JP2004107709A - Rolling member and manufacturing method thereof - Google Patents

Rolling member and manufacturing method thereof Download PDF

Info

Publication number
JP2004107709A
JP2004107709A JP2002270340A JP2002270340A JP2004107709A JP 2004107709 A JP2004107709 A JP 2004107709A JP 2002270340 A JP2002270340 A JP 2002270340A JP 2002270340 A JP2002270340 A JP 2002270340A JP 2004107709 A JP2004107709 A JP 2004107709A
Authority
JP
Japan
Prior art keywords
weight
carburizing
rolling member
steel
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002270340A
Other languages
Japanese (ja)
Inventor
Takemori Takayama
高山 武盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2002270340A priority Critical patent/JP2004107709A/en
Publication of JP2004107709A publication Critical patent/JP2004107709A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the pitching-resistant strength by performing carburizing, carbo-nitriding or nitriding after diffusion coating of alloy elements to improve the a temper-softening resistance and seizure resistance from a surface of a gear using an inexpensive base steel of high regular marketability. <P>SOLUTION: An alloy element consisting of at least one kind of Si, Al, Be, Co, P and Sn having the effect of stabilizing the ferritic Fe phase and the effect of repulsion with carbon in steel is diffusion-coated from a surface layer, the surface layer is carburized, carbo-nitrided and/or nitrided, and quenched or quench-tempered. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、浸炭焼入れおよび/または浸炭浸窒焼入れおよび高周波焼入れ法によって製造される歯車等の転動部材に関するもので、より詳しくは300〜350℃での低温焼戻し軟化抵抗性を顕著に高める合金元素を歯車の歯車表面層に拡散浸透させるとともに、浸炭、浸炭浸窒および/または浸窒処理によってその表面層に炭素および/または窒素を拡散浸透させた後に、直後焼入れ焼戻しもしくは再加熱焼入れ焼戻し処理を施し、耐ピッチング強度を高めた歯車等の転動部材とその製造方法に関するものである。
【0002】
【従来の技術】
自動車や建設・土木用機械に使用されている歯車減速装置や変速装置には、高出力化や軽量コンパクト化に対応した高い動力伝達力に対するニーズが高まっており、特に、歯車やベアリング等の転動部材に対してはよりコンパクトで高い面圧強度の特性が望まれている。また、歯車等の面圧強度を高める手段として、歯車では浸炭処理、窒化処理、高周波焼入れ処理等によってその表面を硬化させることが通常的に実施されている。またさらに、面圧強度を高めるため焼戻し軟化抵抗性を高めるようなMo等の積極的な鋼への添加等の材料的な手段も採られている。特に、近年においては、浸炭や浸炭浸窒処理後に焼入れし、ショットピーニングを施し、積極的に表面硬度を高めるとともに、顕著な圧縮残留応力を付与する方法についても多く検討されている。
【0003】
また、浸炭法により鋼表面に高密度なセメンタイトを析出させることによって、表面硬度を高め、かつ、その焼戻し軟化抵抗性を高めることによって面圧強度を高める方法も報告されている(特許文献1参照)。
【0004】
さらに、浸炭浸窒によって鋼表面に高密度なAlNを微細に分散析出させ、かつ、表面層のマルテンサイト葉を微細にすることによって面圧強度を高める方法も報告されている(特許文献2参照)。
【0005】
【特許文献1】
特公昭62−24499号公報
【特許文献2】
特開平10−176219号公報
【0006】
さらにまた、歯車が噛み合う時のすべり率の大きなベベルギヤ類においては接触面圧疲労強度だけでなく、すべり時の発熱による耐焼付き性(耐スカッフィング性)の悪さが原因となる歯車の折損やピッチングの発生が問題となっているために、耐焼付き性に優れたMoS等の潤滑膜を歯面にコーティングすることも実施されている。
【0007】
【発明が解決しようとする課題】
焼戻し軟化抵抗性を高めるMo,V,Ti,Cr,Wを従来よりも多く添加した鋼を浸炭することによって面圧強度を高める手段が検討されているが、面圧疲労強度を高めるのに必要な低温度域での焼戻し軟化抵抗性を余り高めないために十分な改善が期待できず、またこれらの合金元素を多量に添加した場合には、鋼材コストと機械加工コストの顕著な増大を招くという問題点がある。また、Ti,V,W,Mo等を多量に添加すると、鋼材溶製の段階で炭素および窒素と炭化物、炭窒化物、炭化物として析出するため、多量に添加できない等の問題点がある。
【0008】
また、前記浸炭品表面に対して強烈なショットピーニングを実施し、表面から約100μm程度に存在する残留オーステナイトをマルテンサイト変態させて、より高い表面硬度と大きな圧縮残留応力を発生させることによって面圧強度向上を図ったものも報告されているが、この方法によれば、現実的には浸炭時に発生する粒界酸化層(欠陥層)におけるショットによる微視的欠陥の発生によって転動初期における摩耗粉の発生と、面あれによる摩擦係数の増大等のマイナス効果があり、さらには負荷される圧縮残留応力が220℃程度の低温温度域で急速に開放されることやショットが焼戻し軟化性改善にあまり効果的でないことから、必ずしも汎用的には利用できないという問題点がある。
【0009】
さらに、浸炭方法によって表面層にセメンタイト相を高密度に分散させる高炭素浸炭(過剰浸炭)法を歯車に適用する方法が前記特許文献1に開示されているが、この方法によれば、高密度に析出させるセメンタイト粒子が5〜10μmと大きくなり易く、かつ、セメンタイト同士の凝集が起き易く、さらに、粒界に沿った巨大な析出が起こるため、結果的には接触応力によってセメンタイト凝集体が破壊され、表面欠陥の起点としてのマイナス効果が顕在化し、歯車に適用した場合には、歯元強度の低下を来たすなどの問題点がある。
【0010】
また、前記特許文献2に開示されているように、Alを多量に添加した鋼を浸炭浸窒処理し、表面層にAlNを分散析出させて焼入れ処理で形成されるマルテンサイト葉を微細化することによって面圧強度を高める方法は、Alが強力なフェライトFe相を安定化する元素であるために、その添加量に限界があって十分な機能を発現できず、さらに鋼材そのものが特殊鋼化するために、鋼材コストが顕著に高くなるという問題点がある。
【0011】
本発明は、従来の浸炭焼入れ歯車の耐面圧強度が十分でない問題点とその耐焼付き性が悪いという問題点と、さらに、転動部材のベース鋼材が特殊鋼化する問題点を解消するためになされたもので、通常市販性が高く、かつ安価なベース鋼材を用いた歯車の表面から前記焼戻し軟化抵抗性や耐焼付き性を改善する合金元素を10μm以上の深さに拡散浸透させた後に、浸炭、浸炭浸窒もしくは浸窒処理を施し、さらに、焼入れおよび/または焼入れ焼戻し処理を行うことを特徴としたものである。
【0012】
また、本発明は、滑りを伴う転動条件で使用する歯車として、その耐面圧強度が稼動中に起こる歯車温度の300℃での焼戻し硬さがHRC58以上となる各種の耐高面圧用の浸炭焼入れ歯車を開発したものである。
【0013】
さらに本発明は、前記浸炭および/または浸炭浸窒後一旦A1変態温度以下に冷却後、再加熱焼入れ焼戻し処理を施して、歯面表面層がマルテンサイト相中に微細なセメンタイト粒を分散させ、ピッチング強度を高めたものであり、300℃での焼戻し硬さがHRC62以上となるように焼戻し軟化抵抗性を高め、浸炭焼入れ歯車と同等以上のピッチング強度を発現できる安価な高周波焼入れ硬化歯車等の転動部材を提供することを目的とするものである。
【0014】
さらにまた本発明は、強力なフェライト安定化元素で、鋼中の炭素と強力に反発する拡散性の高いSiと同時にフェライト安定化元素でかつ、炭化物形成元素であるCr,Mo,V,Wの一種以上を拡散浸透させ、後の浸炭および/または浸炭浸窒処理によって、特殊炭化物および/または特殊炭窒化物を表面層中に分散させたことを特徴とする高耐面圧歯車等の転動部材を開発したものである。
【0015】
さらにまた本発明は、表面層にNiTi,CoAl,FeCo,FeSi,FeAlの規則相出現範囲の組成に調整することによって、表面層を摺動特性の良い材料成分系に調整したことを特徴とする高耐面圧歯車等の転動部材を開発したものである。
【0016】
【課題を解決するための手段および作用・効果】
浸炭焼入れ処理を施したSNCM815,SCM420,Scr420,SMnB420鋼について、それらの滑りを伴う転動面圧強度(ピッチング強度)を面圧375〜220kgf/mmの範囲で予備調査した結果、10回転でピッチングが発生し始める面圧は210kgf/mmであり、各面圧でピッチングを発生した転動面最表面層のマルテンサイト相のX線半価幅は4〜4.2°に減少するとともに転動面最表面層において顕著な軟化が認められる。
【0017】
また、S55C炭素鋼を焼入れ焼戻し処理によってHRC61〜62に調整した炭素鋼について、面圧250kgf/mmでの転動面圧強度を予備調査した結果、10回転でピッチングが発生し始める面圧がほぼ180kgf/mmであり、面圧250kgf/mmでピッチングを発生した転動面のマルテンサイト相のX線半価幅は前記浸炭肌焼鋼のそれとほぼ同様に3.6〜4.2°に減少している。
【0018】
さらに、共析炭素鋼(0.77重量%C)についてもその転動面圧強度を予備調査した結果、10回転でピッチングが発生し始める面圧でほぼ230〜240kgf/mmであり、ほぼ同じ炭素量からなる前記浸炭肌焼鋼の転動面圧強度とほぼ同じであり、浸炭肌焼鋼の方が転動表面の粒界酸化層や不完全焼入れ層が存在することによる転動面圧強度のバラツキによる低下が見られることがわかった。
【0019】
またさらに、共析炭素鋼(0.82重量%C)の転動面を高周波焼入れしたものの転動面圧強度を予備調査した結果、10回転でピッチングが発生し始める面圧がほぼ260〜270kgf/mmであり、ほぼ同じ炭素量からなる前記浸炭肌焼鋼の転動面圧強度とほぼ同じであり、浸炭肌焼鋼の方が転動表面の粒界酸化層や不完全焼入れ層が存在することによる転動面圧強度のバラツキによる低下が見られることがわかった。
【0020】
さらに、前記微細なセメンタイト粒子を分散させる観点から、約1.0重量%炭素と1.5重量%のCrを含有するSUJ2を840℃から焼入れた後にHRC62.5になるように焼戻したものの転動面圧強度を予備調査した結果、10回転でピッチングが発生し始める面圧がほぼ270kgf/mmであり、前記共析鋼のそれとほぼ同じ強度を示し、面圧250kgf/mmでピッチングを発生した転動面のマルテンサイト相のX線半価幅は前記浸炭肌焼鋼のそれとほぼ同様に4.2〜4.5°に減少していることがわかった。
【0021】
さらに、炭素が0.46,0.55,0.66,0.77,0.85重量%含有される炭素鋼を820℃から焼入れ、100〜350℃で各3時間焼戻したときの硬さとX線半価幅を調査し、さらに、すでに公開されているこれらに関するデータ(例えば「材料」、(社)日本材料学会、第26巻第280号、P26)を参考にして検討した結果、マルテンサイト相のX線半価幅が4〜4.2°になる硬さはほぼHRC51〜53に焼戻される状態に相当し、例えば浸炭肌焼鋼の表面炭素濃度がほぼ0.7〜0.9重量%に調整されていることを参考にすると、その焼戻し温度はほぼ300℃に相当することがわかった。
【0022】
以上の予備試験結果から、歯車が高面圧下で噛み合う際に発生する熱によって歯面最表面部が焼戻され、軟化することによって、ピッチングを発生することを明らかにし、さらに、浸炭焼入れ歯車並みのピッチング強度を得るための指標としては300℃での焼戻し硬さがHRC53以上となることが必要であることを明らかにした。
【0023】
また、SCM420鋼に浸炭焼入れ処理を施した浸炭硬化層の300℃焼戻し硬さと、単に焼入れ処理を施した共析炭素鋼の300℃焼戻し硬さとの比較において、焼戻し軟化抵抗性に対するCr,Moの改善がほとんど確認されないために、光輝焼入れや高周波焼入れ法によって浸炭焼入れ歯車以上のピッチング強度を付与するためには、ほぼ300℃での低温焼戻しにおける焼戻し軟化抵抗性を高める新たな合金設計が必要となること、および、前記共析炭素鋼(0.82重量%C),SUJ2の転動面圧強度改善作用のように微細なセメンタイト粒子などをマルテンサイト相中に分散させることが効果的であることがわかった。
【0024】
なお、前述の浸炭焼入れによるピッチング強度と同等以上(面圧Pmax=230kgf/mm以上)に耐える歯車設計としては、ヘルツ面圧の理論解析に基づいて、面圧値の0.3倍の片振り剪断応力(R=0)の疲労強度に耐える硬さが設定されるが、その計算値はほぼHRC53.4であり、前述の予備試験においてピッチングが発生した転動面のマルテンサイト相のX線半価幅から求まる硬さ(HRC=53)と極めて良く合致しており、また、その硬さが滑りを伴う転動により発生する摩擦熱によって、転動面最表面部がほぼ300℃に昇温する時点でピッチングが発生することから、300℃焼戻し硬さを少なくともPmax=230kgf/mmに耐えるためのHRC54以上となるように設定することによって浸炭焼入れ歯車と同等以上の高面圧歯車が開発されることがわかった。
【0025】
なお、さらに、実施例2で後述するように、炭素を0.1〜1.0重量%含有する炭素鋼の300℃焼戻しマルテンサイト相の硬さが、式
HRC=36×√C(重量%)+20.9
で記述され、この硬さを基準にして各種合金元素の300℃焼戻しマルテンサイト相の硬さに対する影響を調査した結果、300℃焼戻しマルテンサイト相の硬さが、式
HRC=(36√C(重量%)+20.9)+4.33×Si(重量%)+7.3×Al(重量%)+3.1×V(重量%)+1.5×Mo(重量%)+1.2×Cr(重量%)×(0.45÷C(重量%))
で記述されることを明らかにした。
【0026】
なお、歯車減速機のコンパクト化による経済性を検討した場合には、ワンランクサイズダウンを可能とするコンパクト化率25〜30%が最も好都合である場合が多い。この場合、歯車面圧強度が従来面圧強度の1.15倍以上改善されることが必要であり、最も汎用的に使用されている浸炭焼入れ歯車の耐面圧性230kgf/mmを265kgf/mmに改善することが必要であり、歯面の300℃焼戻し硬さがHRC58以上であることが必要となり、より好ましくはHRC60以上が必要となることがわかる。
【0027】
また、良く利用されているSCM系の浸炭焼入れ材料における浸炭層の300℃焼戻し硬さは、通常HRC=53〜55の範囲にあることから、例えばSi添加によってHRC60以上を満足させる場合には1.5重量%以上のSi添加が必要であり、Al添加でも約1重量%以上の添加が必要となり、これら組成の特別組成鋼を溶製する必要があるために、経済的でない問題があるとともに、高合金鋼化による機械加工性が悪くなる問題がある。
【0028】
さらにまた、SCM420Hの浸炭転動面におけるローラピッチングテスト前後の硬さ調査を実施した結果、表面から約70μm深さまでの硬さ低下(軟化)が確認され、特に、最表面から約10〜20μmまでの組織が変質していることが多く観察された。
【0029】
そこで、第1発明においては、前記のように歯車等転動面を強化する各種合金元素の一種以上を転動表面層に拡散浸透させるとともに、その表面層に浸炭および/または浸炭浸窒処理によって炭素および/または窒素を浸透拡散させた後に焼入れ焼戻したことを特徴とすることによって、安価な鋼材を利用して、表面層の焼戻し軟化抵抗性および/または耐焼付き性を顕著に高めた鋼製転動部材を開発した。
【0030】
また、その合金元素の拡散浸透深さは少なくとも10μm以上で、好ましくは50μm以上であることとした。
【0031】
なお、前記拡散浸透させる合金元素としては、前記焼戻し軟化抵抗性を顕著に高める作用を有するとともに、転動面圧強度に耐えるだけの深さの浸透拡散層が得られやすいようにその合金の拡散固溶によって拡散性に優れたフェライトFe相を形成すること、および拡散浸透する合金元素が鋼中の炭素と結合して多量の炭化物を形成しないSi,Al,Be,Co,P,Snのうちの一種以上を選定することを特徴とした(第2発明)。
【0032】
また、前記鋼製転動部材のベース鋼材としては、少なくともC:0.10〜0.35重量%を含有する炭素鋼、低合金鋼および/または肌焼き鋼をベース鋼材とし、その鋼材転動部材の表面層が、少なくともC:0.5〜1.7重量%を含有し、さらに、N:0.2〜2.0重量%、Si:1.0〜5.0重量%、Al:0.5〜20重量%、Co:1.0〜30重量%、Be:0.1〜5.0重量%の一種以上の合金元素が含有されていることを特徴とする鋼製転動部材とした(第3発明)。
【0033】
ここで、焼戻し軟化抵抗性を高めるCoの作用は、マルテンサイトの磁気変態温度を顕著に高め、焼戻し温度での軟化のための拡散性を顕著に抑制することに基づくものであり、さらに、高濃度なCoを含有するFe−Co合金においては規則相を形成し、摺動時の耐焼付き性を向上する機能を有することは明らかである。なお、規則相形成による耐焼付き性の向上現象はFe−Al(OMRF:特開2002−180216号公報参照)、Fe−Si,Fe−Co−Alにおいても認められることは明らかである。
【0034】
さらに、第4発明として、前記鋼製転動部材の表面層が、式
5≦4.3×Si(重量%)+7.3×Al(重量%)+3.1×V(重量%)+1.5×Mo(重量%)+1.2×Cr(重量%)×(0.45÷C(重量%))
の関係を満足するようにSi,Alの一種以上が拡散浸透され、さらに、浸炭処理および/または浸炭浸窒処理によってその浸炭または浸炭浸窒表面層の炭素濃度が0.6〜1.7重量%に調整されるとともに、その処理に続いて焼入れと300℃以下の焼戻し処理、もしくはその処理後に一旦冷却して、再加熱焼入れと300℃以下の焼戻し処理を施し、300℃の焼戻し処理によってもHRC58以下の硬さが確保されるようにした。
【0035】
また、第5発明による転動部材は、前記浸炭された転動部材において、その浸炭表面層の炭素濃度が0.6〜1.7重量%に調整され、その浸炭中に表面層にセメンタイトが析出しない状態から一旦A1温度以下に(ガス)冷却した後に再加熱焼入れと300℃以下の焼戻し処理を施し、その浸炭表面層の焼戻しマルテンサイト相中に1μm以下の微細なセメンタイト粒子を分散させ、300℃に焼戻し処理によってもHRC62以上の硬さが確保されるようにしたことを特徴とする。
【0036】
ここで、炭素量を1.7重量%以下と限定した理由は、これ以上の炭素含有量では浸炭処理中において転動表面層での粗大なセメンタイト粒子(3μm以上)の発生が避けられず、その歯車の曲げ強度が劣化する危険性が高いためであり、また、その浸炭中に表面層に粗大なセメンタイトを析出させずに1.7重量%以上の高濃度浸炭を実施することは、浸炭温度を1100℃近くまで高める必要があり、設備的な制限からである。
【0037】
また、前記発明においては、酸化物形成傾向の強いSi,Al,Be等の合金元素を浸透拡散させることから、前記表面炭素濃度を0.9〜1.7重量%にする高濃度な浸炭は炭素活量(ac)が1近くの高い炭素ポテンシャル状態でかつ好ましくは高温度側(1000℃以上)で実施されるために、酸素分圧を極度に低減した真空浸炭やプラズマ浸炭法で浸炭することが好ましい。また、その浸炭中に表面層に粗大なセメンタイトが析出しないように、高精度に炭素ポテンシャルを制御する必要があるが、1000℃を越える高い炭素ポテンシャルでの浸炭制御が極めて困難であることから、鋼材成分中のCrが粗大なセメンタイトの析出を促進することに着目し、表面層におけるCr添加量を0.5重量%以下に低減するかもしくはSi添加量がCr添加量の1.4倍以上になるように調整することによって、前記の高い炭素ポテンシャル状態での浸炭処理中においてもセメンタイトが析出しないようにした(第6発明)。
【0038】
より詳細に見るときには、Mn,Ni,Mo等の影響も考慮する必要があり、それらの含有量は、式
−0.146×Si(重量%)+0.03×Mn(重量%)−0.024×Ni(重量%)+0.075×Cr(重量%)+0.043×Mo(重量%)+0.133×V≦0
の関係を考慮することが好ましいが、実質的には、表面Si濃度が1.0〜5.0重量%になるようにして使用することが好ましい。
【0039】
また、フェライトFe相を安定化し、鋼中の炭素と反発し合うSi,Al、Co,Beを同時もしくは先行して拡散浸透させた場合には、先行して浸透拡散するSi等の元素がフェライトFe相を形成しながらその相内の炭素含有量を顕著に低減させるので、鋼中の炭素と強力に反応して炭化物を形成するCr,Mo,V,Ti,W等の合金元素を表面から遅れて浸透拡散させた場合には、Cr,Mo,V,Ti,Wによる炭化物の形成が防止されるので、これらの合金元素の浸透拡散処理後に前記浸炭処理および/または浸炭浸窒処理を施すことによって耐焼付き性に優れたCr,MoC,WC,V,TiC,TiCN,AlN,セメンタイトの炭化物および/または炭窒化物を析出させることを特徴とする転動部材を開発した(第7発明)。
【0040】
なお、この第7発明において、転動部材の表面層における浸炭、浸炭浸窒および/または浸窒後の炭素濃度および/または窒素濃度は顕著に高まるが、C:0.5〜3.5重量%、N:0〜2.5重量%で十分その機能が達成されることは明らかである。
【0041】
さらに、前記先行して拡散浸透させるSi,Al,Co,Beの一種以上および/またはCr,Mo,V,Ti,Wの一種以上と顕著な時効硬化性を有するNi,Co等の合金元素を拡散浸透させた後に、浸炭処理および/または浸炭浸窒処理、焼入れおよび/または焼入れ焼戻し処理を施すことを特徴とする転動部材を開発した(第8発明)。
【0042】
なお、本発明においては、面圧強度を高めることに寄与する合金元素の全てを拡散浸透処理によって付与するものではなく、前記ベース鋼材にあらかじめ含有させておくことができることは明らかであり、第9発明においては、前記転動部材のベース鋼材として、少なくともC:0.10〜0.35重量%を含有するとともに、Si:0.05〜1.0重量%、Mn:0.3〜1.5重量%、Ni:0〜2.5重量%、Cr:0〜2.0重量%、Mo:0〜0.35重量%、V:0〜0.4重量%、さらに、Cu,W,Ti,Nb,B,Zr,Ta,Hf,Al,Caの一種以上の合金元素とP,S,N,O等の不可避的不純物元素が含有され、残部が実質的にFeからなる鋼材を用いることを特徴とした。
【0043】
さらに、歯面強度の向上や歯元曲げ強度の向上のために歯面、歯元、歯底部にショットピーニングやローラバニシング等の物理的加圧処理を施し、明らかな圧縮残留応力を発生させることがより高強度の歯車等の転動部材に好ましいことは明らかであり、これらの処理を施した転動部材も本発明範囲にある。
【0044】
前記合金元素を転動面表面に拡散浸透させた転動部材の製造方法として、第10発明では、フェライトFe相を安定化し、かつ、鋼中の炭素と反発し合うSi,Al,Co,Beの一種以上の合金元素を表面層から少なくとも10μm以上の深さにまで拡散浸透させる工程と、その後に浸炭、浸炭浸窒もしくは浸窒処理を施す工程、さらに、焼入れまたは焼入れ焼戻し処理を施す工程からなることを特徴とする鋼製転動部材の製造方法を開発した。
【0045】
なお、前記フェライトFe相を安定化する合金元素の拡散浸透処理は、表面拡散層においてフェライトFe相を形成し、拡散性が高められることから、その下限処理温度を850℃にすることができ、上限温度はその処理およびその後に続く浸炭処理および浸炭浸窒処理の設備費の関係から1200℃とすることが好ましい。
【0046】
また、浸炭処理および浸炭浸窒処理の下限温度はその生産性を考慮して、850℃とし、その上限温度は表面層の炭素濃度を1.7重量%に高める必要性から1100℃とした。
【0047】
さらに、第11発明では、前記Si,Al,Co,Beの一種以上を同時もしくは先行して拡散浸透させ、さらに、フェライトFe相を安定化する元素で、かつ、強力な炭化物形成元素もしくは窒化物形成元素であるCr,Mo,V,Ti,Wの一種以上を拡散浸透させた後に、浸炭、浸炭浸窒および/または浸窒処理を施し、転動表面層においてCr,TiC,TiN,TiCN,AlN,MoC,WC等の特殊炭化物、特殊炭窒化物および/または特殊窒化物を微細に分散析出させることを特徴とした。
【0048】
さらにまた、第12発明では、前記先行して拡散浸透させるSi,Al,Co,Beの一種以上および/またはCr,Mo,V,Ti,Wの一種以上と顕著な時効硬化性を有するNi,Co等の合金元素を拡散浸透させることを特徴とした。
【0049】
また、第13発明では、転動面表面層からの合金元素の拡散浸透工程では、前記850〜1200℃の温度範囲で、転動部材を加熱しながら目的とする合金元素を含有する塩素化合物系ガス(例えばSiCl等)、ヨウ素化合物系ガス(例えばCrI等)、フッ素化合物系ガス(例えばCrF等)、水素化合物系ガス(例えばSiH等)を用いて拡散浸透することを特徴とした。
【0050】
また、第14発明では、従来から工業的に実施されている珪素浸透法(シリコナイジング)、Al浸透法(カロライジング)、Cr浸透法(クロマイジング)等に使用する一種もしくは二種以上の固体媒剤を用いて一種もしくは二種以上の合金元素を拡散浸透させた後、不活性、還元性、真空および/または浸炭性雰囲気中でさらに拡散処理し、表面層における金属間化合物(FeSi,FeAl系)を固溶させ、さらに、表面層中の合金元素濃度を調整することを特徴とした。
【0051】
またさらに、本発明における合金元素の拡散浸透はその浸透層の合金元素濃度が比較的低濃度であることとその浸透量が少ないことから、転動部材に合金元素からなる極めて薄い単一元素もしくは多元素からなる拡散源をプレーティングし、加熱拡散期を設けて拡散浸透させることができるので、第15発明においては、溶融メッキ法、塩浴法、電気メッキ法、化学メッキ法、蒸着法、スパッタリング法、溶射法等の各種方法でプレーティングした後に、拡散浸透させることを特徴とした。
【0052】
また、当然のことであるが、前記第13〜15発明の拡散浸透方法を組合わせて利用できることは明らかである(第16発明)。
【0053】
また、第17発明では、合金元素の拡散処理後に引き続いて浸炭、浸炭浸窒もしくは浸窒処理を実施して、生産性を高めるためには真空浸炭およびプラズマ浸炭が行える浸炭、浸炭浸窒炉を用いて、少なくとも1000℃以上の温度で処理することを特徴とした。
【0054】
また、第18発明では、前記浸炭および/または浸炭浸窒処理後にその処理に続いて焼入れと300℃以下の焼戻し処理、もしくはその処理後に一旦冷却して、再加熱焼入れと300℃以下の焼戻し処理を施すことを特徴とした。ここで、前記再加熱焼入れ処理によって、浸炭および/または浸炭浸窒処理する表面層がマルテンサイト相にセメンタイトが分散した組織になるようにされるようにした(第19発明)。
【0055】
なお、本発明につながる各合金元素の働きについてまとめて次に記述する。
【0056】
(1)Si
SiはフェライトFe相を強力に安定化させるために、転動面表面から拡散浸透させる際には、▲1▼その表面層に拡散性に優れ、かつ、炭素固溶度が極めて少ないフェライトFe相が形成され、▲2▼Siが炭素と強く反発し合い炭化物を形成しないこと、さらに、▲3▼Si自身の拡散性が他の置換型合金元素のそれよりも大きいことなどの理由から、Siの浸透速度はフェライト相中におけるSiの拡散によって律せられるようになるので、その拡散浸透処理温度をより低温度で、もしくは、拡散浸透処理時間をより短時間にすることができ、例えば、850℃では10μm以上の拡散浸透層が約1時間で形成され、また、1000℃、1100℃では1時間で50μm,100μmの拡散層が形成されることが計算される(図1:表面のSi濃度が5wt%となるようにした時の拡散プロフィル参照)。
【0057】
またSiは、前述の300〜350℃以下の低温焼戻し温度域での焼戻し軟化抵抗性を顕著に高める元素であり、その焼戻し軟化抵抗性を高める機構としては低温度で析出するε炭化物をより安定化し、セメンタイトの析出開始温度をより高温度側に引き上げることによって焼戻し軟化を防止することが示されている。
【0058】
Siの下限添加量は、1重量%当りのSiの300℃焼戻しでの軟化抵抗△HRCが4.3であることと、0.9重量%炭素から求まる300℃焼戻しのベース硬さがHRC55であることから、300℃焼戻し硬さHRC60を確保するためのSi添加量は約1.1重量%であり、さらに、鋼中に含まれるCr,Mo,Al等の合金元素の硬化を考慮すると、下限のSi添加量は約1.0重量%であり、より好ましくはその下限量を1.5重量%として、より機能を高めることが好ましいのは明らかである。
【0059】
また、Siの上限添加量は、前述の転動面表面層においてオーステナイトを顕著に安定化する炭素が0.6重量%以上含有されることから、Ac3変態温度が850℃を超えないように7重量%と設定されるが、5重量%以上の合金化によってもろくなる危険があるために、5重量%を上限濃度とした。
【0060】
さらに、歯車等転動部材の表面に浸炭を施し、その表面炭素添加量を0.9〜1.7重量%に高めて、さらに再加熱焼入れ処理によって転動面に微細なセメンタイト粒子を分散させ、300℃以下の温度で焼戻し処理を施して、少なくとも300℃焼戻しでの硬さをHRC62以上に確保するためのSiの上・下限添加量は、ほぼ上述のSi添加範囲が好ましい。
【0061】
さらにまた、前記浸炭時に表面層にセメンタイトを析出させずに、表面炭素量を0.9〜1.7重量%に高めるためには、浸炭処理を930〜1100℃の高温で実施し、その浸炭中に炭素活量を高める必要があるが、このような高濃度な炭素ポテンシャル下での浸炭時においては、鋼中にCr元素が多く含有される場合に、その浸炭処理中に粗大(3〜15μm)なセメンタイトの析出(過剰浸炭)が起こり易くなり、歯車強度を顕著に劣化することが危惧されるので、本発明では、そのセメンタイトの析出を伴う過剰浸炭を防止するためにSiを積極的に添加することとして、かつ、Si添加量の1.4倍以上にCrを添加しないようにした。
【0062】
なお、より詳細には、式
−0.146×Si(重量%)+0.03×Mn(重量%)−0.024×Ni(重量%)+0.075×Cr(重量%)+0.043×Mo(重量%)+0.133×V(重量%)≦0
の関係を満足させる鋼材を用いることとした。
【0063】
したがって、この鋼材を用いた場合は、炭素活量を1の状態で浸炭処理する真空浸炭法やプラズマ浸炭法を利用することができ、1100℃以下での高温浸炭が安価に採用できることは歯車等転動部材の製造方法として極めて有利であり、粗大なセメンタイトの析出を防止することは歯車等転動部材の強度を高めるのに好ましいことは明らかである。
【0064】
なお、フェライトFe相を安定化するが強力な炭化物形成元素であるCr,Ti等を表面から拡散浸透させる場合には、表面層においてベース鋼材中の炭素と反応しながら特殊炭化物が形成されるために、Cr,Tiの拡散浸透が極めて遅くなるとともに、表面層が脆弱化される問題がある。この場合に、まず炭素と反発し炭化物を鋼中において形成しないSi等のフェライト安定化元素をCr,Ti等よりも先行して拡散浸透させることによって表面層の炭素をより奥に排出しながら、遅れてCr,Tiを表面から拡散浸透させることが好ましいのは明らかである。
【0065】
また、前述のようにしてCr,Ti,Mo,W等を拡散浸透させた後に、浸炭処理、浸炭浸窒処理、浸窒処理を施すことによって、転動部材表面層に特殊炭化物、特殊炭窒化物、窒化物を微細に分散析出させる場合には、極めて良好な耐焼戻し軟化抵抗性と耐焼付き性を付与できることは明らかである。
【0066】
なお、前記特殊炭化物、特殊炭窒化物を浸炭、浸炭浸窒処理で分散析出させる際においては、同時にセメンタイトの析出が起こらないような組成範囲に調整しておくことが必要であり、例えば表面層における各合金元素濃度がCr:3.5〜20重量%、Mo:2.0〜20重量%、V:0.5〜20重量%、W:1.0〜10重量%、Ti:0.5〜5重量%に調整されていることが好ましい。
【0067】
(2)Al
Alは強力な脱酸作用を示すことおよび鋼中に含有される不純物元素であるP,Sを結晶粒界から排斥する作用が強力であることから鋼材の清浄度化に有効であること、さらに、本発明では、AlがSiよりも低温焼戻し軟化抵抗性を高める元素であることを確認し(△HRC=7.3)、Alを単独に拡散浸透させたときの下限のAl表面濃度は0.7重量%となる。
【0068】
AlはSiよりも強力なフェライト安定化元素であり、Ac3温度をSiに比べて約1.6倍高める作用を有するが、表面層の炭素濃度を前述のように0.6重量%以上に高めることから、Al表面濃度を10重量%とした場合においても900℃以下の焼入れ温度が確保されるが、表面層にNi,Co等を拡散浸透させた場合には、例えば10〜20重量%Al、10〜30重量%Coの組成範囲で極めて顕著な時効硬化性を示し(特開2002−180216号公報参照)、顕著な焼戻し軟化抵抗性が発現されることが明らかなことから20重量%Alを上限値とした。
【0069】
また、Alを0.35〜2.0重量%含有する鋼を浸炭浸窒処理後に焼入れ焼戻した転動部材のピッチング強度が顕著に改善されることが本発明者によって開示されている(特開平10−176219号公報参照)。この開示技術はAlを合金元素として固溶、溶製された鋼材に浸炭浸窒されたものであることからその効果が十分でなく、本発明においては、そのAl濃度を高めることによってより高面圧に耐える転動部材を開発することができることは明らかである。
【0070】
さらにまた、Alを2〜20重量%に調整した表面層においてはFeAl相に関する規則・不規則変態が出現し、その摺動特性が顕著に改善されることが本発明者によってすでに報告されており(特開2002−180216号公報参照)、すべりが大きく関与するベベルギヤ等の歯面のピッチング強度を高めることに有効であることは明らかである。
【0071】
(3)Co
Coはフェライトを安定化させ、炭素と反発し合い、FeCoの規則変態性を有すること、さらにFe−Co−Al系においては前記7.5〜20重量%Al、10〜30重量%Coの範囲においてその硬さHv600〜760(HRC55〜62)の硬質相が形成されることから(特開2002―180216号公報参照)、その焼戻し軟化抵抗性が改善されることは明らかである。
【0072】
またさらに、Coの添加によってマルテンサイト相の磁気変態温度が顕著に高められて合金元素や炭素の拡散性が顕著に抑えられ、これによって焼戻し軟化抵抗性が改善されることは明らかである。
【0073】
(4)Mo
Moは高価な合金元素であるが、鋼の焼入れ性を向上させる有効な元素であるとともに、焼戻し脆性を抑える元素であることから、多くはベース鋼材中に〜0.35重量%含有されているが、本発明では0〜20重量%範囲で表面層に拡散浸透されることが好ましいものとしたが、Mo系の特殊炭化物を浸炭によって分散析出させるために、その下限Mo濃度は約2.0重量%とし、すべりに伴う耐焼付き性の改善を図るためには、これ以上のMo濃度が好ましいことは明らかである。
【0074】
(5)W
WもMoとほぼ同様のことが考えられ、本発明では0〜10重量%範囲で表面層に拡散浸透されることが好ましいものとしたが、W系の特殊炭化物(例えばWC)を浸炭によって分散析出させるために、その下限W濃度は約1.0重量%とし、すべりに伴う耐焼付き性の改善を図るためには、これ以上のW濃度が好ましいことは明らかであるが、フェライトFe相中へのWの固溶度を勘案した場合のW添加の上限濃度は10重量%である。
【0075】
(6)V
Vも高価な合金元素であり、V炭化物を形成するがその下限V濃度は0.5重量%であり、すべりに伴う耐焼付き性の改善を図るためには、これ以上のV濃度が好ましいことは明らかである。
【0076】
(7)Ti
TiはTiC,TiN,TiCN等の特殊炭化物、窒化物、特殊炭窒化物を強力に形成し、その下限Ti濃度は0.5重量%であり、すべりに伴う耐焼付き性の改善を図るためには、これ以上のTi濃度が好ましいことは明らかであるが、フェライトFe相中へのTiの固溶度を勘案した場合のTi添加の上限濃度は5重量%である。
【0077】
なお、ベース鋼材に元から添加する炭素量の下限値は0.10重量%が望ましく、その上限値は焼入れ焼戻し後の浸炭層内部の素材組成部の硬さがHRC55を超えない0.35重量%とすることが望ましいことは明らかであり、さらに、前述の合金元素を拡散浸透させる際の浸透速度がフェライトFe相の形成容易性に影響されることから、オーステナイト相を最も顕著に安定化する炭素の添加量はより低いことが望ましいので、上限炭素量を0.35重量%とし、より好ましくは0.25重量%とした。
【0078】
炭素と同様な観点から、ベース鋼材に含有されるMn,Niもオーステナイト相を安定化する合金元素であるために、必要以上に添加することは避けるべきであり、1重量%に抑制することが好ましい。
【0079】
また、Mnは、前述のようにオーステナイトを安定化させる元素であるが、顕著な脱硫作用を示すこと、および鋼の焼入れ性を向上させる有効な元素であるために、Mnは目的に応じて適量添加されるが、そのMn下限量は0.3重量%である。
【0080】
さらにまた、高濃度のSi,Alを拡散浸透させることによって、本発明の熱処理過程において黒鉛が析出する場合には、強度の顕著な劣化が危惧されるので、少なくともセメンタイトを顕著に安定化し、黒鉛化を阻害するためのCrが0.2重量%以上含有されることが好ましい。
【0081】
なお、本発明において、浸炭温度や再加熱温度および高周波焼入れ温度が高温度になりすぎた場合には、オーステナイト結晶粒が粗大化しやすい問題が起こる場合があるが、その場合にはTi,Nb,Zr,Ta,Hf等の既知なる結晶粒度微細化元素と呼ばれる元素類を0.005〜0.2重量%の範囲内で添加することが好ましいことは明らかである。
【0082】
なお、前述のような浸炭前や浸炭途中で行い得る合金元素の拡散浸透処理はSiCl,SiCl,TiCl等の低温揮発性に優れたハロゲン化合物ガスやSiHガスを雰囲気ガスとして利用し、そのガス中の合金元素を拡散浸透させることが好ましいことは明らかであるが、その他に電子ビーム溶解法を使った各種蒸着法、溶融メッキ法、電気メッキ法、化学メッキ法、スパッタリング法等で表面部をプレーティングした後に、不活性雰囲気や真空中等で加熱拡散させることも好ましい方法である。
【0083】
さらに、シリコナイジング、カロライジング、クロマイジング等の従来の各種合金拡散浸透処理(固体媒剤を使った方法や塩浴方法を含む)を施した後に、再加熱拡散処理によって表面層の合金元素濃度を調整し、さらに、浸炭、浸炭浸窒、浸窒を施し、表面層合金元素濃度を調整することも好ましい。
【0084】
【実施例】
次に、本発明による転動部材とその製造方法の具体的実施例について、図面を参照しつつ説明する。
【0085】
<実施例1>焼入れ焼戻し炭素鋼および浸炭焼入れ肌焼き鋼のピッチング強度
(予備試験)
本実施例では、歯車での歯面における転動疲労強度を調べるために、図2に示される試験片にてローラピッチング試験を実施し、各種の焼入れ焼戻し炭素鋼および浸炭焼入れ肌焼き鋼のピッチング強度を調べた。表1は本実施例に用いた各種炭素鋼、肌焼き鋼の化学成分を示したものである。
【0086】
【表1】

Figure 2004107709
【0087】
各種鋼材は図2(a)に示される小ローラ形状に加工した後、No.1,2,4は820℃で30分加熱後に水焼入れし、160℃で3時間焼戻して試験に供した。また、No.3は素材調質処理後に転動面を40kHzの高周波電源を用いて焼入れ硬化し、上述と同様の焼戻し処理を施した。さらに、No.5は930℃で5時間の浸炭処理(炭素ポテンシャル0.8)した後、850℃に冷却し、850℃で30分保持した後に60℃の焼入れ油に焼入れした後、上述と同様の焼戻し処理を施した。
【0088】
なお、図2(b)に示される大ローラ片については、No.4のSUJ2材を820℃で30分加熱後に水焼入れし、160℃で3時間焼戻ししたものを使用し、ローラピッチング試験は70℃の#30エンジンオイルで潤滑しながら、小ローラ片を1050rpm、大ローラ片(負荷ローラ)を292rpmとして40%の滑り率を与え、面圧375〜220kgf/mmの種々の条件で負荷を与えて実施した。
【0089】
図3には、各種面圧でピッチングが発生した繰り返し回数がまとめて示されている。図中、基準とする浸炭肌焼き鋼における各面圧における最小繰り返し数をつないだ寿命線が実線で示されている。ピッチング発生繰り返し数が10回となる時の面圧を転動面疲労強度と定義した場合、そのピッチング強度は約210kgf/mmとなることがわかった。また、同様の整理の仕方で検討すると、No.1:175kgf/mm、No.2:240kgf/mm、No.3:260kgf/mm、No.4:260kgf/mmとなることがわかった。さらに、浸炭肌焼き鋼はバラツキが多少大きく、この原因は転動面での浸炭時の粒界酸化や不完全焼入れ層の存在や残留オーステナイト量が多いこと等によるもので、平均的なピッチング発生回数で比較した場合には、No.2のピッチング強度と変わらないことがわかる。
【0090】
また、面圧250kgf/mmでピッチングを発生した転動面のマルテンサイト相のX線半価幅を調査した結果、No.1:3.6〜4.0°、No.2:4〜4.2°、No.3:4.2〜4.4°、No.4:4.3〜4.6°、No.5:4〜4.2°であった。
【0091】
さらに、前記熱処理を施したNo.1〜5のTPを250〜350℃で各3時間焼戻しした時のX線半価幅を調査した結果、前記ピッチング発生転動面の半価幅はほぼ300℃で焼戻した半価幅と合致し、また「材料」、(社)日本材料学会、第26巻、第280号、P.26で報告されている各種炭素濃度の炭素鋼の焼戻し硬さと半価幅の関係ともほぼ合致することがわかる。
【0092】
<実施例2>焼戻し軟化抵抗性の確認
表2は本実施例で使用した合金組成を示したものであり、熱処理は810〜870℃で30分加熱後に水冷し、300℃,350℃で3時間焼戻しした試験片のロックウェル硬さHRCを調査し、さらに、これらの硬さに対する各合金元素添加量の影響を解析した。
【0093】
【表2】
Figure 2004107709
【0094】
なお、予備実験として、0.1〜1.0重量%の炭素と0.3〜0.9重量%のMnを含有する炭素鋼についても調査し、前記合金元素の影響の解析ベースデータとしたが、その結果、
250℃では HRC=34×√C(重量%)+26.5
300℃では HRC=36×√C(重量%)+20.9
350℃では HRC=38×√C(重量%)+15.3
で近似されることがわかった。
【0095】
また、これらの炭素鋼硬さをベースに合金元素の影響を解析した結果、焼戻し軟化抵抗△HRCは、例えば300℃で、次式で記述できることがわかった。
△HRC=4.3×Si(重量%)+7.3×Al(重量%)+1.2×Cr(重量%)×(0.45÷C(重量%))+1.5×Mo(重量%)+3.1×V(重量%)
この結果から、AlはSiの1.7倍の焼戻し軟化抵抗性を発現することがわかり、転動面圧強度の改善要素として極めて効果的であることがわかった。
【0096】
図4には、前記解析結果から求められる焼戻し硬さと実測した焼戻し硬さの合致性が示されている。この図から、バラツキ幅がHRC±1の範囲で精度良く予測できることがわかる。また、実施例1のSCM420(NO.5)の浸炭層(0.8重量%炭素)の300℃焼戻し硬さについても図4の☆印で示しており、計算値と良く合致していることがわかる。
【0097】
<実施例3>拡散浸透処理によるピッチング強度の改善
本実施例では、肌焼き鋼SCM415Hを用い、図2に示されるローラピッチング試験片に加工した後、Si,Al,Crの拡散浸透処理を実施し、さらに、浸炭焼入れ処理を施した。
【0098】
なお、拡散浸透処理は100メッシュ以下のSi粉末、Fe51重量%Al合金粉末、Fe66重量%Cr合金およびAl粉末とNHClを適量に混合して前記試験片とともに鉄製容器に充填し、H気流中で1050℃で30分加熱することにより行った。
【0099】
前記拡散浸透処理後は、試験片を真空中で1020℃で30分加熱した後に、メタンガスを導入し、表面層炭素量が0.7重量%と1.3重量%になる条件で真空浸炭処理(浸炭期+拡散期=120分)を施し、一旦ガス急冷した後に850℃に再加熱後油中に焼入れし、180℃、3時間の焼戻し処理を施した。なお、前記熱処理後の表面層におけるSi濃度は3〜5重量%、Alは1.5〜3.0重量%、Crは4〜6重量%の範囲にそれぞれあることを確認した。また、そのときの拡散浸透深さはSi,Alは約0.15mmであり、Crは約0.08mmであった。
【0100】
ローラピッチング試験は実施例1と同じ条件で実施した。その結果が図5に示されている。また、同図中には実施例1の予備試験結果が各実線で示されているが、まず、Siのみ、AlのみおよびSiとCrを同時に拡散浸透させた後に0.7重量%Cの条件で浸炭した。No.S1(○)、No.A1(△)、No.SC1(□)のピッチング強度は従来の浸炭肌焼きのそれに較べて顕著に改善されていることが明らかである。中でもSiとCrを同時に拡散浸透させたNo.SC1が最もピッチング強度が優れている。これは0.7重量%Cの条件で浸炭した場合においてもCr炭化物が微細に析出するためである。
【0101】
また、前述と同様に各元素を拡散浸透させた後に、1.3重量%Cの条件で浸炭したNo.S2(●)、No.A2(▲)、No.SC2(■)においては、さらに微細なセメンタイトとCr炭化物が分散されるために、さらなるピッチング強度の改善が認められる。
【0102】
さらに、No.A1の浸炭処理後に850℃の再加熱時にアンモニアガスを流気させて浸窒処理を1時間実施したNo.AN1(☆)の試験結果も同図中に示したが、浸窒処理によりAlN窒化物が微細析出することによって顕著にピッチング強度が改善されていることがわかる。
【図面の簡単な説明】
【図1】図1は、SiのαFe相内拡散プロフィルを示すグラフである。
【図2】図2(a)(b)は、ローラピッチング試験用試験片を示す図である。
【図3】図3は、ローラピッチング強度の予備試験結果を示すグラフである。
【図4】図4は、焼戻し硬さの実測値と計算値の比較を示すグラフである。
【図5】図5は、実施例3のピッチング強度を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling member such as a gear manufactured by carburizing and / or carburizing and quenching and induction hardening, and more particularly, to an alloy that significantly improves low-temperature tempering softening resistance at 300 to 350 ° C. The elements are diffused and infiltrated into the gear surface layer of the gear, and carbon and / or nitrogen are diffused and infiltrated into the surface layer by carburizing, carburizing and / or nitriding, and then immediately quenched and tempered or reheated and quenched and tempered. And a rolling member such as a gear with improved pitting resistance and a method of manufacturing the same.
[0002]
[Prior art]
The need for a high power transmission force corresponding to high output and light weight and compactness is increasing in gear reduction gears and transmissions used in automobiles and construction / civil engineering machines. There is a demand for more compact and high surface pressure strength characteristics for moving members. As a means for increasing the surface pressure strength of a gear or the like, the surface of the gear is usually hardened by carburizing, nitriding, induction hardening, or the like. Further, in order to increase the surface pressure strength, material measures such as aggressive addition of Mo or the like to steel to increase the tempering softening resistance have been adopted. In particular, in recent years, many studies have been made on a method of hardening after carburizing or carburizing and nitriding, performing shot peening, positively increasing the surface hardness, and imparting a remarkable compressive residual stress.
[0003]
In addition, a method has been reported in which a high-density cementite is precipitated on a steel surface by a carburizing method to increase the surface hardness and increase the surface pressure strength by increasing the tempering softening resistance (see Patent Document 1). ).
[0004]
Furthermore, a method has been reported in which high-density AlN is finely dispersed and precipitated on the steel surface by carburizing and nitriding, and the surface pressure strength is increased by making the martensite leaves of the surface layer fine (see Patent Document 2). ).
[0005]
[Patent Document 1]
JP-B-62-24499
[Patent Document 2]
JP-A-10-176219
[0006]
Furthermore, in bevel gears with a large slip ratio when gears mesh with each other, not only contact surface pressure fatigue strength but also gear breakage and pitting caused by poor seizure resistance (scuffing resistance) due to heat generated during sliding. MoS with excellent seizure resistance due to occurrence of problems 2 The lubrication film is coated on the tooth surface.
[0007]
[Problems to be solved by the invention]
Means for increasing the surface pressure strength by carburizing steel containing more Mo, V, Ti, Cr and W, which increase the resistance to tempering softening, have been studied. However, it is necessary to increase the surface pressure fatigue strength. No sufficient improvement can be expected because the tempering softening resistance in a very low temperature range is not increased so much, and when these alloying elements are added in a large amount, the cost of steel material and the cost of machining are remarkably increased. There is a problem. Also, if a large amount of Ti, V, W, Mo, etc. is added, carbon and nitrogen and carbides, carbonitrides, and carbides are precipitated in the step of melting the steel material, so that there is a problem that a large amount cannot be added.
[0008]
In addition, intense shot peening is performed on the surface of the carburized product, and the retained austenite existing at about 100 μm from the surface is transformed into martensite to generate a higher surface hardness and a larger compressive residual stress, thereby reducing the surface pressure. It has been reported that the strength is improved. However, according to this method, wear in the early stage of rolling due to the occurrence of microscopic defects due to shots in the grain boundary oxide layer (defect layer) generated during carburization. It has a negative effect such as generation of powder and an increase in friction coefficient due to surface roughening. Furthermore, the applied compressive residual stress is rapidly released at a low temperature range of about 220 ° C and shots are improved in temper softening property. There is a problem that it is not always effective because it is not very effective.
[0009]
Further, a method of applying a high carbon carburizing (excess carburizing) method to a gear by dispersing a cementite phase in a surface layer at a high density by a carburizing method is disclosed in Patent Document 1 described above. The cementite particles to be precipitated on the surface tend to be as large as 5 to 10 μm, and the cementite particles are liable to aggregate, and further, the huge precipitation occurs along the grain boundaries. As a result, the cementite aggregate is broken by contact stress. However, a negative effect as a starting point of a surface defect becomes apparent, and when applied to a gear, there is a problem that the root strength is reduced.
[0010]
Further, as disclosed in Patent Document 2, a steel to which a large amount of Al is added is subjected to carburizing and nitriding to disperse and precipitate AlN on the surface layer to refine the martensite leaves formed by quenching. In order to increase the surface pressure strength, Al is an element that stabilizes the strong ferrite Fe phase, so the amount of Al added is limited, and sufficient functions cannot be exhibited. Therefore, there is a problem that the cost of steel material is significantly increased.
[0011]
The present invention is intended to solve the problems of the conventional surface-hardened gears having insufficient surface pressure resistance and the problem of poor seizure resistance, and the problem that the base steel material of the rolling member is made of special steel. After the alloy element for improving the temper softening resistance and seizure resistance is diffused and infiltrated to a depth of 10 μm or more from the surface of the gear using a commercially available and inexpensive base steel material. , Carburizing, carburizing or nitriding, and further quenching and / or quenching and tempering.
[0012]
In addition, the present invention provides various types of gears for use in rolling conditions involving slippage, in which the surface pressure strength of various types of high surface pressure resistant HRC 58 or more tempering hardness at 300 ° C. of the gear temperature occurring during operation is 300 or more. A carburized and hardened gear was developed.
[0013]
Further, the present invention, after the carburizing and / or carburizing and nitriding, once cooled to below the A1 transformation temperature, subjected to reheating quenching and tempering treatment, the tooth surface surface layer disperses fine cementite grains in the martensite phase, Inexpensive induction hardened gears that can increase the pitting strength, increase the tempering softening resistance so that the tempering hardness at 300 ° C. becomes HRC62 or more, and exhibit the same or higher pitting strength as carburized quenched gears. It is an object to provide a rolling member.
[0014]
Furthermore, the present invention relates to a strong ferrite stabilizing element, which is a highly diffusible Si which strongly repels carbon in steel and a ferrite stabilizing element and Cr, Mo, V, W which are carbide forming elements. Rolling of high surface pressure gears or the like, characterized in that special carbides and / or special carbonitrides are dispersed in the surface layer by diffusion and infiltration of one or more kinds and subsequent carburizing and / or carburizing and nitriding treatment. It is a member developed.
[0015]
Furthermore, the present invention is characterized in that the surface layer is adjusted to a material component system having good sliding characteristics by adjusting the composition of the surface layer to the range of the appearance of the ordered phase of NiTi, CoAl, FeCo, FeSi, and FeAl. Rolling members such as high surface pressure gears have been developed.
[0016]
[Means for Solving the Problems and Functions / Effects]
For the SNCM815, SCM420, Scr420, and SMnB420 steels that have been carburized and quenched, the rolling contact pressure strength (pitting strength) accompanied by their slip is determined by a contact pressure of 375 to 220 kgf / mm. 2 As a result of preliminary investigation in the range of 7 Surface pressure at which pitching starts to occur due to rotation is 210 kgf / mm 2 And the X-ray half-value width of the martensite phase in the outermost surface layer of the rolling surface where pitting occurred at each surface pressure was reduced to 4 to 4.2 °, and remarkable softening was recognized in the outermost surface layer of the rolling surface. Can be
[0017]
Moreover, about the carbon steel which adjusted S55C carbon steel to HRC61-62 by quenching and tempering, the contact pressure was 250 kgf / mm. 2 As a result of preliminary investigation of rolling contact pressure strength at 7 Surface pressure at which pitching starts to occur due to rotation is approximately 180 kgf / mm 2 And a surface pressure of 250 kgf / mm 2 The X-ray half-value width of the martensitic phase on the rolling surface where pitting has occurred has been reduced to 3.6 to 4.2 °, almost similarly to that of the carburized case hardening steel.
[0018]
Further, as a result of preliminary examination of the rolling contact pressure strength of eutectoid carbon steel (0.77% by weight C), 10 7 The surface pressure at which pitching starts to occur by rotation is approximately 230 to 240 kgf / mm 2 And the rolling contact pressure strength of the carburized case hardened steel having substantially the same carbon content is substantially the same, and the case of the carburized case hardened steel has a grain boundary oxide layer or an incompletely hardened layer on the rolling surface. It was found that the rolling contact pressure strength decreased due to the variation of the rolling contact pressure.
[0019]
Further, as a result of preliminary examination of the rolling contact pressure strength of a rolling surface of eutectoid carbon steel (0.82% by weight C) which was induction hardened, 7 Surface pressure at which pitching starts to occur due to rotation is approximately 260 to 270 kgf / mm 2 And the rolling contact pressure strength of the carburized case hardened steel having substantially the same carbon content is substantially the same, and the case of the carburized case hardened steel has a grain boundary oxide layer or an incompletely hardened layer on the rolling surface. It was found that the rolling contact pressure strength decreased due to the variation of the rolling contact pressure.
[0020]
Further, from the viewpoint of dispersing the fine cementite particles, SUJ2 containing about 1.0% by weight of carbon and 1.5% by weight of Cr is quenched from 840 ° C. and then tempered to HRC62.5. As a result of preliminary investigation of dynamic contact pressure strength, 10 7 Surface pressure at which pitching starts to occur due to rotation is approximately 270 kgf / mm 2 Which shows almost the same strength as that of the eutectoid steel, and has a surface pressure of 250 kgf / mm. 2 It was found that the X-ray half-value width of the martensitic phase on the rolling surface where pitting had occurred was reduced to 4.2 to 4.5 °, almost similarly to that of the carburized case hardening steel.
[0021]
Further, the hardness when carbon steel containing 0.46, 0.55, 0.66, 0.77 and 0.85% by weight of carbon is quenched from 820 ° C. and tempered at 100 to 350 ° C. for 3 hours each. As a result of investigating the X-ray half width and referring to already published data on these materials (for example, “Materials”, Japan Society for Materials Science, Vol. 26, No. 280, P26), Marten The hardness at which the X-ray full width at half maximum of the site phase is 4 to 4.2 ° corresponds to a state almost tempered to HRC 51 to 53. For example, the surface carbon concentration of the carburized case hardening steel is substantially 0.7 to 0. With reference to the adjustment to 9% by weight, the tempering temperature was found to correspond to approximately 300 ° C.
[0022]
From the above preliminary test results, it was clarified that the heat generated when the gears meshed under high surface pressure caused the outermost surface of the tooth surface to be tempered and softened, causing pitching. It was clarified that the tempering hardness at 300 ° C. must be HRC53 or more as an index for obtaining the pitting strength of the steel sheet.
[0023]
In addition, in comparison between the 300 ° C. tempering hardness of the carburized hardened layer obtained by carburizing and quenching SCM420 steel and the 300 ° C. tempering hardness of the eutectoid carbon steel simply subjected to quenching, the effect of Cr and Mo on the resistance to temper softening was observed. Since little improvement has been confirmed, in order to provide pitting strength greater than that of carburized and quenched gears by bright quenching or induction hardening, a new alloy design that increases the resistance to temper softening at low temperature tempering at approximately 300 ° C is required. In addition, it is effective to disperse fine cementite particles and the like in the martensite phase as in the eutectoid carbon steel (0.82% by weight C) and the rolling contact pressure strength improving action of SUJ2. I understand.
[0024]
In addition, it is equal to or more than the pitching strength by the above-mentioned carburizing and quenching (surface pressure Pmax = 230 kgf / mm 2 As a gear design that withstands the above, based on the theoretical analysis of the Hertzian surface pressure, a hardness that can withstand the fatigue strength of a pulsating shear stress (R = 0) of 0.3 times the surface pressure value is set. The calculated value is approximately HRC 53.4, which is in very good agreement with the hardness (HRC = 53) obtained from the X-ray half width of the martensitic phase of the rolling surface where pitching has occurred in the preliminary test described above. Further, since the pitching occurs when the hardness of the outermost surface of the rolling surface rises to approximately 300 ° C. due to frictional heat generated by the rolling accompanied by slipping, the 300 ° C. tempering hardness is set to at least Pmax = 230kgf / mm 2 It has been found that a high surface pressure gear equivalent to or more than a carburized and quenched gear can be developed by setting the HRC to be 54 or more to withstand the heat.
[0025]
Further, as described later in Example 2, the hardness of the martensitic phase tempered at 300 ° C. of carbon steel containing 0.1 to 1.0% by weight of carbon is expressed by the following formula
HRC = 36 × ΔC (% by weight) +20.9
The effect of various alloying elements on the hardness of the tempered martensite phase at 300 ° C. was investigated based on this hardness.
HRC = (36 ° C. (% by weight) +20.9) + 4.33 × Si (% by weight) + 7.3 × Al (% by weight) + 3.1 × V (% by weight) + 1.5 × Mo (% by weight) + 1.2 × Cr (% by weight) × (0.45 ° C. (% by weight))
Clarified that it is described in.
[0026]
When considering the economics of downsizing of the gear reducer, the most compact ratio of 25% to 30%, which enables a one-rank size reduction, is often the most convenient. In this case, it is necessary that the gear surface pressure strength is improved at least 1.15 times the conventional surface pressure strength, and the surface pressure resistance of the most commonly used carburized and quenched gear is 230 kgf / mm. 2 Is 265 kgf / mm 2 It is understood that the hardness of the tooth surface at 300 ° C. must be HRC 58 or more, and more preferably HRC 60 or more.
[0027]
Further, the tempering hardness of the carburized layer of the commonly used SCM carburized and quenched material at 300 ° C. is usually in the range of HRC = 53 to 55. It is necessary to add more than 0.5% by weight of Si, and about 1% by weight or more of Al is required. However, there is a problem that the machinability is deteriorated due to the use of high alloy steel.
[0028]
Furthermore, as a result of conducting a hardness study on the carburized rolling surface of SCM420H before and after the roller pitching test, a decrease in hardness (softening) from the surface to a depth of about 70 μm was confirmed, and particularly, from about 10 to 20 μm from the outermost surface. It was observed that many tissues were altered.
[0029]
Therefore, in the first invention, as described above, at least one of various alloy elements for strengthening the rolling surface such as a gear is diffused and infiltrated into the rolling surface layer, and the surface layer is subjected to carburizing and / or carburizing and nitriding treatment. The steel is characterized by being hardened and tempered after infiltrating and diffusing carbon and / or nitrogen, thereby making use of an inexpensive steel material to significantly improve the temper softening resistance and / or seizure resistance of the surface layer. Rolling members have been developed.
[0030]
The diffusion depth of the alloy element is at least 10 μm or more, preferably 50 μm or more.
[0031]
The alloy element to be diffused and infiltrated has the effect of significantly increasing the tempering softening resistance, and the diffusion of the alloy so that a permeation diffusion layer having a depth sufficient to withstand the rolling contact pressure strength is easily obtained. Forming a ferrite Fe phase excellent in diffusivity by solid solution, and among Si, Al, Be, Co, P, and Sn, in which alloy elements that diffuse and permeate combine with carbon in steel and do not form a large amount of carbide. (2nd invention).
[0032]
In addition, as a base steel material of the steel rolling member, carbon steel, low alloy steel and / or case hardened steel containing at least C: 0.10 to 0.35% by weight is used as a base steel material, and the steel material is rolled. The surface layer of the member contains at least C: 0.5 to 1.7% by weight, further N: 0.2 to 2.0% by weight, Si: 1.0 to 5.0% by weight, Al: A steel rolling member comprising one or more alloying elements of 0.5 to 20% by weight, Co: 1.0 to 30% by weight, and Be: 0.1 to 5.0% by weight. (Third invention).
[0033]
Here, the effect of Co that enhances the tempering softening resistance is based on the fact that the magnetic transformation temperature of martensite is remarkably increased, and the diffusivity for softening at the tempering temperature is remarkably suppressed. It is clear that a Fe-Co alloy containing Co at a high concentration has a function of forming an ordered phase and improving seizure resistance during sliding. It is clear that the phenomenon of improvement in seizure resistance due to the formation of an ordered phase is also observed in Fe-Al (OMRF: see JP-A-2002-180216), Fe-Si, and Fe-Co-Al.
[0034]
Further, as a fourth invention, the surface layer of the steel rolling member is of the formula
5 ≦ 4.3 × Si (% by weight) + 7.3 × Al (% by weight) + 3.1 × V (% by weight) + 1.5 × Mo (% by weight) + 1.2 × Cr (% by weight) × (0 .45 ° C (% by weight)
At least one of Si and Al is diffused and infiltrated so as to satisfy the following relationship, and the carbon concentration of the carburized or carbonitrided surface layer is further increased by 0.6 to 1.7 weight by carburizing treatment and / or carburizing and nitriding treatment. %, And after the treatment, quenching and tempering at 300 ° C. or lower, or once after the treatment, cooling once, tempering at 300 ° C. or lower, and tempering at 300 ° C. Hardness of HRC 58 or less was ensured.
[0035]
Further, in the rolling member according to the fifth invention, in the carburized rolling member, the carbon concentration of the carburized surface layer is adjusted to 0.6 to 1.7% by weight, and cementite is added to the surface layer during the carburizing. After once cooling (gas) to a temperature of A1 or less from a state where no precipitation occurs, reheating quenching and tempering at 300 ° C or less are performed, and fine cementite particles of 1 μm or less are dispersed in the tempered martensite phase of the carburized surface layer. It is characterized in that a hardness of HRC62 or more is secured even by tempering at 300 ° C.
[0036]
Here, the reason that the carbon content is limited to 1.7% by weight or less is that the generation of coarse cementite particles (3 μm or more) in the rolling surface layer during the carburizing treatment cannot be avoided at a carbon content of more than 1.7% by weight. This is because there is a high risk that the bending strength of the gear is degraded. Carrying out high-concentration carburization of 1.7% by weight or more without causing coarse cementite to precipitate on the surface layer during carburization is difficult. It is necessary to raise the temperature to near 1100 ° C., which is due to equipment limitations.
[0037]
Further, in the above invention, since the alloy elements such as Si, Al and Be which have a strong tendency to form oxides are permeated and diffused, the high-concentration carburization for setting the surface carbon concentration to 0.9 to 1.7% by weight is not required. Since the carbon activity (ac) is carried out in a high carbon potential state close to 1 and preferably at a high temperature side (1000 ° C. or higher), carburization is performed by vacuum carburization or plasma carburization with extremely reduced oxygen partial pressure. Is preferred. Further, it is necessary to control the carbon potential with high precision so that coarse cementite does not precipitate on the surface layer during the carburization, but since carburization control at a high carbon potential exceeding 1000 ° C. is extremely difficult, Focusing on the fact that Cr in the steel component promotes the precipitation of coarse cementite, reduce the amount of Cr added to the surface layer to 0.5% by weight or less, or the amount of Si added is at least 1.4 times the amount of Cr added. Thus, cementite was prevented from being precipitated even during the carburizing treatment in the high carbon potential state (sixth invention).
[0038]
When looking at in more detail, it is necessary to consider the influence of Mn, Ni, Mo, etc.
-0.146 x Si (wt%) + 0.03 x Mn (wt%)-0.024 x Ni (wt%) + 0.075 x Cr (wt%) + 0.043 x Mo (wt%) + 0.133 × V ≦ 0
Is preferably taken into consideration, but it is practically preferable to use such that the surface Si concentration becomes 1.0 to 5.0% by weight.
[0039]
Further, when the ferrite Fe phase is stabilized and Si, Al, Co, and Be which repel the carbon in the steel are diffused and infiltrated simultaneously or in advance, the element such as Si which penetrates and diffuses in advance is ferrite. Since the carbon content in the Fe phase is significantly reduced while forming the Fe phase, alloying elements such as Cr, Mo, V, Ti, W, etc., which react strongly with the carbon in the steel to form carbides, are removed from the surface. If the permeation and diffusion are delayed, the formation of carbides by Cr, Mo, V, Ti and W is prevented, so that the carburizing treatment and / or the carburizing and nitriding treatment are performed after the permeation and diffusion treatment of these alloy elements. Cr with excellent seizure resistance 7 C 3 , Mo 2 C, WC, V 4 C 3 A rolling member characterized by depositing carbides and / or carbonitrides of TiC, TiC, TiCN, AlN, and cementite has been developed (a seventh invention).
[0040]
In the seventh invention, the carbon concentration and / or nitrogen concentration after carburizing, carburizing and / or nitriding in the surface layer of the rolling member is remarkably increased, but C: 0.5 to 3.5 wt. %, N: 0 to 2.5% by weight clearly achieves its function sufficiently.
[0041]
Further, the alloy element such as Ni or Co having remarkable age hardening with one or more of Si, Al, Co, Be and / or one or more of Cr, Mo, V, Ti, W to be preliminarily diffused and infiltrated is used. A rolling member characterized by performing carburizing treatment and / or carburizing and nitriding treatment, quenching and / or quenching and tempering treatment after diffusion and infiltration has been developed (an eighth invention).
[0042]
In the present invention, it is clear that not all of the alloying elements that contribute to increasing the surface pressure strength are provided by the diffusion and infiltration treatment, but can be previously contained in the base steel material. In the present invention, at least C: 0.10 to 0.35% by weight, Si: 0.05 to 1.0% by weight, Mn: 0.3 to 1. 5% by weight, Ni: 0 to 2.5% by weight, Cr: 0 to 2.0% by weight, Mo: 0 to 0.35% by weight, V: 0 to 0.4% by weight, and further, Cu, W, A steel material containing one or more alloying elements of Ti, Nb, B, Zr, Ta, Hf, Al, and Ca and inevitable impurity elements such as P, S, N, and O, with the balance being substantially Fe It was characterized.
[0043]
Furthermore, in order to improve tooth surface strength and root bending strength, physical pressure treatment such as shot peening and roller burnishing is applied to the tooth surface, tooth root, and tooth bottom to generate apparent compressive residual stress. Is clearly preferable for rolling members such as gears having higher strength, and rolling members subjected to these treatments are also within the scope of the present invention.
[0044]
According to a tenth aspect of the present invention, a method of manufacturing a rolling member in which the alloy element is diffused and infiltrated into the rolling surface surface is to stabilize a ferrite Fe phase and repel carbon in steel. A step of diffusing and infiltrating one or more alloying elements from the surface layer to a depth of at least 10 μm or more, and thereafter performing a carburizing, carburizing or nitriding treatment, and further performing a quenching or quenching and tempering treatment. A method for manufacturing a steel rolling member characterized by the following has been developed.
[0045]
The diffusion and infiltration treatment of the alloy element for stabilizing the ferrite Fe phase forms a ferrite Fe phase in the surface diffusion layer and enhances the diffusivity, so that the lower limit treatment temperature can be set to 850 ° C. The upper limit temperature is preferably 1200 ° C. in view of the equipment cost of the treatment and the subsequent carburizing treatment and carburizing and nitriding treatment.
[0046]
The lower limit temperature of the carburizing treatment and the carburizing and nitriding treatment was set to 850 ° C. in consideration of the productivity, and the upper limit temperature was set to 1100 ° C. from the necessity of increasing the carbon concentration of the surface layer to 1.7% by weight.
[0047]
Further, in the eleventh invention, one or more of the above-mentioned Si, Al, Co, and Be are diffused and infiltrated simultaneously or in advance, and further, an element for stabilizing a ferrite Fe phase and having a strong carbide-forming element or nitride. After diffusing and infiltrating at least one of the forming elements Cr, Mo, V, Ti, and W, carburizing, carburizing and / or nitriding is performed, and Cr 7 C 3 , TiC, TiN, TiCN, AlN, Mo 2 It is characterized in that special carbides such as C and WC, special carbonitrides and / or special nitrides are finely dispersed and precipitated.
[0048]
Still further, in the twelfth invention, Ni, which has one or more of Si, Al, Co, Be and / or one or more of Cr, Mo, V, Ti, and W, which has a remarkable age hardening property, is diffused and infiltrated in advance. It is characterized by diffusing and infiltrating an alloy element such as Co.
[0049]
In the thirteenth invention, in the step of diffusing and infiltrating the alloy element from the rolling surface surface layer, the chlorine compound containing the target alloy element is heated while heating the rolling member in the temperature range of 850 to 1200 ° C. Gas (eg, SiCl 2 ), Iodine compound-based gas (eg, CrI), fluorine compound-based gas (eg, CrF), hydride compound-based gas (eg, SiH) 4 , Etc.).
[0050]
Further, in the fourteenth invention, one or two or more types used in the silicon infiltration method (siliconizing), the Al infiltration method (calorizing), the Cr infiltration method (chromizing), etc., which are conventionally industrially implemented. One or more alloying elements are diffused and infiltrated using a solid medium, and then further diffused in an inert, reducing, vacuum and / or carburizing atmosphere to form an intermetallic compound (FeSi, FeAl system), and further, the alloy element concentration in the surface layer is adjusted.
[0051]
Furthermore, the diffusion and infiltration of the alloy element in the present invention is performed by using a very thin single element or an alloy element in the rolling member because the alloy element concentration of the permeation layer is relatively low and the amount of the permeation is small. Since a diffusion source composed of multiple elements can be plated and diffused and infiltrated by providing a heating diffusion period, in the fifteenth invention, a hot dip plating method, a salt bath method, an electroplating method, a chemical plating method, a vapor deposition method, After plating by various methods such as a sputtering method and a thermal spraying method, it is characterized by diffusing and penetrating.
[0052]
In addition, it is obvious that the diffusion and infiltration methods of the thirteenth to fifteenth inventions can be used in combination (the sixteenth invention).
[0053]
Further, in the seventeenth invention, carburizing, carburizing or carburizing or nitriding is carried out after the alloying element is diffused, and a carburizing or carburizing furnace capable of performing vacuum carburizing and plasma carburizing is used in order to increase productivity. And characterized in that the treatment is performed at a temperature of at least 1000 ° C.
[0054]
In the eighteenth invention, after the carburizing and / or carburizing and nitriding treatment, the treatment is followed by quenching and tempering at 300 ° C. or less, or after the treatment, the steel is once cooled, reheat-quenched and tempered at 300 ° C. or less. It is characterized by applying. Here, the surface layer to be carburized and / or carbonitrided by the reheating and quenching treatment is made to have a structure in which cementite is dispersed in a martensite phase (a nineteenth invention).
[0055]
The function of each alloy element leading to the present invention will be described below.
[0056]
(1) Si
When Si is diffused and infiltrated from the surface of the rolling contact surface in order to strongly stabilize the ferrite Fe phase, (1) the ferrite Fe phase having excellent diffusibility on its surface layer and extremely low carbon solid solubility. Is formed, (2) Si rebounds strongly with carbon and does not form carbide, and (3) Si has a higher diffusivity than that of other substitutional alloy elements. Is controlled by the diffusion of Si in the ferrite phase, so that the diffusion and penetration treatment temperature can be lower or the diffusion and penetration treatment time can be shorter, for example, 850. It is calculated that a diffusion infiltration layer of 10 μm or more is formed in about 1 hour at 100 ° C., and a diffusion layer of 50 μm and 100 μm is formed in 1 hour at 1000 ° C. and 1100 ° C. (FIG. 1: Surface) Reference spreading profile when the Si concentration is set to be 5 wt%).
[0057]
Further, Si is an element which remarkably enhances the tempering softening resistance in the low-temperature tempering temperature range of 300 to 350 ° C. or lower, and as a mechanism for increasing the tempering softening resistance, ε carbide precipitated at low temperature is more stable. It is disclosed that tempering softening is prevented by raising the precipitation start temperature of cementite to a higher temperature side.
[0058]
The lower limit of the amount of Si added is that the softening resistance at 300 ° C. tempering of Si per 1% by weight ΔHRC is 4.3, and the base hardness of 300 ° C. tempering determined from 0.9% by weight carbon is HRC55. For this reason, the amount of Si added to secure a 300 ° C. tempering hardness HRC60 is about 1.1% by weight. Further, considering the hardening of alloy elements such as Cr, Mo, and Al contained in steel, Obviously, the lower limit of the amount of Si added is about 1.0% by weight, and more preferably the lower limit is 1.5% by weight, so that the function is further enhanced.
[0059]
The upper limit of the amount of Si added is set so that the Ac3 transformation temperature does not exceed 850 ° C. because the rolling surface surface layer contains 0.6% by weight or more of carbon that significantly stabilizes austenite. Although it is set to be% by weight, the upper limit concentration is set to 5% by weight because there is a risk that the alloy becomes brittle by alloying at 5% by weight or more.
[0060]
Further, the surface of the rolling member such as a gear is carburized, the surface carbon addition amount is increased to 0.9 to 1.7% by weight, and fine cementite particles are dispersed on the rolling surface by reheating and quenching. The upper and lower limits of the amount of Si for performing a tempering treatment at a temperature of 300 ° C. or lower and ensuring a hardness of at least 300 ° C. temper of HRC 62 or more are preferably in the above-described range of Si addition.
[0061]
Furthermore, in order to increase the surface carbon content to 0.9 to 1.7% by weight without causing cementite to precipitate on the surface layer during the carburization, the carburization treatment is performed at a high temperature of 930 to 1100 ° C. It is necessary to increase the carbon activity during the carburization. However, during carburization under such a high concentration of carbon potential, if the steel contains a large amount of Cr element, coarse steel (3 to (15 .mu.m) of cementite (excess carburization) is likely to occur, and there is a fear that the gear strength may be remarkably deteriorated. Therefore, in the present invention, in order to prevent excessive carburization accompanied by the precipitation of cementite, Si is positively added. Cr was not added in an amount of at least 1.4 times the amount of Si added.
[0062]
In more detail, the expression
-0.146 x Si (wt%) + 0.03 x Mn (wt%)-0.024 x Ni (wt%) + 0.075 x Cr (wt%) + 0.043 x Mo (wt%) + 0.133 × V (% by weight) ≦ 0
A steel material that satisfies the above relationship was used.
[0063]
Therefore, when this steel material is used, a vacuum carburizing method or a plasma carburizing method of carburizing at a carbon activity of 1 can be used, and high-temperature carburizing at a temperature of 1100 ° C. or less can be employed at a low cost. It is extremely advantageous as a method of manufacturing a rolling member, and it is clear that preventing precipitation of coarse cementite is preferable for increasing the strength of a rolling member such as a gear.
[0064]
When the ferrite Fe phase is stabilized but Cr and Ti, which are strong carbide forming elements, are diffused and infiltrated from the surface, a special carbide is formed while reacting with carbon in the base steel in the surface layer. In addition, the diffusion and penetration of Cr and Ti become extremely slow, and the surface layer is weakened. In this case, first, a ferrite stabilizing element such as Si that repels carbon and does not form carbide in steel is diffused and infiltrated prior to Cr, Ti, etc., so that carbon in the surface layer is discharged deeper. Obviously, it is preferable to diffuse and infiltrate Cr and Ti from the surface with a delay.
[0065]
Further, as described above, after diffusing and infiltrating Cr, Ti, Mo, W, etc., a special carbide, special carbonitride, It is clear that when finely dispersing and precipitating a substance or nitride, extremely good tempering softening resistance and seizure resistance can be imparted.
[0066]
When the special carbide and special carbonitride are dispersed and precipitated by carburizing and carbonitriding, it is necessary to adjust the composition so that the precipitation of cementite does not occur at the same time. Are Cr: 3.5 to 20% by weight, Mo: 2.0 to 20% by weight, V: 0.5 to 20% by weight, W: 1.0 to 10% by weight, Ti: 0. It is preferably adjusted to 5 to 5% by weight.
[0067]
(2) Al
Al has a strong deoxidizing effect, and has a strong effect of rejecting P and S, which are impurity elements contained in steel, from the grain boundaries. In the present invention, it was confirmed that Al is an element that enhances low-temperature temper softening resistance compared to Si (ΔHRC = 7.3), and the lower limit of the Al surface concentration when Al is diffused and permeated alone is 0. 0.7% by weight.
[0068]
Al is a ferrite stabilizing element stronger than Si and has an effect of increasing the Ac3 temperature by about 1.6 times as compared with Si, but increases the carbon concentration of the surface layer to 0.6% by weight or more as described above. Thus, even when the Al surface concentration is 10% by weight, a quenching temperature of 900 ° C. or less is ensured. However, when Ni, Co, or the like is diffused and infiltrated into the surface layer, for example, 10 to 20% by weight of Al , In the composition range of 10 to 30% by weight of Co, a very remarkable age hardening property is exhibited (see JP-A-2002-180216), and it is clear that remarkable tempering softening resistance is exhibited. Was set as the upper limit.
[0069]
Further, the present inventor has disclosed that the pitching strength of a rolling member obtained by quenching and tempering a steel containing 0.35 to 2.0% by weight of Al after carburizing and nitriding is remarkably improved (Japanese Patent Laid-Open Publication No. HEI 9 (1994) -209605). 10-176219). This disclosed technique is not sufficiently effective because it is obtained by carburizing and nitrocarburizing a steel material obtained by solid solution and smelting using Al as an alloying element. In the present invention, a higher surface area is obtained by increasing the Al concentration. It is clear that rolling members that can withstand the pressure can be developed.
[0070]
Furthermore, in the surface layer in which Al is adjusted to 2 to 20% by weight, 3 It has already been reported by the present inventor that a regular / irregular transformation related to the Al phase appears and the sliding characteristics thereof are remarkably improved (see JP-A-2002-180216). It is clear that this is effective in increasing the pitching strength of the tooth surface.
[0071]
(3) Co
Co stabilizes ferrite, repels carbon, and has FeCo ordered transformation. In the case of Fe-Co-Al, the range of 7.5 to 20% by weight of Al and 10 to 30% by weight of Co is used. Thus, a hard phase having a hardness of Hv 600 to 760 (HRC 55 to 62) is formed (see JP-A-2002-180216), so that it is clear that the tempering softening resistance is improved.
[0072]
Further, it is clear that the addition of Co significantly raises the magnetic transformation temperature of the martensite phase and significantly suppresses the diffusivity of alloying elements and carbon, thereby improving the temper softening resistance.
[0073]
(4) Mo
Mo is an expensive alloy element, but is an effective element for improving the hardenability of steel and an element for suppressing temper embrittlement. Therefore, most of Mo is contained in the base steel material by 0.35% by weight. However, in the present invention, it is preferable that the Mo is diffused and infiltrated into the surface layer in the range of 0 to 20% by weight. However, in order to disperse and precipitate Mo-based special carbides by carburizing, the lower limit Mo concentration is about 2.0. In order to improve the seizure resistance due to slippage, it is clear that a higher Mo concentration is preferable.
[0074]
(5) W
It is considered that W is almost the same as Mo. In the present invention, it is preferable that the W is diffused and penetrated into the surface layer in the range of 0 to 10% by weight. For the purpose of precipitation, the lower limit W concentration is set to about 1.0% by weight, and it is clear that a higher W concentration is preferable in order to improve the seizure resistance due to the slip. In consideration of the solid solubility of W in water, the upper limit concentration of W addition is 10% by weight.
[0075]
(6) V
V is also an expensive alloying element. 4 C 3 Although the carbide is formed, the lower limit V concentration is 0.5% by weight, and it is clear that a higher V concentration is preferable in order to improve the seizure resistance due to the slip.
[0076]
(7) Ti
Ti strongly forms special carbides, nitrides, and special carbonitrides such as TiC, TiN, and TiCN, and has a lower limit Ti concentration of 0.5% by weight. It is clear that a higher Ti concentration is preferable, but the upper limit concentration of Ti addition is 5% by weight in consideration of the solid solubility of Ti in the ferrite Fe phase.
[0077]
The lower limit of the amount of carbon originally added to the base steel material is desirably 0.10% by weight, and the upper limit is 0.35% by weight in which the hardness of the material composition inside the carburized layer after quenching and tempering does not exceed HRC55. Clearly, it is desirable to set the austenite phase most notably, since the penetration rate when diffusing and infiltrating the above-mentioned alloy element is affected by the ease of forming the ferrite Fe phase. Since it is desirable that the amount of carbon added is lower, the upper limit carbon amount is set to 0.35% by weight, more preferably 0.25% by weight.
[0078]
From the same viewpoint as carbon, Mn and Ni contained in the base steel are also alloying elements for stabilizing the austenite phase, so that they should be added unnecessarily and should be suppressed to 1% by weight. preferable.
[0079]
Although Mn is an element that stabilizes austenite as described above, Mn is an effective element that exhibits a remarkable desulfurization effect and improves the hardenability of steel. It is added, but the lower limit of Mn is 0.3% by weight.
[0080]
Furthermore, when graphite is precipitated in the heat treatment process of the present invention by diffusing and infiltrating high concentrations of Si and Al, remarkable deterioration in strength is feared, so that at least cementite is remarkably stabilized and graphitized. Is preferably contained in an amount of 0.2% by weight or more for inhibiting Cr.
[0081]
In the present invention, when the carburizing temperature, the reheating temperature, and the induction hardening temperature are too high, there may be a problem that austenite crystal grains are likely to be coarsened. In this case, Ti, Nb, It is apparent that it is preferable to add known elements such as Zr, Ta, Hf and the like, which are known as fine grain size refining elements, in the range of 0.005 to 0.2% by weight.
[0082]
The diffusion and infiltration treatment of the alloy element, which can be performed before or during carburization as described above, is performed using SiCl. 2 , SiCl 4 , TiCl 2 Halogen compound gas and SiH with excellent low-temperature volatility such as 4 It is clear that it is preferable to use a gas as an atmospheric gas and to diffuse and infiltrate alloy elements in the gas, but in addition, various vapor deposition methods using an electron beam melting method, hot-dip plating methods, electroplating methods, chemical plating methods, and the like. It is also a preferable method that after the surface portion is plated by a plating method, a sputtering method, or the like, heating and diffusion are performed in an inert atmosphere, a vacuum, or the like.
[0083]
Furthermore, after performing conventional various alloy diffusion and infiltration treatments (including a method using a solid medium and a salt bath method) such as siliconizing, calorizing, and chromizing, alloy elements of the surface layer are subjected to reheating diffusion treatment. It is also preferable to adjust the concentration, and further perform carburization, carburizing and nitriding, and nitriding to adjust the concentration of the surface layer alloy element.
[0084]
【Example】
Next, specific examples of the rolling member and the manufacturing method thereof according to the present invention will be described with reference to the drawings.
[0085]
<Example 1> Pitching strength of quenched and tempered carbon steel and case hardened steel
(Preliminary test)
In this embodiment, in order to examine the rolling fatigue strength on the tooth surface of the gear, a roller pitting test was carried out on the test piece shown in FIG. 2 and the pitting of various hardened and tempered carbon steels and carburized and hardened case hardened steels was performed. The strength was checked. Table 1 shows the chemical components of various carbon steels and case hardened steels used in this example.
[0086]
[Table 1]
Figure 2004107709
[0087]
Various steel materials were processed into small roller shapes shown in FIG. 1, 2 and 4 were heated at 820 ° C. for 30 minutes, then water-quenched, and tempered at 160 ° C. for 3 hours and subjected to a test. No. In No. 3, the rolling surface was quenched and hardened using a high frequency power supply of 40 kHz after the material tempering treatment, and the same tempering treatment as described above was performed. In addition, No. 5 was carburized at 930 ° C. for 5 hours (carbon potential 0.8), cooled to 850 ° C., held at 850 ° C. for 30 minutes, quenched in quenching oil at 60 ° C., and then tempered as described above. Was given.
[0088]
The large roller pieces shown in FIG. The SUJ2 material of No. 4 was heated at 820 ° C. for 30 minutes, then water-quenched, and tempered at 160 ° C. for 3 hours. In the roller pitching test, small roller pieces were lubricated with 70 ° C. # 30 engine oil while the small roller pieces were 1050 rpm. The large roller piece (load roller) was set to 292 rpm to give a 40% slip ratio, and the surface pressure was 375 to 220 kgf / mm. 2 Under various conditions.
[0089]
FIG. 3 collectively shows the number of repetitions in which pitching has occurred at various surface pressures. In the drawing, the life line connecting the minimum number of repetitions at each surface pressure of the reference carburized case hardened steel is shown by a solid line. 10 pitching occurrences 7 When the surface pressure at the time of rotation is defined as the rolling surface fatigue strength, the pitching strength is about 210 kgf / mm. 2 It turned out that. In addition, when examined in a similar manner, 1: 175 kgf / mm 2 , No. 2: 240 kgf / mm 2 , No. 3: 260 kgf / mm 2 , No. 4: 260 kgf / mm 2 It turned out that. In addition, carburized case hardened steel has a large variation, which is caused by grain boundary oxidation during carburization on rolling surface, existence of incompletely quenched layer, and large amount of retained austenite. When compared by the number of times, No. It turns out that it is not different from the pitching strength of No. 2.
[0090]
In addition, surface pressure 250kgf / mm 2 As a result of investigating the X-ray half width of the martensite phase on the rolling surface where pitting occurred in No. 1, 1: 3.6-4.0 °, 2: 4 to 4.2 °, no. 3: 4.2 to 4.4 °; 4: 4.3 to 4.6 °; 5: 4 to 4.2 °.
[0091]
In addition, No. As a result of investigating the X-ray half width of the TPs of 1 to 5 after tempering at 250 to 350 ° C. for 3 hours each, the half width of the pitching rolling surface is almost equal to the half width at about 300 ° C. Also, “Materials”, Japan Society for Materials Science, Vol. 26, No. 280, It can be seen that the relationship between the temper hardness and the half width of the carbon steels of various carbon concentrations reported in No. 26 almost agrees with each other.
[0092]
<Example 2> Confirmation of temper softening resistance
Table 2 shows the alloy composition used in this example. The heat treatment was performed at 810 to 870 ° C. for 30 minutes, then water-cooled, and tempered at 300 ° C. and 350 ° C. for 3 hours. Were investigated, and the effect of the addition amount of each alloy element on the hardness was analyzed.
[0093]
[Table 2]
Figure 2004107709
[0094]
As a preliminary experiment, a carbon steel containing 0.1 to 1.0% by weight of carbon and 0.3 to 0.9% by weight of Mn was also investigated and used as analysis base data for the influence of the alloy elements. But, as a result,
At 250 ° C., HRC = 34 × ΔC (% by weight) +26.5
At 300 ° C., HRC = 36 × ΔC (% by weight) +20.9
At 350 ° C., HRC = 38 × ΔC (% by weight) +15.3
Was found to be approximated by
[0095]
Further, as a result of analyzing the influence of alloying elements based on the hardness of the carbon steel, it was found that the temper softening resistance ΔHRC can be described by the following equation at 300 ° C., for example.
ΔHRC = 4.3 × Si (% by weight) + 7.3 × Al (% by weight) + 1.2 × Cr (% by weight) × (0.45 ° C. (% by weight)) + 1.5 × Mo (% by weight) ) + 3.1 × V (% by weight)
From these results, it was found that Al exhibited 1.7 times the tempering softening resistance of Si, and it was found that Al was extremely effective as an element for improving the rolling contact pressure strength.
[0096]
FIG. 4 shows a match between the temper hardness obtained from the analysis result and the actually measured temper hardness. From this figure, it can be seen that the variation width can be accurately predicted in the range of HRC ± 1. Also, the tempered hardness at 300 ° C. of the carburized layer (0.8% by weight carbon) of the SCM420 (NO.5) of Example 1 is indicated by a circle in FIG. 4 and agrees well with the calculated value. I understand.
[0097]
<Example 3> Improvement of pitting strength by diffusion infiltration treatment
In the present embodiment, case hardening steel SCM415H was used to process the roller pitching test piece shown in FIG. 2, and then subjected to diffusion and infiltration treatment of Si, Al, and Cr, and further to carburizing and quenching.
[0098]
The diffusion and infiltration treatment was performed for Si powder of 100 mesh or less, Fe 51% by weight Al alloy powder, Fe 66% by weight Cr alloy and Al powder. 2 O 3 Powder and NH 4 Cl was mixed in an appropriate amount and filled in an iron container together with the test piece. 2 The heating was performed at 1050 ° C. for 30 minutes in an air stream.
[0099]
After the diffusion and infiltration treatment, the test piece was heated at 1020 ° C. for 30 minutes in a vacuum, and then methane gas was introduced. (Carburizing stage + Diffusion period = 120 minutes), and once quenched once, reheated to 850 ° C., quenched in oil, and tempered at 180 ° C. for 3 hours. In addition, it was confirmed that the Si concentration in the surface layer after the heat treatment was in the range of 3 to 5% by weight, Al was in the range of 1.5 to 3.0% by weight, and Cr was in the range of 4 to 6% by weight. In addition, the diffusion penetration depth at that time was about 0.15 mm for Si and Al, and about 0.08 mm for Cr.
[0100]
The roller pitching test was performed under the same conditions as in Example 1. The result is shown in FIG. In the same figure, the results of the preliminary test of Example 1 are shown by solid lines. First, only Si, only Al, and Si and Cr were simultaneously diffused and infiltrated, and then the condition of 0.7% by weight C was obtained. And carburized. No. S1 (○), No. A1 (△), No. It is clear that the pitting strength of SC1 (□) is remarkably improved as compared with that of the conventional carburized case hardening. Among them, No. 1 in which Si and Cr were simultaneously diffused and infiltrated. SC1 has the best pitching strength. This is because even when carburizing under the condition of 0.7 wt% C 7 C 3 This is because carbides are finely precipitated.
[0101]
Further, after diffusing and infiltrating each element in the same manner as described above, carburizing was performed under the condition of 1.3% by weight C. S2 (●), No. A2 (▲), No. In SC2 (■), finer cementite and Cr 7 C 3 A further improvement in pitting strength is observed due to the dispersion of the carbides.
[0102]
In addition, No. After the carburizing treatment of A1 was performed, the nitriding treatment was performed for 1 hour by flowing ammonia gas at the time of reheating at 850 ° C. for 1 hour. The test results of AN1 (*) are also shown in the figure, and it can be seen that the pitting strength is remarkably improved by the fine precipitation of AlN nitride by the nitriding treatment.
[Brief description of the drawings]
FIG. 1 is a graph showing a diffusion profile of Si in an αFe phase.
FIGS. 2A and 2B are views showing a test piece for a roller pitching test.
FIG. 3 is a graph showing a preliminary test result of a roller pitching strength.
FIG. 4 is a graph showing a comparison between a measured value and a calculated value of tempering hardness.
FIG. 5 is a graph showing the pitching strength of Example 3.

Claims (19)

鋼製の転動部材であって、表面層から一種以上の合金元素を拡散浸透させるとともに、その表面層を浸炭、浸炭浸窒および/または浸窒処理した後に焼入れもしくは焼入れ焼戻し処理が施されていることを特徴とする転動部材。A steel rolling member, wherein one or more alloying elements are diffused and infiltrated from a surface layer, and the surface layer is carburized, carburized and / or nitrocarburized, and then quenched or quenched and tempered. A rolling member. 前記合金元素がフェライトFe相を安定化する作用および鋼中の炭素と反発し合う作用を有するSi,Al,Be,Co,P,Snのうちの少なくとも一種以上からなることを特徴とする請求項1に記載の転動部材。The alloy element comprises at least one of Si, Al, Be, Co, P, and Sn having a function of stabilizing a ferrite Fe phase and a function of repelling carbon in steel. 2. The rolling member according to 1. 表面層に少なくともC:0.5〜1.7重量%を含有し、さらに、N:0.2〜2.0重量%、Si:1.0〜5.0重量%、Al:0.5〜20重量%、Co:1.0〜30重量%、Be:0.1〜5.0重量%の一種以上の合金元素を含有していることを特徴とする請求項1または2に記載の転動部材。The surface layer contains at least C: 0.5 to 1.7% by weight, N: 0.2 to 2.0% by weight, Si: 1.0 to 5.0% by weight, Al: 0.5 3. The alloy according to claim 1, wherein the alloy contains one or more alloying elements of about 20 to 20% by weight, 1.0 to 30% by weight of Co, and 0.1 to 5.0% by weight of Be. Rolling member. 少なくともC:0.10〜0.35重量%を含有する炭素鋼、低合金鋼および/または各種肌焼き鋼等をベース鋼材とし、その表面層が式
5≦4.3×Si(重量%)+7.3×Al(重量%)+3.1×V(重量%)+1.5×Mo(重量%)+1.2×Cr(重量%)×(0.45÷C(重量%))
の関係を満足するようにSi,Alの一種以上が拡散浸透され、さらに、浸炭処理および/または浸炭浸窒処理によってその浸炭または浸炭浸窒表面層の炭素濃度が0.6〜1.7重量%に調整されるとともに、その処理に続いて焼入れと300℃以下の焼戻し処理、もしくはその処理後に一旦冷却して、再加熱焼入れと300℃以下の焼戻し処理を施し、300℃の焼戻し処理によってもHRC58以上の硬さが確保されるようにしたことを特徴とする請求項1または2に記載の転動部材。
Carbon steel, low-alloy steel and / or various case hardened steels containing at least C: 0.10 to 0.35% by weight are used as a base steel, and the surface layer has a formula of 5 ≦ 4.3 × Si (% by weight). + 7.3 × Al (wt%) + 3.1 × V (wt%) + 1.5 × Mo (wt%) + 1.2 × Cr (wt%) × (0.45 ° C. (wt%))
At least one of Si and Al is diffused and infiltrated so as to satisfy the following relationship, and the carbon concentration of the carburized or carbonitrided surface layer is further increased by 0.6 to 1.7 weight by carburizing treatment and / or carburizing and nitriding treatment. %, And after the treatment, quenching and tempering at 300 ° C. or lower, or once after the treatment, cooling once, tempering at 300 ° C. or lower, and tempering at 300 ° C. The rolling member according to claim 1 or 2, wherein a hardness of HRC 58 or more is ensured.
浸炭された転動部材において、その浸炭表面層の炭素濃度が0.6〜1.7重量%に調整され、その浸炭中に表面層にセメンタイトが析出しない状態から一旦A1温度以下に冷却した後に再加熱焼入れと300℃以下の焼戻し処理を施し、その浸炭表面層の焼戻しマルテンサイト相中に1μm以下の微細なセメンタイト粒子を分散させ、300℃の焼戻し処理によってHRC62以上の硬さが確保されるようにしたことを特徴とする転動部材。In the carburized rolling member, the carbon concentration of the carburized surface layer is adjusted to 0.6 to 1.7% by weight, and after the cementite is once cooled to a temperature of A1 or less from a state in which cementite does not precipitate on the surface layer during the carburization. Reheating and quenching and tempering at 300 ° C. or less are performed, fine cementite particles of 1 μm or less are dispersed in the tempered martensite phase of the carburized surface layer, and the hardness of HRC 62 or more is secured by the tempering at 300 ° C. A rolling member characterized in that: 表面層におけるCr含有量をSi含有量の1.4倍以下に抑えるとともに、Mo:0.35重量%以下、V:0.4重量%以下、(Mn+Ni):1.0〜2.5重量%のいずれか一種以上が添加され、かつそれらの含有量が式
−0.146×Si(重量%)+0.03×Mn(重量%)−0.024×Ni(重量%)+0.075×Cr(重量%)+0.043×Mo(重量%)+0.133×V(重量%)≦0
の関係を満足することを特徴とする請求項1または2に記載の転動部材。
The Cr content in the surface layer is suppressed to 1.4 times or less the Si content, Mo: 0.35% by weight or less, V: 0.4% by weight or less, (Mn + Ni): 1.0 to 2.5% by weight. % Or more and the content thereof is expressed by the formula: -0.146 x Si (wt%) + 0.03 x Mn (wt%)-0.024 x Ni (wt%) + 0.075 x Cr (% by weight) + 0.043 × Mo (% by weight) + 0.133 × V (% by weight) ≦ 0
The rolling member according to claim 1 or 2, wherein the following relationship is satisfied.
フェライトFe相を安定化し、鋼中の炭素と反発し合うSi,Al,Co,Be,Snの一種以上を同時もしくは先行して拡散浸透させながら、炭素と強力に反応するCr,Mo,V,Ti,W等の炭化物形成元素を拡散浸透した後、浸炭、浸炭浸窒もしくは浸窒処理を施し、それらの元素が拡散浸透する表面層にCr,MoC,V,TiC,TiCN,TiN,AlN,WC等の特殊炭化物、特殊炭窒化物、窒化物の一種以上を微細に分散析出させたことを特徴とする請求項1に記載の転動部材。Cr, Mo, V, which react strongly with carbon while stabilizing the ferrite Fe phase and diffusing and infiltrating at least one of Si, Al, Co, Be, and Sn repelling the carbon in the steel simultaneously or in advance. After diffusing and infiltrating carbide forming elements such as Ti and W, carburizing, carburizing and nitriding or nitriding is performed, and Cr 7 C 3 , Mo 2 C, V 4 C 3 , The rolling member according to claim 1, wherein one or more of special carbides, special carbonitrides, and nitrides such as TiC, TiCN, TiN, AlN, and WC are finely dispersed and precipitated. 前記フェライトFe相を安定化し、鋼中の炭素と反発し合う合金元素Si,Al,Co,Beの一種以上および/またはCr,Mo,V,Ti,Wの一種以上と顕著な時効硬化性を有するNi等の合金元素を拡散浸透させたことを特徴とする請求項7に記載の転動部材。The ferrite Fe phase is stabilized, and has remarkable age hardening properties with at least one of alloying elements Si, Al, Co, Be and / or at least one of Cr, Mo, V, Ti, W which repel carbon in steel. 8. The rolling member according to claim 7, wherein alloy elements such as Ni are diffused and infiltrated. 少なくともC:0.10〜0.35重量%を含有するとともに、Si:0.05〜1.0重量%、Mn:0.3〜1.5重量%、Ni:0〜2.5重量%、Cr:0〜2.0重量%、Mo:0〜0.35重量%、V:0〜0.4重量%を含有し、さらに、Cu,W,Ti,Nb,B,Zr,Ta,Hf,Al,Caの一種以上の合金元素とP,S,N,O等の不可避的不純物元素を含有し、残部が実質的にFeからなるベース鋼材を用いることを特徴とする請求項1〜8のいずれかに記載の転動部材。Contains at least C: 0.10 to 0.35% by weight, Si: 0.05 to 1.0% by weight, Mn: 0.3 to 1.5% by weight, Ni: 0 to 2.5% by weight , Cr: 0 to 2.0% by weight, Mo: 0 to 0.35% by weight, V: 0 to 0.4% by weight, and further, Cu, W, Ti, Nb, B, Zr, Ta, A base steel material containing one or more alloying elements of Hf, Al and Ca and inevitable impurity elements such as P, S, N and O, and the balance substantially consisting of Fe. 9. The rolling member according to any one of 8 above. 鋼製転動部材の製造方法であって、表面層にフェライトFe相を安定化し、鋼中の炭素と反発し合う合金元素:Si,Al,Co,Beの一種以上を表面層から少なくとも10μm以上の深さに拡散浸透させる工程と、この工程の後に、焼入れまたは焼戻し処理を施す工程を有することを特徴とする転動部材の製造方法。A method for manufacturing a steel rolling member, wherein at least 10 μm or more of at least one of Si, Al, Co, and Be, which is an alloy element that stabilizes a ferrite Fe phase in a surface layer and repels carbon in steel, is used. A step of diffusing and infiltrating to a depth of, and a step of performing a quenching or tempering treatment after this step. 前記フェライトFe相を安定化し、鋼中の炭素と反発し合う合金元素:Si,Al,Co,Beの一種以上を先行して拡散浸透させ、さらに、フェライトFe相安定化元素で、かつ、強力な炭化物形成元素および/または窒化物形成元素であるCr,Mo,V,Ti,Wの一種以上を拡散浸透させ、後工程の浸炭、浸炭浸窒および/または浸窒によって表面層に特殊炭化物、特殊炭窒化物、窒化物を微細に分散析出させることを特徴とする請求項10に記載の転動部材の製造方法。An alloy element that stabilizes the ferrite Fe phase and repels carbon in the steel: one or more of Si, Al, Co, and Be are diffused and infiltrated in advance, and a ferrite Fe phase stabilizing element and strong One or more of Cr, Mo, V, Ti, and W, which are various carbide-forming elements and / or nitride-forming elements, are diffused and infiltrated, and a special carbide, The method for producing a rolling member according to claim 10, wherein the special carbonitride and the nitride are finely dispersed and precipitated. 前記フェライトFe相を安定化し、鋼中の炭素と反発し合う合金元素Si,Al,Co,Beの一種以上および/またはCr,Mo,V,Ti,Wの一種以上と顕著な時効硬化性を有するNi等の合金元素を拡散浸透させたことを特徴とする請求項10または11に記載の転動部材の製造方法。The ferrite Fe phase is stabilized, and has remarkable age hardening properties with at least one of alloying elements Si, Al, Co, Be and / or at least one of Cr, Mo, V, Ti, W which repel carbon in steel. The method for manufacturing a rolling member according to claim 10, wherein an alloy element such as Ni is diffused and infiltrated. 前記合金元素を拡散浸透させる際に、それらの合金元素を含有する塩素(C1)、ヨウ素(I)、フッ素(F)、水素(H)系揮発ガス等が用いられる請求項10〜12のいずれかに記載の転動部材の製造方法。13. The method according to claim 10, wherein, when the alloy elements are diffused and infiltrated, chlorine (C1), iodine (I), fluorine (F), hydrogen (H) -based volatile gas or the like containing the alloy elements is used. A method for manufacturing a rolling member according to any one of the claims. 前記合金元素を拡散浸透させる際に、珪素浸透、Al浸透、Cr浸透等に使用する一種以上の固体媒剤を用いて拡散浸透した後に、不活性、還元性、真空および/または浸炭雰囲気中で拡散浸透処理が施される請求項10〜12のいずれかに記載の転動部材の製造方法。When the alloy element is diffused and infiltrated, after diffusing and infiltrating with one or more solid media used for silicon infiltration, Al infiltration, Cr infiltration, etc., in an inert, reducing, vacuum and / or carburizing atmosphere The method for manufacturing a rolling member according to claim 10, wherein a diffusion infiltration treatment is performed. 前記合金元素を拡散浸透させる際に、それらの合金元素を含有する溶融メッキ法、塩浴法、電気メッキ法、化学メッキ法、蒸着法、スパッタリング法、溶射法等の各種方法でプレーティングした後に、不活性、還元性、真空および/または浸炭雰囲気中で拡散浸透処理が施される請求項10〜12のいずれかに記載の転動部材の製造方法。When the alloy elements are diffused and infiltrated, after plating by various methods such as a hot-dip plating method containing those alloy elements, a salt bath method, an electroplating method, a chemical plating method, a vapor deposition method, a sputtering method, and a thermal spraying method. The method for producing a rolling member according to any one of claims 10 to 12, wherein the diffusion and infiltration treatment is performed in an inert, reducing, vacuum and / or carburizing atmosphere. 前記合金元素を拡散浸透させる際に、請求項13〜15のいずれか一種以上の方法を組み合わせて拡散浸透処理が施される10〜12のいずれかに記載の転動部材の製造方法。The method for manufacturing a rolling member according to any one of claims 10 to 12, wherein when the alloy element is diffused and infiltrated, the diffusion and infiltration treatment is performed by combining one or more methods according to any one of claims 13 to 15. 前記浸炭、浸炭浸窒処理は、真空浸炭およびプラズマ浸炭が処理可能な浸炭、浸炭浸窒処理炉を用いて、少なくとも1000℃以上の温度で処理することにより行われる請求項10〜12のいずれかに記載の転動部材の製造方法。The carburizing and carburizing and nitriding treatments are performed by using a carburizing and carburizing and nitriding furnace capable of vacuum carburizing and plasma carburizing at a temperature of at least 1000 ° C. or more. 3. The method for manufacturing a rolling member according to claim 1. 前記浸炭および/または浸炭浸窒処理後にその処理に続いて焼入れと300℃以下の焼戻し処理、もしくはその処理後に一旦冷却して、再加熱焼入れと300℃以下の焼戻し処理が施される請求項10〜12のいずれかに記載の転動部材の製造方法。11. The carburizing and / or carburizing and nitriding treatment is followed by quenching and tempering at 300 ° C. or lower, or after the treatment, the steel is cooled once and then reheat-quenched and tempered at 300 ° C. or lower. 13. The method for manufacturing a rolling member according to any one of claims 12 to 12. 前記再加熱焼入れ処理によって、浸炭および/または浸炭浸窒処理する表面層がマルテンサイト相にセメンタイトが分散した組織になるようにされる請求項18に記載の転動部材の製造方法。The method for manufacturing a rolling member according to claim 18, wherein the surface layer to be carburized and / or carbonitrided by the reheating and quenching treatment has a structure in which cementite is dispersed in a martensite phase.
JP2002270340A 2002-09-17 2002-09-17 Rolling member and manufacturing method thereof Pending JP2004107709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270340A JP2004107709A (en) 2002-09-17 2002-09-17 Rolling member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270340A JP2004107709A (en) 2002-09-17 2002-09-17 Rolling member and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004107709A true JP2004107709A (en) 2004-04-08

Family

ID=32268002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270340A Pending JP2004107709A (en) 2002-09-17 2002-09-17 Rolling member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004107709A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063666A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2007063667A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2007063665A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2008163414A (en) * 2006-12-28 2008-07-17 Komatsu Ltd Rolling member and manufacturing method for the same
WO2011132722A1 (en) 2010-04-19 2011-10-27 新日本製鐵株式会社 Steel component having excellent temper softening resistance
CN106967925A (en) * 2017-03-21 2017-07-21 马钢(集团)控股有限公司 A kind of high-temperature carburizing pinion steel with the narrow hardenability band of fine grain
KR101795401B1 (en) 2016-05-26 2017-11-08 현대자동차 주식회사 Carburizing steel and mrthod for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063666A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2007063667A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2007063665A (en) * 2005-08-02 2007-03-15 Honda Motor Co Ltd LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2008163414A (en) * 2006-12-28 2008-07-17 Komatsu Ltd Rolling member and manufacturing method for the same
WO2011132722A1 (en) 2010-04-19 2011-10-27 新日本製鐵株式会社 Steel component having excellent temper softening resistance
KR101795401B1 (en) 2016-05-26 2017-11-08 현대자동차 주식회사 Carburizing steel and mrthod for manufacturing the same
CN106967925A (en) * 2017-03-21 2017-07-21 马钢(集团)控股有限公司 A kind of high-temperature carburizing pinion steel with the narrow hardenability band of fine grain

Similar Documents

Publication Publication Date Title
CN104220621B (en) Gear having excellent seizing resistance
JP3909902B2 (en) Steel parts for high surface pressure resistance and method for producing the same
JP4390576B2 (en) Rolling member
JP4390526B2 (en) Rolling member and manufacturing method thereof
US20050241734A1 (en) Rolling elements
JPH11117059A (en) Carburized member, its production, and carburizing treatment system
WO2010070958A1 (en) Hardfacing steel for machine structure, and steel component for machine structure
WO2011111269A1 (en) Carburized steel component having excellent low-cycle bending fatigue strength
JPH0826446B2 (en) Rolling bearing
WO2011114775A1 (en) Steel for nitrocarburization, nitrocarburized components, and production method for same
EP1512761A1 (en) Contact pressure-resistant member and method of making the same
JP2011225936A (en) Carbonitrided steel of hydrogen embrittlement type having excellent surface fatigue strength
US20230211413A1 (en) Iron-based sintered alloy material and production method therefor
JP3787663B2 (en) Heat treatment method for rolling bearings
JP3961390B2 (en) Surface carbonitrided stainless steel parts with excellent wear resistance and manufacturing method thereof
US11840765B2 (en) Nitriding process for carburizing ferrium steels
JP2004107709A (en) Rolling member and manufacturing method thereof
JP5198765B2 (en) Rolling member and manufacturing method thereof
US20190284676A1 (en) Structural material
JP2010222636A (en) Surface treatment method of steel product
JP4912385B2 (en) Manufacturing method of rolling member
JP7364895B2 (en) Steel parts and their manufacturing method
JP7295378B2 (en) Gas nitrocarburized part and its manufacturing method
JP3282654B2 (en) Carbonitriding and quenching method and rolling parts
JP4523736B2 (en) Iron-based sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111