JPH0336754A - Ic package and manufacture thereof - Google Patents

Ic package and manufacture thereof

Info

Publication number
JPH0336754A
JPH0336754A JP1172157A JP17215789A JPH0336754A JP H0336754 A JPH0336754 A JP H0336754A JP 1172157 A JP1172157 A JP 1172157A JP 17215789 A JP17215789 A JP 17215789A JP H0336754 A JPH0336754 A JP H0336754A
Authority
JP
Japan
Prior art keywords
ceramic
green sheet
package
base
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1172157A
Other languages
Japanese (ja)
Inventor
Kazuo Kawahara
河原 一雄
Koji Yamada
浩嗣 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1172157A priority Critical patent/JPH0336754A/en
Publication of JPH0336754A publication Critical patent/JPH0336754A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain an IC package which is capable of mounting thereon a chip generating large amount of heat, and is easy to meet with the alteration of a package shape, and permits ceramic and metal to be simultaneously sintered, by selecting the ceramic which is to be a base and a heat sink fin with which ceramic green sheet molding is possible and which ceramic allows ordinary temperature sintering thereto. CONSTITUTION:A striped square hole is blanked through a green sheet, and such five sheets, for example, are prepared. On the other hand, another green sheet 11 without such a hole is prepared, and metallized paste prepared separate is screen-printed on one surface of the green sheet 11 at a predetermined location on the same. The metal printed surface 12 is used as a rear surface on which the five green sheets 10 are positioned and placed, all being thereafter laminated and bonded. For the bonding, it is effective to apply a solvent for slurry or applying aluminum nitride powder paste prepared separately under slight pressure. Then, the shorter side of the square hole of the laminated is cut away by a cutter 13. Such a molded product is sintered to yield an aluminum nitride sintered product 14 in which a base substrate 13 and a radiating fin 1 are integrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、工0パッケージ、特にセラミック製のIC
パッケージ及びその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to an industrial package, especially a ceramic IC.
The present invention relates to a package and its manufacturing method.

〔従来の技術〕[Conventional technology]

L8工の集積度の増加や高速バイポーラロジックなどの
採用により半導体チップの発熱量が増大し、その冷却に
は多大の努力が払われている←空冷の場合には、第3図
に示す如く、ペース基板に熱伝導性レジンなどによF)
At放熱フィンを取ジつけて熱抵抗を下げるのが一般的
である・第3図は従来より多用されているセラミック製
工0パッケージの一例として、At放熱フィン付きパッ
ケージを示す断面図である。図にかいて、(1)は例え
ばAlの放熱フィン、(2)はAtフィン(1)トベー
スであるセラミック基板(3)を接着する熱伝導性シリ
コーンゴム、(3)はL13Iを搭載するベースセラミ
ック基板、(4)はリードフレームを接着する封止ガラ
ス、(5)は半導体チップであるL8工であシ。
Due to the increase in the degree of integration of L8 chips and the adoption of high-speed bipolar logic, etc., the amount of heat generated by semiconductor chips has increased, and great efforts are being made to cool them.In the case of air cooling, as shown in Figure 3, Using thermally conductive resin etc. on the paste boardF)
It is common to attach At heat radiating fins to lower the thermal resistance. Figure 3 is a sectional view showing a package with At heat radiating fins as an example of a ceramic package that has been widely used in the past. In the figure, (1) is, for example, an Al heat dissipation fin, (2) is a thermally conductive silicone rubber that adheres the ceramic substrate (3) to the At fin (1), and (3) is the base on which L13I is mounted. The ceramic substrate, (4) is the sealing glass to which the lead frame is bonded, and (5) is the L8 process which is the semiconductor chip.

(6)はL8工(5)をベース基板(3>に接着するた
めの例えばムuw8着剤、(7)はセラミックキャップ
、(8)は電気信号を外部へ取シ収すための金属性リー
ドフレーム、(9)はL8工(5)とリードフレーム(
8)トを電気的に結合させるためのワイヤである。この
ような構成のICパッケージにかいて、ベース基板(3
)に高熱伝導性のセラミックを用りる場合には、放熱フ
ィン(1)fベース基板r3)と一体的に作って、金属
性放熱フィンと同一効果を付与させることが考えられ、
SiCを材料とするものに対しては、初出。
(6) is a muw8 adhesive for adhering the L8 process (5) to the base substrate (3), (7) is a ceramic cap, and (8) is a metal material for receiving electrical signals to the outside. Lead frame (9) is L8 construction (5) and lead frame (
8) A wire for electrically coupling the In an IC package with such a configuration, a base substrate (3
), if a highly thermally conductive ceramic is used, it may be possible to make it integrally with the heat dissipation fin (1) f base board r3) to provide the same effect as a metal heat dissipation fin.
This is the first time for products made from SiC.

菱田編「セラミック基板材料データ集」(サイエンス 
フォーラム、填17頁)などによって、ベースと放熱フ
ィンを一体にした構造が示されている。このように、ベ
ース基板(3)と放熱フィン(1)を一体化することに
よって1部品点数を減らし、ペース基板(3)と放熱部
品(1)を接着する工程が省略できるメリットがある。
Edited by Hishida “Ceramic Substrate Material Data Collection” (Science
A structure in which the base and the heat dissipation fins are integrated has been shown in, for example, Forum, p. 17). In this way, by integrating the base substrate (3) and the heat dissipation fins (1), there is an advantage that the number of parts can be reduced and the step of bonding the pace board (3) and the heat dissipation component (1) can be omitted.

他方、もう一つの高熱伝導性セラミックである窒化アル
ミニウムについては、ベース基板(3)と放熱フィン(
1)の一体型構造は開示されていないnv7!公昭63
−195745号公報には窒化アルミニウムによシ放熱
フィンを形成することが示されているが。
On the other hand, regarding aluminum nitride, which is another highly thermally conductive ceramic, the base substrate (3) and the heat dissipation fin (
1) The integral structure of nv7! is not disclosed. Kosho 63
Japanese Patent Application No. 195745 discloses that heat dissipation fins are formed from aluminum nitride.

放熱フィンがベース基板とは逆サイドに取シ付けて冷却
する構造となってQfi、I8工実装のように。
The heat dissipation fin is installed on the opposite side of the base board for cooling, similar to Qfi and I8 mounting.

ワイヤボンデインクなどを必要とする素子には不都合で
ある0 〔発明が解決しようとする課題〕 従来の工0パッケージは以上のように!14威されてか
り、上記SiOの場合の具体的な製造方法は明らかにさ
れていないが、aioo成形にはホットプレスが必要で
あることからすれば、形状が複雑になるに従い工Cパッ
ケージの製造が困難となシ。
This is inconvenient for devices that require wire bonding ink, etc. [Problem to be solved by the invention] The conventional process-free package is as described above! 14, and the specific manufacturing method for the above-mentioned SiO has not been disclosed, but given that hot pressing is required for AIOO molding, it is said that as the shape becomes more complex, the manufacturing method of the C-package will increase. It is difficult.

コスト高になることが予想される〇 複雑形状のセラミックスを成形する一般的な方法として
射出成形が挙げられる。上記の例のような櫛形構造の場
合には、押し出し成形や鋳込み成形も可能である―しか
し射出成形や押し出し成形の場合は高価な金型やノズル
を必要とし、放熱フィン形状の変更に対応するには費用
が多くかかる。
Injection molding is a common method for molding ceramics with complex shapes, which is expected to increase costs. In the case of a comb-shaped structure like the example above, extrusion molding or casting molding is also possible - however, injection molding or extrusion molding requires expensive molds and nozzles, and it is difficult to accommodate changes in the shape of the heat dissipation fins. costs a lot of money.

また、耐水性が悪く、底形が困難な窒化アルミニウム粉
末を対象としたとき、成形のための多くの制御因子の最
適条件を決定しなければならないが。
In addition, when dealing with aluminum nitride powder, which has poor water resistance and is difficult to shape, it is necessary to determine the optimal conditions for many control factors for molding.

上記製造方法では多くの粉末が試料として必要であシ、
高価な粉末を多量に消費しなければならない0さらに、
これらの製造す法は有機結合剤の含有量が多いため、焼
成時の脱脂には多大の二ネNギーと注意深い配慮が必要
となる□さらに、上記製造方法では1次段の焼成過程で
セラミックのメタライズが同時に施せないという問題点
があった0この発明は、上記のような問題点を解消する
ためになされたもので、大発熱量のチップ搭載が可能で
あう、パッケージ形状の変更に対応し易く。
The above manufacturing method requires a large amount of powder as a sample;
In addition, large amounts of expensive powder must be consumed.
Since these manufacturing methods contain a large amount of organic binder, degreasing during firing requires a large amount of energy and careful consideration.Furthermore, in the above manufacturing methods, ceramics are removed during the first firing process. There was a problem that metallization could not be applied at the same time.0 This invention was made to solve the above problem, and it is compatible with changes in the package shape that would allow mounting of chips with a large heat output. Easy.

セラミックとメタMの焼成が同時に可能な工0パッケー
ジ及びその製造方法を提供することを目的としている0 (H題を解決するための手段〕 この発明に係るICパッケージV!、半導体チップ。
It is an object of the present invention to provide a package capable of firing ceramic and meta-M at the same time, and a manufacturing method thereof. (Means for Solving Problem H) An IC package V! and a semiconductor chip according to the present invention.

この半導体チップを搭載するセラミック製のベース、及
びこのベースと一体化されたセラミック製の放熱フィン
を備え、ベース及び放熱フィンとなるセラミックはグリ
ーンシート成形可能であると共に常圧焼結可能なもので
あることを特徴とするものであるへ また。この発明に係るICパッケージの製造方法は、ベ
ースと放熱フィンをセラミックグリーンシート法によう
一体化して製造したものである0〔作用〕 この発明にかけるベースと放熱フィンは、グリーンシー
ト成形可能であると共に常圧焼結可能なセラミックによ
り、一体化してtlldされてカシ。
It has a ceramic base on which this semiconductor chip is mounted, and a ceramic heat dissipation fin integrated with this base.The ceramic that forms the base and heat dissipation fin can be formed into a green sheet and can be pressure-pressure sintered. Hemata, which is characterized by certain things. The method for manufacturing an IC package according to the present invention is to manufacture the base and the heat dissipating fins by integrating them using the ceramic green sheet method.0 [Function] The base and the heat dissipating fins according to the present invention can be formed into a green sheet. It is made of pressureless sinterable ceramic and is tlld together with oak.

セラミックグリーンシート法で製造可能であり。It can be manufactured using the ceramic green sheet method.

大箔熱量のチップ搭載が可能となる0また。このセラミ
ックグリーンシート法によれば、複雑な形状のセラミッ
クも成形でき、効率良く冷却できる構造の放熱フィンを
得ることが可能となる。
It is also possible to mount a chip with large foil heat capacity. According to this ceramic green sheet method, it is possible to mold ceramics with complicated shapes, and it is possible to obtain heat dissipation fins with a structure that allows efficient cooling.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する0第1
図(a)〜(C)はこの発明の一実施例によるセラミッ
ク製の工0パッケージの製造方法を工程順に示す斜視図
である0図にかいて、(10は放熱フィンとなる打ち抜
きグリーンシート、0は半導体チップを搭載するベース
となるグリーンシート、園はグリーンシート圓の裏面に
施したタングステンのメタル印刷面、Uはグリーンシー
ト積層体を切断するためのカッター、α鴇は放熱フィン
(1)と一体化したベースであるn 會ず、窒化アルミニウム粉末と酸化イットリウム、又は
酸化力〃シウムなどの焼結助剤と有機結合剤及び可塑剤
、溶剤から成るスラリーをドクターブレード法により成
形して厚さ1mm程度のグリーンシートを得た。このグ
リーンシートをパッケージ形状に応じて、収り扱い易い
大きさに切断した。次に@1図(JL)に示すように、
グリーンシートに縞状の角穴を打ち抜き、この同じ穴あ
きシートαOを例えば5枚準備し九〇一方、穿孔してい
ない別のグリーンシート(2)分用意し、別に準備した
タングステン粉末のメタライズペーストをグリーンシー
ト(2)の一方の面の所定位置にスクリーン印刷した。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
Figures (a) to (C) are perspective views showing the manufacturing method of a ceramic package according to an embodiment of the present invention in the order of steps. 0 is the green sheet that is the base on which the semiconductor chip is mounted, Sono is the tungsten metal printing surface on the back of the green sheet circle, U is the cutter for cutting the green sheet laminate, and α is the heat dissipation fin (1) A slurry consisting of aluminum nitride powder, a sintering aid such as yttrium oxide or oxidizing oxidizer, an organic binder, a plasticizer, and a solvent is formed by a doctor blade method to form a thick base. A green sheet with a diameter of about 1 mm was obtained.This green sheet was cut into a size that was easy to fit and handle according to the package shape.Next, as shown in Figure @1 (JL),
Punch striped square holes in a green sheet and prepare, for example, five sheets of the same perforated sheet αO.Meanwhile, prepare another green sheet (2) without perforations, and metallize separately prepared tungsten powder. The paste was screen printed at a predetermined position on one side of the green sheet (2).

このメタル印刷面01)裏面とし、その上に5枚のグリ
ーンシートα0を位置合せして置き、これを積層接着し
た^この接着には、トルエン、アMコー71/類などの
スラリー用の溶剤又はテルピネオニMなどの印刷ペース
ト用の溶剤を塗布するか。
This metal printed surface 01) was used as the back surface, and 5 green sheets α0 were aligned and placed on top of it, and these were laminated and bonded. For this bonding, a solvent for slurry such as toluene and Akko 71/type was used. Or apply a printing paste solvent such as Terpineoni M.

別に準備した窒化アMミニウム粉末のペーストを塗布し
、僅かに加圧すると効果的であった0次にこの積層物の
角穴の短片flll f第1図(b)に示すようにカッ
ター(2)で切断分離した0このような成形物を窒素雰
囲気中で1850℃で焼成することによう。
Applying a paste of aluminum nitride powder prepared separately and applying slight pressure was effective. ) The molded product thus cut and separated was fired at 1850° C. in a nitrogen atmosphere.

断面が櫛形構造の、ベース基板(3)と放熱フィン(1
)が一体化した窒化アルミニウム焼結体α4が得られた
。この焼結体α4に、Ni−Fe合金のリードフレーム
と、別に作製したセラミックフレームを封着ガラスで接
合して、ペースと放熱フィンが一体化された工Cパッケ
ージを得た、 以上の製造方法によれば、放熱フィン付き窒化7〜ミニ
ウム焼結体が、いわばグリーンシートテクノロジーのみ
で得られる。従って汎用のシート成形機以外の装置は必
須でなく、シート厚さ、切断寸法の変更のみで形状の変
更に容易に対応できるnまた窒化アルミニウム粉末10
0g8度であってもシート成形が可能であるため、高価
な粉末を多量に消費せずに条件決定ができる有利さがあ
る。
A base substrate (3) and a heat dissipation fin (1) with a comb-shaped cross section.
) was obtained. An aluminum nitride sintered body α4 was obtained. A Ni-Fe alloy lead frame and a separately manufactured ceramic frame were bonded to this sintered body α4 using a sealing glass to obtain a C package in which the paste and heat dissipation fins were integrated.The above manufacturing method According to the publication, a sintered body of 7-minium nitride with heat dissipating fins can be obtained using only green sheet technology. Therefore, no equipment other than a general-purpose sheet forming machine is required, and the shape can be easily changed by simply changing the sheet thickness and cutting dimensions.In addition, aluminum nitride powder 10
Since sheet molding is possible even at 0 g and 8 degrees, there is an advantage that conditions can be determined without consuming large amounts of expensive powder.

以上は同一間隔、同一高さの放熱フィンを有するものに
ついて示したが、これに限るものではないC%sg2図
(a) 、 (b)はそれぞれこの発明の他の実施例に
よる製造方法の工程途中のグリーンシート積層体を示す
断面図である。図にかいて、(2)は放熱フィンとなる
グリーンシート積層体である0この実施例では角穴の数
や位置を変更してカう。
Although the above description has been made for the case where the radiation fins have the same spacing and the same height, the C%sg2 diagrams (a) and (b) are not limited to this, respectively. It is a sectional view showing a green sheet laminate in the middle. In the figure, (2) is a green sheet laminate that becomes a radiation fin. In this embodiment, the number and position of the square holes are changed.

半導体チップの発熱状況や放熱状態を考慮した放熱フィ
ンの高さ9幅などの部分的変更が可能である0 また、タングステンのメタライズ層は表面のみを想定し
たものであったが、ベースとなる部分のグリーンシート
(2)を複数枚使い、これらにタングステンの表面印刷
とヴイアホー〃を施せば、放熱フィン付き多層配線板が
可能であるOさらに、枠状のグリーンシートを用いるこ
とによって、半導体チップを収納するキャビティをつく
ることができる。
It is possible to partially change the height and width of the heat dissipation fin, taking into account the heat generation and heat dissipation conditions of the semiconductor chip.0 In addition, the tungsten metallized layer was intended only for the surface, but the base part By using multiple green sheets (2) and applying tungsten surface printing and via holes, it is possible to create a multilayer wiring board with heat dissipation fins.Furthermore, by using frame-shaped green sheets, semiconductor chips can be fabricated. You can create a cavity for storage.

!た。上記実施例では、熱伝IJ!率が高く、放熱効果
の大きい窒化アルミニウムについて説明したが、セラミ
ック材料はこれに限定されるものでなく、アMミナ、ム
ライトなどグリーンシート成形が可能で、常圧焼結でき
るものであれば適用できることは言う1でもないO 〔発明の効果〕 以上のように、この発明によれば、半導体チップ この
半導体チップを搭載するセラミック製のベース、及びこ
のペースと一体化されたセラミック製の放熱フィンを備
え、上記ベース及び放熱フィンとなるセラミックはグリ
ーンシート成形可能であると共に常圧焼結可能なもので
あることを特徴とすることによう、比較的簡便に製造で
きると共に、大発熱量のチップ搭載が可能である工Cパ
ッケージが得られる効果がある。
! Ta. In the above example, Netsuden IJ! Although we have explained aluminum nitride, which has a high heat dissipation rate and has a large heat dissipation effect, ceramic materials are not limited to this, and any material that can be formed into a green sheet and can be sintered under pressure, such as amina or mullite, can be applied. [Effects of the Invention] As described above, according to the present invention, a semiconductor chip, a ceramic base on which the semiconductor chip is mounted, and a ceramic heat dissipation fin integrated with the pace. The ceramic that forms the base and heat dissipation fins can be formed into a green sheet and sintered under normal pressure, making it relatively easy to manufacture and equipped with a chip that generates a large amount of heat. This has the effect of providing an engineering C package that allows for.

また、ペースと放熱フィンをセラミックグリーンシート
法によう一体化して製造したことにより。
In addition, the pace and heat dissipation fins are manufactured by integrating them using the ceramic green sheet method.

パッケージ形状の変更に対応し易く、セラミックとタン
グステンメタルの同時焼成が可能で、ドータM的に低コ
ストにできるICパッケージの製造方法が得られる効果
がある。
This has the effect of providing an IC package manufacturing method that is easily adaptable to changes in package shape, allows simultaneous firing of ceramic and tungsten metal, and can reduce costs in terms of daughter M.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)はこの発明の一実施例によるIC
パッケージの製造方法を工程順に示す断面図、第2図(
a)、ω)はそれぞれこの発明の他の実施例による製造
す法の工程途中のグリーンシート積層体を示す断面図、
第3図Vi従来のXaパッケージを示す断面図である、 (1)・・・放熱フィン5(3)・・・ベース、(5)
・・・半導体チップ、α0 、 C11l・・・グリー
ンシート、(至)・・・グリーンシート fζt#体。 なか1図中、同一符号は同一 又は相当部分を示す。
FIGS. 1(a) to 1(C) show an IC according to an embodiment of the present invention.
Figure 2 is a cross-sectional view showing the package manufacturing method step by step.
a) and ω) are cross-sectional views showing green sheet laminates in the middle of the manufacturing process according to other embodiments of the present invention, respectively;
FIG. 3 is a cross-sectional view showing a conventional Xa package. (1)...radiating fin 5 (3)...base, (5)
...Semiconductor chip, α0, C11l...Green sheet, (to)...Green sheet fζt# body. Among the figures, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体チップ、この半導体チップを搭載するセラ
ミック製のベース、及びこのベースと一体化されたセラ
ミック製の放熱フィンを備え、上記ベース及び放熱フィ
ンとなるセラミックはグリーンシート成形可能であると
共に常圧焼結可能なものであることを特徴とするICパ
ッケージ。
(1) A semiconductor chip, a ceramic base on which the semiconductor chip is mounted, and a ceramic heat dissipation fin integrated with the base, and the ceramic that forms the base and heat dissipation fin can be molded into a green sheet and is An IC package characterized by being capable of pressure sintering.
(2)ベースと放熱フィンをセラミックグリーンシート
法により一体化して製造したICパッケージの製造方法
(2) A method for manufacturing an IC package in which a base and a heat dissipation fin are integrated by a ceramic green sheet method.
JP1172157A 1989-07-03 1989-07-03 Ic package and manufacture thereof Pending JPH0336754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172157A JPH0336754A (en) 1989-07-03 1989-07-03 Ic package and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172157A JPH0336754A (en) 1989-07-03 1989-07-03 Ic package and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0336754A true JPH0336754A (en) 1991-02-18

Family

ID=15936627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172157A Pending JPH0336754A (en) 1989-07-03 1989-07-03 Ic package and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0336754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330483A (en) * 1995-05-31 1996-12-13 Seiko Seiki Co Ltd Heat sink
US6967844B2 (en) * 2003-08-29 2005-11-22 Abc Taiwan Electronics Corp. Ceramic heat sink with micro-pores structure
US20100089625A1 (en) * 2007-04-24 2010-04-15 Claus Peter Kluge Component having a ceramic base with a metalized surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330483A (en) * 1995-05-31 1996-12-13 Seiko Seiki Co Ltd Heat sink
US6967844B2 (en) * 2003-08-29 2005-11-22 Abc Taiwan Electronics Corp. Ceramic heat sink with micro-pores structure
US20100089625A1 (en) * 2007-04-24 2010-04-15 Claus Peter Kluge Component having a ceramic base with a metalized surface
US8980398B2 (en) * 2007-04-24 2015-03-17 CeramTee GmbH Component having a ceramic base with a metalized surface

Similar Documents

Publication Publication Date Title
KR102496716B1 (en) Ceramic Board Manufacturing Method
JPS5987893A (en) Circuit board, method of producing same and semiconductor device using same
EP2071620A1 (en) Heat sink having enhanced heat dissipation capacity
JPH0336754A (en) Ic package and manufacture thereof
JPH09298259A (en) Heat sink and manufacture thereof
CN105514060A (en) Method for realizing integration of embedded heat-radiation micro channels in LTCC ceramic substrate
JP3330104B2 (en) Manufacturing method of multi-cavity ceramic wiring board
JP2515303B2 (en) Method for manufacturing ceramic package
CN113225901A (en) Multilayer thick film ceramic-based circuit board and preparation process thereof
JP3346657B2 (en) Package for storing semiconductor elements
JP6263301B1 (en) Ceramic substrate and semiconductor module
JP2763417B2 (en) Manufacturing method of semiconductor device storage package
JP5061269B2 (en) Molding stamper and molding apparatus
JP4308791B2 (en) Manufacturing method of glass ceramic substrate and manufacturing method of electronic component mounting substrate
JP3292644B2 (en) Wiring board and method of manufacturing the same
JPH0661387A (en) Semiconductor device heat dissipating board
JP7209749B2 (en) Substrate for electronic component mounting and electronic device
JPH11297909A (en) Metallic plate for radiating heat and package for electronic parts using it
JPH06151637A (en) Insulating aluminum nitride heat-radiation plate provided with lead
JP3640238B2 (en) Metal plate for heat dissipation and electronic component package using the same
JPH11289037A (en) Metal plate for heat dissipation and package for electronic component using the same
JP6163246B1 (en) Manufacturing method of ceramic substrate
JP2000114441A (en) Multilayer metal plate and its manufacture
JP2000077583A (en) Package for electronic component and manufacture thereof
JP2001230350A (en) Method of manufacturing metallic plate for heat dissipation