefin copolymer. In the case of dry blending, the ethylene-α-olefin copolymer is easily and uniformly melt-mixed with the carboxylic acid copolymer resin at the stage where the carboxylic acid copolymer resin is melted and plasticized in the molding machine. In the case of a melt blend, melt mixing may be carried out using various mixers such as a single screw extruder, a twin screw extruder, a Babbury mixer, a roll, a kneader, etc., and there is no particular restriction on the order of mixing. Polyamide resins that can be coextruded with such blends include nylon 6, nylon 610, nylon 11, and even nylon 6-66, nylon 66-
610, nylon 6-11, nylon 66-610-6, etc. are used, and if necessary, so-called impact-resistant nylon is used, which is a blend of these polyamide resins with ionomer resin, ethylene-vinyl acetate copolymer, etc. The effect of improving pinhole resistance becomes even greater. Coextrusion laminates can be formed using the inflation method,
If a method such as a T-die method or a blow molding method is used in which a blend of a carboxylic acid copolymer resin and an ethylene-α-olefin copolymer is extruded as a layer in direct contact with a polyamide resin in a molten state, You can do it in any way you like. Regarding the thickness structure of each layer after coextrusion, the thickness of the blend layer is determined primarily from the viewpoint of strength, and is generally set to a thickness of about 10 to 100 Όm. Regarding the polyamide resin layer, it is preferable to make it thinner from the point of view of pinhole resistance, but it needs to be thicker in order to obtain sufficient gas impermeability, so it is generally about 15 to 50 Όm thick. is set to Further, the laminate may have a structure of three or more layers, such as polyamide resin/polyolefin layer/blend layer, polyamide layer/blend layer/polyolefin layer, blend layer/polyamide layer/blend layer, etc. It may also be a multilayer coextruded laminate. In this way, the blend layer (A) of the ethylene-α,β-unsaturated carboxylic acid copolymer resin or its metal ion crosslinked resin and the amorphous or crystalline ethylene-α-olefin copolymer and the polyamide resin The coextruded laminate with layer (B) has significantly improved not only pinhole resistance but also bag breakage strength, so it can be effectively used for all such coextruded laminate applications. Next, the present invention will be explained with reference to examples. Example 1 Ionomer resin (Mitsui Polychemical product Himilan 1650); ZN salt, melt index 1.5d
g/min, density 0.95 g/cm 3 ) 95% (weight, same below) and low crystalline ethylene-butene-1 copolymer (melt index 4 dg/min, density 0.88 g/cm 3 )
cm 3 ) 5% using a 65 mm diameter extruder at a resin temperature of 200
Melt mixed at °C. This braided material was used as the inner layer component, and polyamide resin (Toray product Amiran CM604IXF; density 1.13
g/cm 3 ) as the outer layer component, melt coextrusion is performed using two extruders, the inner and outer resin layers are brought into contact in a die, and then a two-layer inflation film is produced by a known air cooling method. It was filmed. The resulting coextruded laminate film has an outer layer of 2.5 ÎŒm and an inner layer of
Each has a thickness of 55 Όm. This coextruded laminate film was subjected to a gelboflex test (MILB-1310) at 0°C, and the maximum number of reciprocations without pinholes (in increments of 20) was measured to determine pinhole resistance. did. The interlayer adhesion strength of this film was determined by cutting out a film with a width of 15 mm in the vertical direction from a sample film, peeling off a portion of the film, and using a tensile tester to determine the interlayer adhesion strength of 30 mm.
Measurements were made by peeling at a speed of mm/min. The heat-sealing strength was determined by heat-sealing the film in the horizontal direction using a 10mm-wide heat-sealing bar under the conditions of 110-180℃, 2Kg/cm 2 (actual pressure), and 0.5 seconds. A test piece was cut out, and the sealed portion was peeled off at a speed of 300 mm/min using a tensile tester for measurement. The bag breakage strength of this film is determined from the sample film.
A small bag of 120 x 180 mm is made, 200 ml of water is sealed in it, and this is compressed at a speed of 100 mm/min using a press. A 720 g weight was repeatedly dropped from a height of 27 cm into the sachet containing the bag, and the number of times the bag broke was determined as the impact bag breaking strength. Comparative Example 1 In Example 1, an ionomer resin was used alone as an inner layer component. Examples 2 to 4, Comparative Examples 2 to 3 In Example 1, the blending ratio of each component of the inner layer was variously changed. The physical property measurement results of the coextruded laminate films obtained in each of the above Examples and Comparative Examples are shown in Table 1 below.

【衚】 この衚の結果からも明らかな劂く、䜎結晶性
゚チレン−ブテン−共重合䜓をブレンドするこ
ずにより、耐ピンホヌル性および砎袋匷床は倧幅
に向䞊するが、そのブレンド割合が25以䞊にな
るず、それらの効果は頭打ちになるばかりではな
く、かえ぀おポリアミドずの局間接着力やヒヌト
シヌル匷床が倧幅に䜎䞋するようになる。 実斜䟋 〜 実斜䟋〜においお、䜎結晶性゚チレン−ブ
テン−共重合䜓の代りに、䜎結晶性゚チレン−
ブロピレン共重合䜓メルトむンデツクス12d
分、密床0.88cm3が甚いられた。 実斜䟋  実斜䟋においお、アむオノヌマ暹脂の代り
に、゚チレン−メタクリル酞共重合暹脂䞉井ポ
リケミカル補品ハむミランACR0910メルトむ
ンデツクス10d分、密床0.93cm3、メタク
リル酞含有量重量が甚いられた。 比范䟋 〜 実斜䟋およびにおいお、䜎結晶性゚チレン
−ブテン−共重合䜓の代りに、いずれも゚チレ
ン−酢酞ビニル共重合䜓䞉井ポリケミカル補品
゚バフレツクス−1905メルトむンデツクス
2.5d分、酢酞ビニル含有量19重量が甚い
られた。 比范䟋  実斜䟋においお、䜎結晶性゚チレン−ブテン
−共重合䜓の代りに、−LDPE䞉井石油化
孊補品ネオれツクス2015M密床0.920cm3、
メルトむンデツクス1.5が甚いられた。以䞊の
各実斜䟋および比范䟋で埗られた共抌出積局フむ
ルムの物性枬定結果は、次の衚に瀺される。
[Table] As is clear from the results in Table 1, pinhole resistance and bag breakage strength are significantly improved by blending a low-crystalline ethylene-butene-1 copolymer, but the blending ratio is When it exceeds 25%, not only do these effects reach a plateau, but the interlayer adhesion and heat sealing strength with polyamide also begin to drop significantly. Examples 5 to 8 In Examples 1 to 4, low crystalline ethylene-butene-1 copolymer was replaced with low crystalline ethylene-butene-1 copolymer.
Propylene copolymer (melt index 12d
g/min, density 0.88 g/cm 3 ) was used. Example 9 In Example 7, ethylene-methacrylic acid copolymer resin (Mitsui Polychemical product Himilan ACR0910; melt index 10 dg/min, density 0.93 g/cm 3 , methacrylic acid content 9% by weight) was used instead of the ionomer resin. ) was used. Comparative Examples 4 to 5 In Examples 2 and 4, ethylene-vinyl acetate copolymer (Mitsui Polychemical product Evaflex P-1905; Melt Index) was used instead of the low-crystalline ethylene-butene-1 copolymer.
2.5 dg/min, vinyl acetate content 19% by weight) was used. Comparative Example 6 In Example 2, L-LDPE (Mitsui Petrochemicals Neozex 2015M; density 0.920 g/cm 3 ,
A melt index of 1.5) was used. The physical property measurement results of the coextruded laminated films obtained in each of the above Examples and Comparative Examples are shown in Table 2 below.

【衚】 この衚の結果からも明らかな劂く、゚チレン
−メタクリル酞共重合暹脂の堎合にも、アむオノ
マヌ暹脂ず同様の効果が埗られる。しかしなが
ら、゚チレン−酢酞ビニル共重合䜓や−LDPE
を䜎結晶性゚チレン−ブテン−共重合䜓に代え
お甚いた堎合には、その耐ピンホヌル性および砎
袋匷床の向䞊効果は小さく、たたそのブレンド割
合を倚くするず、局間接着力やヒヌトシヌル匷床
の䜎䞋が著しくなる。たた、䜎結晶性゚チレン−
ブテン−共重合䜓に代えお䜎結晶性゚チレン−
プロピレン共重合䜓を甚いるず、局間接着力は䜎
䞋する欠点がみられるものの、耐ピンホヌル性改
善の点では同様の効果が認められる。
[Table] As is clear from the results in Table 2, the same effects as the ionomer resin can be obtained with the ethylene-methacrylic acid copolymer resin. However, ethylene-vinyl acetate copolymer and L-LDPE
When used in place of a low-crystalline ethylene-butene-1 copolymer, the effect of improving pinhole resistance and bag breakage strength is small, and when the blending ratio is increased, interlayer adhesion and heat sealing The strength decreases significantly. In addition, low crystalline ethylene-
Low crystalline ethylene instead of butene-1 copolymer
When a propylene copolymer is used, although there is a drawback that the interlayer adhesion strength is lowered, a similar effect is observed in terms of improving pinhole resistance.

Claims (1)

【特蚱請求の範囲】  ゚チレン−αβ−䞍飜和カルボン酞共重合
暹脂たたはその金属むオン架橋暹脂アむオノマ
ヌ暹脂玄95〜80重量および非結晶性乃至䜎結
晶性゚チレン−α−オレフむン共重合䜓玄〜20
重量のブレント物局(A)ずポリアミド暹脂局(B)ず
からなる共抌出積局物。  非結晶性乃至䜎結晶性の゚チレン−α−オレ
フむン共重合䜓が゚チレン−ブテン−共重合䜓
である特蚱請求の範囲第項蚘茉の共抌出積局
物。  ゚チレン−αβ−䞍飜和カルボン酞共重合
暹脂の金属むオン架橋暹脂が亜鉛むオン架橋暹脂
である特蚱請求の範囲第項蚘茉の共抌出積局
物。
[Scope of Claims] 1. Approximately 95 to 80% by weight of ethylene-α,β-unsaturated carboxylic acid copolymer resin or its metal ion crosslinked resin (ionomer resin) and amorphous to low crystalline ethylene-α-olefin. Polymer approx. 5-20
A coextruded laminate consisting of a blended layer (A) and a polyamide resin layer (B) in weight percent. 2. The coextrusion laminate according to claim 1, wherein the amorphous to low crystalline ethylene-α-olefin copolymer is an ethylene-butene-1 copolymer. 3. The coextrusion laminate according to claim 1, wherein the metal ion crosslinked resin of the ethylene-α,β-unsaturated carboxylic acid copolymer resin is a zinc ion crosslinked resin.
JP8858382A 1982-05-25 1982-05-25 Coextrusion laminate Granted JPS58205765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8858382A JPS58205765A (en) 1982-05-25 1982-05-25 Coextrusion laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8858382A JPS58205765A (en) 1982-05-25 1982-05-25 Coextrusion laminate

Publications (2)

Publication Number Publication Date
JPS58205765A JPS58205765A (en) 1983-11-30
JPH0338979B2 true JPH0338979B2 (en) 1991-06-12

Family

ID=13946861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8858382A Granted JPS58205765A (en) 1982-05-25 1982-05-25 Coextrusion laminate

Country Status (1)

Country Link
JP (1) JPS58205765A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507215A1 (en) * 1995-03-02 1996-09-05 Wolff Walsrode Ag Multi-layer, thermoformable film and its use in the production of cooked cured goods
JP3493245B2 (en) * 1995-05-12 2004-02-03 ミネ゜タ マむニング アンド マニュファクチャリング カンパニヌ Retroreflective sheet and article having retroreflective performance
US6777047B1 (en) * 2000-07-06 2004-08-17 Curwood, Inc. Ionomeric, puncture resistant, thermoplastic bag
US10766231B2 (en) 2012-10-25 2020-09-08 Performance Materials Na, Inc. Printable protective layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149305A (en) * 1979-02-02 1980-11-20 Du Pont Ionic hydrocarbon polymer having improved adhesivity to nylon
JPS576763A (en) * 1980-06-16 1982-01-13 Asahi Dow Ltd Low-temperature thermo-contractive multilayer barrier film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149305A (en) * 1979-02-02 1980-11-20 Du Pont Ionic hydrocarbon polymer having improved adhesivity to nylon
JPS576763A (en) * 1980-06-16 1982-01-13 Asahi Dow Ltd Low-temperature thermo-contractive multilayer barrier film

Also Published As

Publication number Publication date
JPS58205765A (en) 1983-11-30

Similar Documents

Publication Publication Date Title
EP0144642B1 (en) A multi-layer film or sheet material
CA1126637A (en) Multi-layered plastic sheeting having high clarity, strength and resistance to water vapor
US8642144B2 (en) Innerliner with nylon skin layer
JP2528936B2 (en) Packaging film and sheet
TW200402461A (en) Sealant, a resin composition for sealant, a sealant film, laminate film and the container thereof
CA2512041A1 (en) Film layers made from polymer blends
JPS6241529B2 (en)
JP4942858B2 (en) Resin composition, heat seal film, and laminated film
KR20120023191A (en) Polymeric composition, method for producing non-stretched film, non-stretched film, heat-sealing material, and packaging material
JPH0338979B2 (en)
KR101960538B1 (en) Adhesive bulk layer resin compositon and multilayer film for vacuum skin packaging
JP2020090307A (en) Sealant film for packaging material, packaging material, and package
JP4692818B2 (en) Co-extrusion laminated film and laminate film and packaging container using the same
JP4389063B2 (en) Resin composition for sealant, sealant film and use thereof
JP4214843B2 (en) Resin composition for extrusion lamination and laminate using the same
KR0161647B1 (en) Laminate for gas barrier
JP5678307B2 (en) Resin composition for extrusion lamination molding
JP2009227790A (en) Polymer composition, easily peelable film formed from the same, and laminate having layer of the composition
JP2838120B2 (en) Polyethylene resin composition and laminated film thereof
JP3489902B2 (en) Resin composition and multilayer structure using the same
JPH0126340B2 (en)
CN111465563B (en) Preservative film for food packaging
JP3014747B2 (en) Multilayer laminate and method for producing the same
JP4190950B2 (en) Resin composition for sealant, sealant film and use thereof
JP2794302B2 (en) Metallized laminated film