JPH0336254A - Method for hardening surface of titanium-based alloy - Google Patents

Method for hardening surface of titanium-based alloy

Info

Publication number
JPH0336254A
JPH0336254A JP17117289A JP17117289A JPH0336254A JP H0336254 A JPH0336254 A JP H0336254A JP 17117289 A JP17117289 A JP 17117289A JP 17117289 A JP17117289 A JP 17117289A JP H0336254 A JPH0336254 A JP H0336254A
Authority
JP
Japan
Prior art keywords
based alloy
layer
titanium
iron
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17117289A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Suenaga
末永 博義
Misao Ishikawa
操 石川
Kuninori Minagawa
邦典 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17117289A priority Critical patent/JPH0336254A/en
Publication of JPH0336254A publication Critical patent/JPH0336254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To easily obtain an alloy high in bonding strength of the surface layer and excellent in surface hardness by forming an iron-based alloy layer on the surface of an alloy to be carbonitrided and specifying the carbon content and the ratio of the depth of specified hardness after treatment to the thickness of the iron-based alloy layer. CONSTITUTION:The layer (F) of an iron-based alloy is formed on the surface of a Ti-based alloy, and the carbon content is controlled to <=0.08wt.%. The ratio of the depth t2 of >=513 Vickers hardness from the surface after carbonitriding to the thickness t1 of the layer F is controlled to <=0.8. In this case, the iron-based alloy is a high temp. austenitic phase and has solubility for C and N. Therefore, the hardened surface layer is easily obtained by the carbonitriding treatment. In the case of containing >=0.08% carbon content, a carbide is formed at the interface between the Ti-based alloy layer and the layer F during the treatment, and the bonding strength between both layers is lowered. In addition, when t2/t1<=0.8 is fulfilled, C and N do not reach the interface between the layer F and the Ti-based alloy layer by diffusion, and consequently, lowering of bonding strength due to the formation of Ti carbide and Ti nitride at the interface is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチタン基合金の表面硬化処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for surface hardening treatment of titanium-based alloys.

[従来の技術] チタン基合金は高比強度林料として最近使用量が増大し
ている。
[Prior Art] Titanium-based alloys have recently been increasingly used as forest materials with high specific strength.

しかしチタン基合金は無潤滑の状態で摩擦係数が0.5
〜0.6と大きく、摺動部や他金属との接触部に使用す
る場合、焼付きの問題が生じ、使用上の制約となってい
る。
However, titanium-based alloys have a friction coefficient of 0.5 without lubrication.
It has a large value of ~0.6, and when used in sliding parts or parts that come in contact with other metals, the problem of seizure occurs, which is a restriction on use.

この焼付きを防止するには、チタン基合金の表面を硬化
することが必要であり、下記の表面処理方法が“金属チ
タンどその応用“ (昭和59年7月5日2日刊工業新
聞社発行1頁275〜頁277)に記載されている。
In order to prevent this seizure, it is necessary to harden the surface of the titanium-based alloy, and the following surface treatment method is used in the application of titanium metal etc. (published by Nikkan Kogyo Shimbun on July 5, 1980). 1, pages 275 to 277).

(1〉侵入型元素硬化法 (2〉めっき法 (3)ろう付け、溶射、拡散接合、肉盛溶接法この中で
侵入型元素硬化法は、炭素、酸素、窒素等の侵入型固溶
元素を表面に固溶させるか、又は化合物を生成させて硬
化させる一般的に広く用いられている表面硬化法である
(1) Interstitial elemental hardening method (2) Plating method (3) Brazing, thermal spraying, diffusion bonding, overlay welding This is a generally widely used surface curing method in which the compound is solid-dissolved on the surface or a compound is formed and hardened.

この侵入型元素硬化法で炭素、酸素を固溶させる場合、
チタンでは表層に多孔質で剥離性の酸化物層を形成しや
すく、従ってこの酸化物層の形威を防止するため、酸素
分圧を厳密にコントロールしながら炭素8酸素の侵入型
元素硬化法を行う必要がある。
When carbon and oxygen are dissolved in solid solution using this interstitial element hardening method,
Titanium tends to form a porous and peelable oxide layer on its surface. Therefore, in order to prevent the formation of this oxide layer, an interstitial elemental hardening method using carbon 8 oxygen is used while strictly controlling the oxygen partial pressure. There is a need to do.

又、チタンは炭化物、酸化物1窒化物を形威しやすいた
め、内部へ深いこれらの元素の拡散層を形成させること
が困難であり、従来の方法で得られている酸素拡散層、
窒化層の最大厚さは約50−であった。
In addition, since titanium tends to form carbides, oxides, and nitrides, it is difficult to form deep diffusion layers of these elements inside, and oxygen diffusion layers, which are obtained by conventional methods, are difficult to form.
The maximum thickness of the nitride layer was about 50-.

[発明が解決しようとする課題] 表面性状の良好な表面硬化層をチタン基合金の表面に形
成するには、表層での多孔質で剥離性の酸化物層の形成
を防止する必要があり、このため従来の方法では酸素分
圧を厳密にコントロールする必要がある。
[Problems to be Solved by the Invention] In order to form a hardened surface layer with good surface properties on the surface of a titanium-based alloy, it is necessary to prevent the formation of a porous and peelable oxide layer on the surface layer. Therefore, in the conventional method, it is necessary to strictly control the oxygen partial pressure.

又、従来の方法では酸素拡散層、窒化層を内部へ深く形
成するのは困難であり、長時間の処理においても、これ
らの層の得られる最大厚さは約501tmであり、例え
ば窒化層3011mを形威させるのに850℃では40
時間を要する等の問題がある。
Furthermore, it is difficult to form an oxygen diffusion layer and a nitride layer deep inside using conventional methods, and even in long-term processing, the maximum thickness that can be obtained for these layers is approximately 501 tm. 40 at 850℃ to make it appear
There are problems such as time required.

本発明は、以上の如き問題点を解決するためのチタン基
合金の表面硬化処理方法を提供することを目的とするも
のである。
The object of the present invention is to provide a method for surface hardening treatment of titanium-based alloys to solve the above-mentioned problems.

[課題を解決するための手段] 本発明は、 チタン基合金の表面上に鉄基からなる合金層を形成した
後、浸炭処理又は窒化処理を施すに際し、(a)浸炭処
理又は窒化処理前の前記鉄基合金層の炭素含有量を09
08重量%以下とする。
[Means for Solving the Problems] The present invention provides the following steps when performing carburizing or nitriding after forming an iron-based alloy layer on the surface of a titanium-based alloy: (a) before carburizing or nitriding; The carbon content of the iron-based alloy layer is 09
08% by weight or less.

(b)浸炭処理又は窒化処理後のビッカース硬さが51
3以上である表面からの深さ(t2)と前記鉄基合金層
の厚み(t1)の比率(t2/11)を0.8以下とす
る。
(b) Vickers hardness after carburizing or nitriding is 51
The ratio (t2/11) of the depth from the surface (t2) which is 3 or more and the thickness (t1) of the iron-based alloy layer is 0.8 or less.

上記(a)及び(b)の条件をともに満たすことを特徴
とするチタン基合金の表面硬化方法である。
This is a method for surface hardening a titanium-based alloy, characterized by satisfying both conditions (a) and (b) above.

なお本発明のチタン基合金とは、重量において50%以
上のチタンを含む純チタン、 Ti−6AI−4V合金
、 Ti−15V−3Cr−3Sn−3AI合金等の各
種チタン合金であり、また鉄基合金とは重量において5
0%以上の鉄を含む各種鉄合金をいうものである。
The titanium-based alloy of the present invention refers to various titanium alloys such as pure titanium, Ti-6AI-4V alloy, Ti-15V-3Cr-3Sn-3AI alloy, etc. containing 50% or more of titanium by weight, and iron-based Alloy is 5 in weight
It refers to various iron alloys containing 0% or more iron.

[作用] 本発明のチタン基合金の表面硬化方法でのチタン基合金
表面上の鉄基合金層は表面硬化層を得るための必須条件
である。
[Function] The iron-based alloy layer on the surface of the titanium-based alloy in the method for surface hardening of a titanium-based alloy of the present invention is an essential condition for obtaining a surface-hardened layer.

チタン基合金に浸炭、窒化処理を施した場合、チタン基
合金中のチタンと炭素、窒素とが反応し炭化物、窒化物
を形成するため、内部に深いこれらの元素の拡散層を形
成させることは困難となる。
When carburizing and nitriding a titanium-based alloy, the titanium in the titanium-based alloy reacts with carbon and nitrogen to form carbides and nitrides, so it is impossible to form a deep diffusion layer of these elements inside. It becomes difficult.

しかし、鉄基合金は高温のオーステナイト相で炭素2窒
素の溶解度をもつため、浸炭2窒化処理により容易に表
面硬化層を得ることが出来る。
However, since iron-based alloys have carbon dinitrogen solubility in the high-temperature austenite phase, a surface hardening layer can be easily obtained by carburizing dinitriding treatment.

ここで鉄基合金層の形成方法は圧着、爆着、溶射等いず
れの方法でも可能であり、特定の方法によらない。
Here, the iron-based alloy layer can be formed by any method such as compression bonding, explosion bonding, thermal spraying, etc., and is not limited to a specific method.

また浸炭、窒化方法として鉄基合金に用いられている従
来の方法の適用が可能であり、例えばガス浸炭法、ガス
窒化法、固体浸炭法の適用が可能である。
Furthermore, conventional methods used for iron-based alloys can be used as carburizing and nitriding methods, such as gas carburizing, gas nitriding, and solid carburizing.

従って本発明ではチタン基合金上に鉄基合金層を形威し
、浸炭、窒化処理を施すことが基本的な必要条件である
Therefore, in the present invention, a basic requirement is to form an iron-based alloy layer on a titanium-based alloy and to perform carburizing and nitriding treatments.

本発明では浸炭、窒化処理前の炭素量が0.08重量%
以下であることを規定したのは、炭素量が0.08重量
%以上である場合、浸炭、窒化処理中にチタン基合金層
と鉄基合金層との界面に炭化物を形成し、チタン基合金
層と鉄基合金層どの接合度の低下を招くためである。
In the present invention, the amount of carbon before carburizing and nitriding is 0.08% by weight.
The following is specified because if the carbon content is 0.08% by weight or more, carbides are formed at the interface between the titanium-based alloy layer and the iron-based alloy layer during carburizing and nitriding, and the titanium-based alloy This is because the degree of bonding between the iron-based alloy layer and the iron-based alloy layer decreases.

さらに本発明で鉄基からなる合金層厚さ(t1)と硬度
H≧513の浸炭、窒化処理深さ(t2)■ との関係を 12/11<o、8 と規定したのは以下の理由による。
Furthermore, in the present invention, the relationship between the iron-based alloy layer thickness (t1) and the carburizing and nitriding depth (t2) with hardness H≧513 is defined as 12/11<o, 8 for the following reasons. by.

つまり浸炭、窒化処理深さが大きくなり、炭素窒素が鉄
基合金層とチタン基合金層との界面まで拡散した場合、
鉄基合金層とチタン基合金層との界面にチタン炭化物、
チタン窒化物を形成し、このため鉄基合金層とチタン基
合金層どの接合度の低下を招くため浸炭、窒化硬化層の
深さを制限するものである。
In other words, when the carburizing and nitriding depth increases and carbon nitrogen diffuses to the interface between the iron-based alloy layer and the titanium-based alloy layer,
Titanium carbide is present at the interface between the iron-based alloy layer and the titanium-based alloy layer.
The depth of the carburized and nitrided hardened layer is limited because titanium nitride is formed, which leads to a decrease in the degree of bonding between the iron-based alloy layer and the titanium-based alloy layer.

つまり t2  /  t  1   <   0.8の条件を
満足する場合には、鉄基合金層とチタン基合金層との界
面までの炭素、窒素の拡散による到達がなく、従って界
面でのチタン炭化物、チタン窒化物の形成に基づく接合
強度の低下を防ぐことが可能となる。
In other words, when the condition t2/t1 < 0.8 is satisfied, carbon and nitrogen do not diffuse to the interface between the iron-based alloy layer and the titanium-based alloy layer, and therefore titanium carbide and titanium at the interface do not reach the interface between the iron-based alloy layer and the titanium-based alloy layer. It becomes possible to prevent a decrease in bonding strength due to the formation of nitrides.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] チタン基合金としてJIS2種純チタン、 Tl−6A
I−4V合金、 Tl−15V−3Cr−3Sn−3A
I合金、 Tl−85A合金を、また鉄基合金としてS
CM822相当、 5LIS304相当の合金を用意し
、熱間圧延、爆着、溶射によりチタン基合金上に板厚1
 inの鉄基合金層を形成したものを供試材とした。
[Example] JIS Class 2 pure titanium, Tl-6A as a titanium-based alloy
I-4V alloy, Tl-15V-3Cr-3Sn-3A
I alloy, Tl-85A alloy, and S as an iron-based alloy.
We prepared alloys equivalent to CM822 and 5LIS304, and applied them to a titanium-based alloy with a thickness of 1 by hot rolling, explosion bonding, and thermal spraying.
A sample material was prepared by forming an iron-based alloy layer.

この時の鉄基合金の炭素量は0.07〜0.10重量%
と変化させた。
The carbon content of the iron-based alloy at this time is 0.07 to 0.10% by weight
and changed it.

表面硬化処理は上記サンプルを用い、石英ガラス管にサ
ンプルと炭酸ナトリウムを2重量%含む活性炭を封入し
て処理する固体浸炭を行い、さらに滴下式浸炭炉を用い
、浸炭剤としてピロペンゾールを用いたガス浸炭を行い
2次にピット炉を用い、窒化剤としてNH3ガスを流し
てガス窒化処理を行ったが、浸炭温度は900℃、95
0℃の2温度、浸炭時間は1〜7時間1窒化温度は51
0℃。
For the surface hardening treatment, the above sample was used, and solid carburization was performed by enclosing the sample and activated carbon containing 2% by weight of sodium carbonate in a quartz glass tube.Furthermore, using a dropping carburizing furnace, gas was applied using pyropenzole as a carburizing agent. Carburizing was carried out and then gas nitriding was carried out using a pit furnace and flowing NH3 gas as a nitriding agent, but the carburizing temperature was 900°C, 95°C
2 temperatures of 0℃, carburizing time 1 to 7 hours, 1 nitriding temperature 51
0℃.

窒化時間は50〜80時間とした。The nitriding time was 50 to 80 hours.

表面硬化処理の評価は、JIS G 0557に基づく
Hv≧513以上の表面硬化深さとJIS G 060
1に基づくせん断試験により評価した。
Evaluation of surface hardening treatment is based on JIS G 0557, surface hardening depth of Hv≧513 or more, and JIS G 060
Evaluation was made by a shear test based on 1.

表1に行った表面硬化処理条件とその特性を示す。Table 1 shows the conditions of the surface hardening treatment and its characteristics.

本発明を遵守するかぎり、せん断強度14kgf/m+
e2以上の優れたチタン風合金と表面硬化鉄基合金との
接合特性をもつ表面硬度に優れたチタン基合金が製造さ
れる。
As long as the present invention is complied with, shear strength: 14 kgf/m+
A titanium-based alloy with excellent surface hardness and bonding properties between a titanium-like alloy and a surface-hardened iron-based alloy of e2 or higher is produced.

[発明の効果] 本発明のチタン基合金の表面硬化方法によれば、せん断
強度14kgf’/mm2以上のチタン基合金と鉄基合
金の接合強度をもつ表面硬度の優れたチタン基合金を製
造することが可能となる。
[Effects of the Invention] According to the method for surface hardening a titanium-based alloy of the present invention, a titanium-based alloy with excellent surface hardness and a bonding strength between a titanium-based alloy and an iron-based alloy with a shear strength of 14 kgf'/mm2 or more is produced. becomes possible.

手続補正書 (自発) 1゜ 事件の表示 特願平1−171172号 2゜ 発明の名称 チタン基合金の表面硬化方法 3゜ 補正をする者 事件との関係 名称 (4]、2)Procedural amendment (spontaneous) 1゜ Display of incidents Patent Application No. 1-171172 2゜ name of invention Surface hardening method for titanium-based alloys 3゜ person who makes corrections Relationship with the incident Name (4), 2)

Claims (1)

【特許請求の範囲】 チタン基合金材の表面上に鉄基合金層を形成した後、浸
炭処理又は窒化処理を施すに際し、(a)浸炭処理又は
窒化処理前の前記鉄基合金層の炭素含有量を0.08重
量%以下とする。 (b)浸炭処理又は窒化処理後のビッカース硬度が51
3以上である表面からの深さ(t_n)と前記鉄基合金
層の厚み(t_1)の比率 (t_2/t_1)が0.8以下とする。 上記(a)及び(b)の条件をともに満たすことを特徴
とするチタン基合金の表面硬化方法。
[Scope of Claims] After forming an iron-based alloy layer on the surface of a titanium-based alloy material, when performing carburizing treatment or nitriding treatment, (a) the carbon content of the iron-based alloy layer before carburizing treatment or nitriding treatment; The amount should be 0.08% by weight or less. (b) Vickers hardness after carburizing or nitriding is 51
The ratio (t_2/t_1) of the depth (t_n) from the surface, which is 3 or more, to the thickness (t_1) of the iron-based alloy layer is 0.8 or less. A method for surface hardening a titanium-based alloy, characterized by satisfying both conditions (a) and (b) above.
JP17117289A 1989-07-04 1989-07-04 Method for hardening surface of titanium-based alloy Pending JPH0336254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17117289A JPH0336254A (en) 1989-07-04 1989-07-04 Method for hardening surface of titanium-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17117289A JPH0336254A (en) 1989-07-04 1989-07-04 Method for hardening surface of titanium-based alloy

Publications (1)

Publication Number Publication Date
JPH0336254A true JPH0336254A (en) 1991-02-15

Family

ID=15918335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17117289A Pending JPH0336254A (en) 1989-07-04 1989-07-04 Method for hardening surface of titanium-based alloy

Country Status (1)

Country Link
JP (1) JPH0336254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699166A (en) * 1993-11-09 1997-12-16 Seiko Epson Corporation Copying machine for reproducing an image on a continuous web of labels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699166A (en) * 1993-11-09 1997-12-16 Seiko Epson Corporation Copying machine for reproducing an image on a continuous web of labels
US6040918A (en) * 1993-11-09 2000-03-21 Sieko Epson Corporation Copying machine

Similar Documents

Publication Publication Date Title
KR100828276B1 (en) Carbo-nitrided case hardened martensitic stainless steels
US7909943B2 (en) Method for hardening stainless steel and molten salt bath for realizing said process
US4154629A (en) Process of case hardening martensitic stainless steels
JPH0428783B2 (en)
EP1413631A2 (en) Improved spall propagation properties of case-hardened M50 and M50NIL bearings
WO2005075705A1 (en) Method for surface treatment of metal material
JPH11100655A (en) Gas soft-nitriding treatment
US8349093B2 (en) Method of plasma nitriding of alloys via nitrogen charging
US4702779A (en) Heat process for producing corrosion resistant steel articles
US5344502A (en) Surface hardened 300 series stainless steel
US4776901A (en) Nitrocarburizing and nitriding process for hardening ferrous surfaces
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
JPH0336254A (en) Method for hardening surface of titanium-based alloy
JP7397029B2 (en) Carburizing method for steel parts and method for manufacturing steel parts
JP2004107709A (en) Rolling member and manufacturing method thereof
JP2010001508A (en) Carburization heat treatment method and carburization source material
FR2483468A2 (en) IMPROVEMENT IN THE CHROMIZATION OF STEELS BY GAS
RU2692006C1 (en) Method for cyclic gas nitriding of parts from high-alloy steels
US20100055496A1 (en) Steel having high strength
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
JPH076053B2 (en) Nitriding of steel workpieces under pressure
US4539053A (en) Pack composition for carburosiliconizing ferrous substrates
US4495005A (en) Carbosiliconizing ferrous substrates
EP0931849B1 (en) Process suitable to give a direct protection against the wear corrosion of metallic pieces
Hoffmann et al. New carbonitriding processes