JPH0337022B2 - - Google Patents

Info

Publication number
JPH0337022B2
JPH0337022B2 JP57194596A JP19459682A JPH0337022B2 JP H0337022 B2 JPH0337022 B2 JP H0337022B2 JP 57194596 A JP57194596 A JP 57194596A JP 19459682 A JP19459682 A JP 19459682A JP H0337022 B2 JPH0337022 B2 JP H0337022B2
Authority
JP
Japan
Prior art keywords
engine
flywheel
flywheels
rotation speed
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57194596A
Other languages
Japanese (ja)
Other versions
JPS5985443A (en
Inventor
Tamotsu Kamya
Masaaki Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19459682A priority Critical patent/JPS5985443A/en
Publication of JPS5985443A publication Critical patent/JPS5985443A/en
Publication of JPH0337022B2 publication Critical patent/JPH0337022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車エンジン用のフライホイール
のトルク変動低減装置に関するものであり、とく
に二つのフライホイールを低ねじり剛性のばねを
介して回転方向に互いに連結した二分割フライホ
イールのトルク変動低減装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a flywheel torque fluctuation reducing device for an automobile engine, and in particular, the present invention relates to a flywheel torque fluctuation reducing device for an automobile engine. This invention relates to a torque fluctuation reduction device for two-split flywheels connected to each other.

[従来の技術] 二つのフライホイールが弾性部材を介して回転
方向に互いに連結された二分割フライホイール
は、エンジンのトルク変動の伝達を抑制し得るこ
とはよく知られている。
[Prior Art] It is well known that a two-piece flywheel, in which two flywheels are connected to each other in the rotational direction via an elastic member, can suppress transmission of engine torque fluctuations.

[発明が解決しようとする課題] 二分割フライホイールは、通常、第1図に示す
ように、エンジンの正規のアイドル回転数N2
り若干低速側に、共振が発生する回転数N0をも
つている。エンジンをアイドリング状態でしばら
く放置しておくと回転数がN0に下がることがあ
るが、二分割フライホイールを装着したエンジン
においては、回転数がN0に低下すると、両フラ
イホイール間で共振が生じ、エンジンおよびトラ
ンスミツシヨンに大きなトルク変動が生じ、強
度、振動、騒音上問題となる。
[Problem to be solved by the invention] As shown in Fig. 1, a two-part flywheel usually has a rotation speed N 0 at which resonance occurs, which is slightly lower than the engine's normal idle rotation speed N 2 . ing. If the engine is left idling for a while, the rotation speed may drop to N 0 , but in an engine equipped with a two-part flywheel, when the rotation speed drops to N 0 , resonance will occur between both flywheels. This causes large torque fluctuations in the engine and transmission, causing problems in terms of strength, vibration, and noise.

本発明は、上記の問題を解消するために、アイ
ドリング時に二分割フライホイールの回転数が低
下して共振点に近づいたときには、エンジンの回
転数を高めてフライホイールの共振を回避させる
ことを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention aims to avoid resonance of the flywheel by increasing the engine rotation speed when the rotation speed of the two-part flywheel decreases during idling and approaches the resonance point. shall be.

[課題を解決するための手段] この目的を達成するための本発明の二分割フラ
イホイールのトルク変動低減装置は、次の装置か
ら成る。すなわち、弾性部材で連結された二分割
フライホイールと、該二分割フライホイールの各
フライホイールの回転数を検出する回転数検出手
段と、該回転数検出手段に接続され回転数検出手
段から送られてくる両フライホイールの回転数の
差を計算する計算手段と、燃料供給量を調節する
手段に連結されたアクチユエータと、該アクチユ
エータと前記計算手段とに接続され計算手段から
送られてくる両フライホイールの回転数の差が所
定値以上になつた場合に前記アクチユエータに対
して燃料供給量を増加する作動指令を発するコン
トローラとから成ることを特徴とする二分割フラ
イホイールのトルク変動低減装置。
[Means for Solving the Problems] The two-split flywheel torque fluctuation reducing device of the present invention for achieving this object consists of the following device. That is, a two-split flywheel connected by an elastic member, a rotation speed detection means for detecting the rotation speed of each flywheel of the two-split flywheel, and a rotation speed detection means connected to the rotation speed detection means and sent from the rotation speed detection means. a calculating means for calculating the difference in rotational speed between the two flywheels, an actuator connected to the means for adjusting the amount of fuel supplied; A torque fluctuation reducing device for a two-split flywheel, comprising a controller that issues an operation command to the actuator to increase the amount of fuel supplied when the difference in the number of rotations of the wheels exceeds a predetermined value.

[作用] このような装置においては、弾性部材で連結さ
れた両フライホイール間の相対ねじれ角が両フラ
イホイールの回転数の差として検出され、回転数
の差の検出により両フライホイールの相対振動の
振幅が取り出される。アイドリン時に、何らかの
原因でエンジンの回転数が低下し回転数差が所定
値に達すると、コントローラの指令によりアクチ
ユエータが作動されて燃料が増量される。燃料の
増量によりエンジン回転数が上昇し、もとのアイ
ドリング回転数に回復される。
[Operation] In such a device, the relative torsion angle between both flywheels connected by an elastic member is detected as the difference in the rotational speed of both flywheels, and the relative vibration of both flywheels is detected by detecting the difference in rotational speed. The amplitude of is extracted. During idling, when the engine speed drops for some reason and the difference in engine speeds reaches a predetermined value, the actuator is activated by a command from the controller to increase the amount of fuel. The engine speed increases due to the increase in fuel and returns to the original idling speed.

[実施例] 以下に、本発明の二分割フライホイールのトル
ク変動低減装置の望ましい実施例を、図面を参照
して説明する。
[Embodiments] Hereinafter, preferred embodiments of the torque fluctuation reducing device for a two-part flywheel of the present invention will be described with reference to the drawings.

第2図は、本発明の一実施例に係る二分割フラ
イホイールのトルク変動低減装置をデイーゼルエ
ンジンに適用したものを示している。図中1はデ
イーゼルエンジンであり、クランクシヤフト2に
は第一のフライホイール3が連結されている。第
一のフライホイール3のクラツチ6側には、低ね
じり剛性のばねから成る弾性部材4を介して、第
二のフライホイール5が連結されている。第一の
フライホイール3と第二のフライホイール5に
は、それぞれ外周全周にわたつてリンングギヤ
7,8が形成されており、リングギヤ7,8と若
干間隔をもたせて、リングギヤ7,8の歯の通過
を検出することによりフライホイールの回転数を
検出する電磁ピツクアツプ9,10が設けられて
いる。
FIG. 2 shows an application of a two-part flywheel torque fluctuation reducing device according to an embodiment of the present invention to a diesel engine. In the figure, 1 is a diesel engine, and a first flywheel 3 is connected to a crankshaft 2. A second flywheel 5 is connected to the clutch 6 side of the first flywheel 3 via an elastic member 4 made of a spring with low torsional rigidity. Ring gears 7 and 8 are formed on the first flywheel 3 and the second flywheel 5, respectively, over the entire outer periphery, and teeth of the ring gears 7 and 8 are provided with a slight interval from the ring gears 7 and 8. Electromagnetic pickups 9 and 10 are provided for detecting the number of revolutions of the flywheel by detecting the passage of the flywheel.

電磁ピツクアツプ9,10は、減算器11に接
続されている。減算器11では、電磁ピツクアツ
プ9,10から送られてくる第一のフライホイー
ル3の回転数NAと第二のフライホイール5の回
転数NBの差NA〜NBが計算される。減算器11
はコントローラ12に接続されており、減算器1
1で計算された回転数の差NA〜NBの信号はコ
ントローラ12の入力部に送られる。コントロー
ラ12は、入力部と、条件設定部と、条件設定部
で予め定められた値と入力部に入力された回転数
の差NA〜NBとの大小を判断する判断部と、判
断された結果に基づいて指令を発する出力部とか
ら成つている。コントローラ12の出力部にはア
クチユエータ13が接続されており、アクチユエ
ータ13はコントローラ12からの指令信号14
に基づき作動される。
The electromagnetic pickups 9, 10 are connected to a subtracter 11. The subtracter 11 calculates the difference NA~NB between the rotational speed NA of the first flywheel 3 and the rotational speed NB of the second flywheel 5 sent from the electromagnetic pickups 9 and 10. Subtractor 11
is connected to the controller 12, and the subtracter 1
The signal of the rotation speed difference NA to NB calculated in step 1 is sent to the input section of the controller 12. The controller 12 includes an input section, a condition setting section, a judgment section that judges the magnitude of the difference NA to NB between the value predetermined by the condition setting section and the rotation speed input to the input section, and the judgment result. and an output section that issues commands based on the output. An actuator 13 is connected to the output section of the controller 12, and the actuator 13 receives a command signal 14 from the controller 12.
It is operated based on.

アクチユエータ13は、エンジン1に燃料を供
給する噴射ポンプ15の燃料供給量調節手段とし
てのアクセルレバー16に連結されている。噴射
ポンプ15は噴射ノズル17に接続されており、
噴射ノズル17から燃料がエンジン1の燃焼室に
直接または副室(図示略)を介して噴射される。
噴射ポンプ15には、電磁弁18が設けられてお
り、電磁弁18は図示を省略した噴射ポンプ15
内の適当なアクチユエータに連結されている。そ
して電磁弁18のオンオフによつて、そのアクチ
ユエータを作動させ、噴射ノズル17への燃料の
供給のオンオフが可能となつている。電磁弁18
は、コントローラ12の出力部に接続されてお
り、コントローラ12の指令によつてオンオフ作
動する。
The actuator 13 is connected to an accelerator lever 16 that serves as a fuel supply amount adjusting means for an injection pump 15 that supplies fuel to the engine 1. The injection pump 15 is connected to the injection nozzle 17,
Fuel is injected from the injection nozzle 17 into the combustion chamber of the engine 1 directly or via an auxiliary chamber (not shown).
The injection pump 15 is provided with a solenoid valve 18, and the solenoid valve 18 is connected to the injection pump 15 (not shown).
to a suitable actuator within the actuator. By turning on and off the electromagnetic valve 18, its actuator is actuated, and the supply of fuel to the injection nozzle 17 can be turned on and off. Solenoid valve 18
is connected to the output section of the controller 12, and is turned on and off by commands from the controller 12.

コントローラ12の入力部には、前記減算器1
1からの信号NA〜NB以外に、電磁ピツクアツ
プ9からの信号NAとエンジン1の負荷信号19
が入力されている。エンジン1の負荷20は、適
当な装置たとえばトルクメータ等によつて検出さ
れ、その信号19がコントローラ12に送られ
る。
The input section of the controller 12 includes the subtracter 1
In addition to the signals NA to NB from 1, the signal NA from electromagnetic pickup 9 and the load signal 19 of engine 1
is entered. The load 20 of the engine 1 is detected by a suitable device, such as a torque meter, and its signal 19 is sent to the controller 12.

なお、本実施例においては、減算器11とコン
トローラ12とを別装置としたが、同様の機能を
有するものを一つのコントローラとして構成して
もよい。
In this embodiment, the subtracter 11 and the controller 12 are separate devices, but devices having similar functions may be configured as one controller.

つぎに、上記のように構成された二分割フライ
ホイールのトルク変動低減装置の作用について述
べる。
Next, the operation of the two-split flywheel torque fluctuation reducing device configured as described above will be described.

二つのフライホイール3,5は互いに弾性をも
つて回転方向に拘束されており、その回転数
NA,NBは電磁ピツクアツプ9,10により検
出される。一般にフライホイール3,5の回転数
NA,NBは、第3図に示すように、エンジン1
の平均回転数Navに対してNA=Nav+ΔNA,
NB=Nav+ΔNBと絶えず変動しており、両フラ
イホイール間には相対ねじれ角が生ずる。検出さ
れたフライホイール3,5の回転数NA,NBは、
減算器11に入力され、減算器11でNAとNB
との差NA〜NBが計算される。NA〜NB=
ΔNA〜ΔNBとなるので、エンジン1の平均回転
数Navの成分が消去され、両フライホイール3,
5の回転変動の差分、すなわち両フライホイール
3,5の相対ねじれ角の変動成分のみが第4図の
ように取り出される。相対ねじれ角は、両フライ
ホイール3,5間の相対振動の振幅に相当するの
で、回転数の差NA〜NBの計算によつて相対振
動の振幅の変動がNA,NBの絶対値とは独立に
取り出される。したがつて、いわゆるS/N比
(シグナル/ノイズ比)が大きくなり、計測精度
が高くなつて、両フライホイール3,5間の振動
のレベルが精度よく検知される。両フライホイー
ル3,5間の振幅は、共振状態に近づくとNAと
NBが逆位相の関係になるので、とくに大きくな
る。
The two flywheels 3 and 5 are elastically constrained to each other in the direction of rotation, and their rotational speed is
NA and NB are detected by electromagnetic pickups 9 and 10. Generally, the rotation speed of flywheels 3 and 5
NA, NB are engine 1 as shown in Figure 3.
For the average rotational speed N av, NA=N av +ΔNA,
NB=N av +ΔNB, which constantly changes, and a relative torsion angle occurs between both flywheels. The detected rotation speeds NA and NB of flywheels 3 and 5 are:
It is input to the subtracter 11, and the subtracter 11 converts NA and NB.
The difference between NA and NB is calculated. NA~NB=
Since ΔNA ~ ΔNB, the component of the average rotational speed N av of the engine 1 is eliminated, and both flywheels 3,
Only the difference in the rotational fluctuations of the two flywheels 3 and 5, that is, the fluctuation component of the relative torsion angle of both flywheels 3 and 5, is extracted as shown in FIG. The relative torsion angle corresponds to the amplitude of the relative vibration between both flywheels 3 and 5, so by calculating the rotation speed difference NA ~ NB, the variation in the amplitude of the relative vibration is independent of the absolute values of NA and NB. It is taken out. Therefore, the so-called S/N ratio (signal/noise ratio) increases, measurement accuracy increases, and the level of vibration between both flywheels 3 and 5 can be detected with high accuracy. The amplitude between both flywheels 3 and 5 becomes NA when approaching the resonance state.
Since NB is in an antiphase relationship, it becomes particularly large.

両フライホイール3,5の回転数の差NA〜
NBは、フライホイール3,5の振動状態のレベ
ルを表わす信号としてコントローラ12に入力さ
れ、コントローラ12で予め設定された値とNA
〜NBのピーク値すなわち第4図におけるHの値
とが比較される。NA〜NBは、第5図に示すよ
うに、エンジン1が正規のアイドル回転数N1
ときには小さな値(NA〜NB)2であるが、フラ
イホイール3,5の共振回転数N0では大きな値
(NA〜NB)0になる。コントローラ12には、N0
とN1との間にある回転数で共振の前兆となる回
転数N2に対応するフライホイール3,5の振動
のレベルが、フライホイール3,5の回転数の差
(NA〜NB)2として予め設定されている。この回
転数N2は、燃料を増量することによつて容易に
元のアイドル回転数N1に回復できる回転数であ
る。また、コントローラ12には、共振回転数
N0あるいはそれに近い回転数に対応するフライ
ホイール3,5の振動のレベルとして、回転数の
差(NA〜NB)0が設定されている。
Difference between the rotation speeds of both flywheels 3 and 5 NA~
NB is input to the controller 12 as a signal representing the level of the vibration state of the flywheels 3 and 5, and is set in advance by the controller 12 and NA.
The peak value of ~NB, ie, the value of H in FIG. 4, is compared. As shown in Fig. 5, NA~NB is a small value (NA~NB) 2 when the engine 1 is at the normal idle speed N1 , but is large when the resonant speed N0 of the flywheels 3 and 5. Value (NA~NB) becomes 0 . The controller 12 has N 0
The vibration level of the flywheels 3 and 5 corresponding to the rotation speed N2 , which is a sign of resonance at a rotation speed between It is preset as . This rotational speed N2 is a rotational speed that can be easily restored to the original idle rotational speed N1 by increasing the amount of fuel. The controller 12 also has a resonance rotation speed.
The difference in rotational speeds (NA to NB) 0 is set as the vibration level of the flywheels 3 and 5 corresponding to N0 or a rotational speed close to it.

コントローラ12に減算器11から入力された
回転数の差NA〜NBのレベルHが、エンジン回
転数がN2に低下して(NA〜NB)2よりも大にな
つたとき、それが比較判断され、コントローラ1
2からの出力14によつてアクチユエータ13が
作動され、噴射ポンプ15のアクセルレバー16
が燃料増量側に作動される。アクセルレバー16
の作動により、噴射ノズル17からエンジン1の
燃焼室への燃料供給量が増大され、エンジン1の
回転数は元のアイドル回転数N1に回復される。
エンジン1の回転数がN1に達すると、アクチユ
エータ13の作動が解除され、再び正規の燃料供
給量が維持される。このように、フライホイール
3,5の振動が一定のレベルに達すると、それが
検知されエンジン回転数が回復されるので、エン
ジン1の回転数が共振回転数N0にまで低下する
ことは防止されフライホイール3,5の共振は事
前に回避される。
When the level H of the rotational speed difference NA~NB inputted to the controller 12 from the subtractor 11 becomes greater than (NA~NB) 2 as the engine rotational speed decreases to N2 , it is a comparative judgment. and controller 1
The actuator 13 is actuated by the output 14 from 2, and the accelerator lever 16 of the injection pump 15 is activated.
is activated to increase the amount of fuel. accelerator lever 16
By this operation, the amount of fuel supplied from the injection nozzle 17 to the combustion chamber of the engine 1 is increased, and the rotational speed of the engine 1 is restored to the original idle rotational speed N1 .
When the rotational speed of the engine 1 reaches N1 , the actuator 13 is deactivated and the normal fuel supply amount is maintained again. In this way, when the vibrations of the flywheels 3 and 5 reach a certain level, this is detected and the engine speed is restored, preventing the engine 1 speed from dropping to the resonance speed N0 . Therefore, resonance of the flywheels 3 and 5 is avoided in advance.

一方、エンジン回転数がN2に達し燃料が増量
されても、何らかの原因でエンジン回転数が回復
せず共振回転数N0まで下がり相対ねじれ角が
(NA〜NB)0の状態になつたときには、コントロ
ーラ12でフライホイール3,5の共振の回避は
不可能と判断され、コントローラ12からの指令
によつて噴射ポンプ15の電磁弁18が作動さ
れ、燃料供給が停止されてエンジン1が停止され
る。また、アイドリング時に何らかの原因で弾性
部材4が破損した場合、両フライホイール3,5
間の連結が切れるため、両フライホイール3,5
間の相対ねじれ角が(NA〜NB)0以上になる。
弾性部材4が破損すると、エンジン1の負荷は急
激に軽くなり、エンジン1の回転数が不必要に高
くなつて暴走するおそれがある。この場合も運転
継続は不可能と判断されエンジン1は停止され
る。エンジン1の停止によつて、エンジン1の暴
走やフライホイール3,5の共振の持続が防止さ
れ、エンジン1やエンジンまわりは適切に保護さ
れる。
On the other hand, even if the engine speed reaches N 2 and the amount of fuel is increased, for some reason the engine speed does not recover and drops to the resonance speed N 0 , when the relative torsion angle becomes (NA ~ NB) 0 . , the controller 12 determines that it is impossible to avoid the resonance of the flywheels 3 and 5, and the solenoid valve 18 of the injection pump 15 is operated in response to a command from the controller 12, the fuel supply is stopped, and the engine 1 is stopped. Ru. In addition, if the elastic member 4 is damaged for some reason during idling, both flywheels 3 and 5
Because the connection between the flywheels 3 and 5 is broken, both flywheels 3 and 5
The relative torsion angle between (NA~NB) becomes 0 or more.
If the elastic member 4 is damaged, the load on the engine 1 will be suddenly reduced, and there is a risk that the rotational speed of the engine 1 will become unnecessarily high and the engine will run out of control. In this case as well, it is determined that continued operation is impossible, and the engine 1 is stopped. By stopping the engine 1, runaway of the engine 1 and continued resonance of the flywheels 3 and 5 are prevented, and the engine 1 and its surroundings are appropriately protected.

なお、エンジン1がアイドリング状態であるか
否かは、エンジン1の負荷検出装置20からの信
号19およびフライホイール3の回転数NAの大
きさでコントローラ12にて判断される。
Note that whether or not the engine 1 is in an idling state is determined by the controller 12 based on the signal 19 from the load detection device 20 of the engine 1 and the magnitude of the rotational speed NA of the flywheel 3.

[発明の効果] 本発明に係る二分割フライホイールのトルク変
動低減装置によれば、両フライホイールの回転数
の差の検知によつてフライホイール振動レベルを
判断し、エンジン回転数が低下して振動が所定値
以上になつたときは、それを検知して燃料の増量
によりエンジン回転数を高めて事前にフライホイ
ールの共振を回避するようにしたので、フライホ
イールの共振によるエンジンの過大な振動やトル
ク変動を防止することができる。
[Effects of the Invention] According to the device for reducing torque fluctuation of a two-split flywheel according to the present invention, the flywheel vibration level is determined by detecting the difference in the rotational speed of both flywheels, and the engine rotational speed is reduced. When the vibration exceeds a predetermined value, it is detected and the engine speed is increased by increasing the amount of fuel to avoid flywheel resonance in advance. This prevents excessive engine vibration due to flywheel resonance. and torque fluctuations can be prevented.

なお、本発明の実施例はデイーゼルエンジンに
ついて述べたが、ガソリンエンジンについても同
様に本発明を適用することは可能である。
Although the embodiments of the present invention have been described with respect to a diesel engine, the present invention can be similarly applied to a gasoline engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二分割フライホイールにおけるエンジ
ン回転数とエンジンの回転変動との関係図、第2
図は本発明の一実施例に係る二分割フライホイー
ルのトルク変動低減装置の全体構成図、第3図は
二分割フライホイールの各フライホイールの回転
数の変動状態を示す特性図、第4図はフライホイ
ールの回転数差の変動状態を示す特性図、第5図
はエンジン回転数とフライホイールの回転数差と
の関係図、である。 1……デイーゼルエンジン、2……クランクシ
ヤフト、3,5……フライホイール、4……弾性
部材、7,8……リングギヤ、9,10……電磁
ピツクアツプ、11……減算器、12……コント
ローラ、13……アクチユエータ、15……噴射
ポンプ、16……アクセルレバー、17……噴射
ノズル、18……電磁弁、NA,NB……各フラ
イホイールの回転数、NA〜NB……各フライホ
イールの回転数の差。
Figure 1 is a diagram of the relationship between engine speed and engine rotational fluctuation in a two-part flywheel;
The figure is an overall configuration diagram of a torque fluctuation reduction device for a two-split flywheel according to an embodiment of the present invention, FIG. 3 is a characteristic diagram showing the fluctuation state of the rotational speed of each flywheel of the two-split flywheel, and FIG. 5 is a characteristic diagram showing a variation state of the difference in rotational speed of the flywheel, and FIG. 5 is a diagram showing the relationship between the engine rotational speed and the difference in rotational speed of the flywheel. DESCRIPTION OF SYMBOLS 1... Diesel engine, 2... Crankshaft, 3, 5... Flywheel, 4... Elastic member, 7, 8... Ring gear, 9, 10... Electromagnetic pick-up, 11... Subtractor, 12... Controller, 13... Actuator, 15... Injection pump, 16... Accelerator lever, 17... Injection nozzle, 18... Solenoid valve, NA, NB... Rotation speed of each flywheel, NA~NB... Each flywheel Difference in wheel rotation speed.

Claims (1)

【特許請求の範囲】[Claims] 1 弾性部材で連結された二分割フライホイール
と、該二分割フライホイールの各フライホイール
の回転数を検出する回転数検出手段と、該回転数
検出手段に接続され回転数検出手段から送られて
くる両フライホイールの回転数の差を計算する計
算手段と、燃料供給量を調節する手段に連結され
たアクチユエータと、該アクチユエータと前記計
算手段とに接続され計算手段から送られてくる両
フライホイールの回転数の差が所定値以上になつ
た場合に前記アクチユエータに対して燃料供給量
を増加する作動指令を発するコントローラとから
成ることを特徴とする二分割フライホイールのト
ルク変動低減装置。
1 A two-split flywheel connected by an elastic member, a rotation speed detection means for detecting the rotation speed of each flywheel of the two-split flywheel, and a rotation speed detection means connected to the rotation speed detection means and sent from the rotation speed detection means. an actuator connected to the means for adjusting the amount of fuel supplied; and an actuator connected to the actuator and the calculation means and receiving information from the calculation means. 1. A torque fluctuation reducing device for a two-split flywheel, comprising a controller that issues an operation command to increase the amount of fuel supplied to the actuator when the difference in rotational speed of the actuator exceeds a predetermined value.
JP19459682A 1982-11-08 1982-11-08 Device for reducing torque fluctuation of two-divided flywheels Granted JPS5985443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19459682A JPS5985443A (en) 1982-11-08 1982-11-08 Device for reducing torque fluctuation of two-divided flywheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19459682A JPS5985443A (en) 1982-11-08 1982-11-08 Device for reducing torque fluctuation of two-divided flywheels

Publications (2)

Publication Number Publication Date
JPS5985443A JPS5985443A (en) 1984-05-17
JPH0337022B2 true JPH0337022B2 (en) 1991-06-04

Family

ID=16327169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19459682A Granted JPS5985443A (en) 1982-11-08 1982-11-08 Device for reducing torque fluctuation of two-divided flywheels

Country Status (1)

Country Link
JP (1) JPS5985443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775898A1 (en) 1995-11-21 1997-05-28 Honda Giken Kogyo Kabushiki Kaisha System for detecting torque of automatic vehicle transmission and controlling the same based on detected torque

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749389B2 (en) * 1989-09-02 1998-05-13 株式会社日立製作所 Internal combustion engine torque control device
JP4353130B2 (en) * 2005-04-20 2009-10-28 トヨタ自動車株式会社 Misfire detection device for internal combustion engine
JP4816243B2 (en) * 2006-05-17 2011-11-16 トヨタ自動車株式会社 VEHICLE POWER DEVICE AND CONTROL DEVICE THEREOF
JP4433018B2 (en) * 2007-08-31 2010-03-17 トヨタ自動車株式会社 Internal combustion engine control device
JP4670912B2 (en) * 2008-08-01 2011-04-13 トヨタ自動車株式会社 Internal combustion engine control device
DE102009018081B4 (en) * 2009-04-20 2011-01-13 Continental Automotive Gmbh Method and device for operating an internal combustion engine
JP2012097709A (en) * 2010-11-05 2012-05-24 Toyota Motor Corp Control device of vehicle
JP2012097708A (en) * 2010-11-05 2012-05-24 Toyota Motor Corp Control device of vehicle
DE202013009182U1 (en) * 2013-10-17 2015-01-19 Gm Global Technology Operations, Inc. Dual-mass flywheel protection
JP2016176904A (en) * 2015-03-23 2016-10-06 三菱重工業株式会社 Rotation detection device and engine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123332A (en) * 1979-03-12 1980-09-22 Nissan Motor Co Ltd Internal combustion engine having multiple cylinders
JPS55137324A (en) * 1979-04-16 1980-10-27 Toyota Motor Corp Fuel injection control method for internal combustion engine
JPS5688915A (en) * 1979-12-20 1981-07-18 Nissan Motor Co Ltd Flywheel device for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123332A (en) * 1979-03-12 1980-09-22 Nissan Motor Co Ltd Internal combustion engine having multiple cylinders
JPS55137324A (en) * 1979-04-16 1980-10-27 Toyota Motor Corp Fuel injection control method for internal combustion engine
JPS5688915A (en) * 1979-12-20 1981-07-18 Nissan Motor Co Ltd Flywheel device for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775898A1 (en) 1995-11-21 1997-05-28 Honda Giken Kogyo Kabushiki Kaisha System for detecting torque of automatic vehicle transmission and controlling the same based on detected torque

Also Published As

Publication number Publication date
JPS5985443A (en) 1984-05-17

Similar Documents

Publication Publication Date Title
US6854444B2 (en) Method and device for controlling a drive unit
US5113821A (en) Vehicle speed governor
JPH06129273A (en) Driving torque controller
US6285946B1 (en) Method and device for controlling a drive unit of a vehicle
JPH0337022B2 (en)
US6230092B1 (en) Process and device for controlling the driving unit of a vehicle
US6817338B2 (en) Idle speed control system
US7628260B2 (en) Control system and method for lock up clutch
US20040187841A1 (en) Method and device for operating a drive engine of a vehicle
JP2000234554A (en) Method for damping shocking motion of vehicle
US6220226B1 (en) Method of controlling changes in torque in an internal combustion engine and an internal combustion engine controlled in accordance with said method
US5781876A (en) Cruise control road speed control device, especially for a diesel-powered vehicle
US20030150421A1 (en) Method and device for controlling the drive unit of a motor vehicle
GB2123186A (en) Automatic control of the speed of an internal combustion engine
JPH0578663B2 (en)
JPH04500845A (en) Method for controlling the amount of fuel in an internal combustion engine
JPH04504893A (en) A device for electronically open-loop and/or closed-loop control of the output of an automobile's internal combustion engine.
US5218939A (en) Arrangement for controlling the idle speed of an engine of a motor vehicle
EP0382872B1 (en) Damping oscillations in two mass flywheel drive system
JPH037013B2 (en)
JP3106968B2 (en) Vehicle speed limiter
JP2560501B2 (en) Supercharging pressure controller for vehicle exhaust turbocharged engine
JP3498414B2 (en) Lock-up clutch control device for automatic transmission
US5038886A (en) Control arrangement for engine/transmission power unit mount
JP4069335B2 (en) Engine fuel injection control device