JPH0334228A - Vacuum circuit breaker - Google Patents

Vacuum circuit breaker

Info

Publication number
JPH0334228A
JPH0334228A JP16547089A JP16547089A JPH0334228A JP H0334228 A JPH0334228 A JP H0334228A JP 16547089 A JP16547089 A JP 16547089A JP 16547089 A JP16547089 A JP 16547089A JP H0334228 A JPH0334228 A JP H0334228A
Authority
JP
Japan
Prior art keywords
phase
surge
current
circuit breaker
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16547089A
Other languages
Japanese (ja)
Inventor
Kunio Yokokura
邦夫 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16547089A priority Critical patent/JPH0334228A/en
Publication of JPH0334228A publication Critical patent/JPH0334228A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To cut off a large current without requiring any surge protecting device by connecting a non-linear resistance to either the movable side or fixed side of the vacuum valve of each phase. CONSTITUTION:A mechanism 12 is operated by trip instruction, and a main shaft 16 is operated through a link 15 to make a wipe length 25 into 0. Thereafter, the operation of the mechanism 12 directly drives the shaft 14a of a vacuum valve through a link 19 and a rod 24 to turn off a circuit breaker 10. The difference in the wipe length 25 is adjusted, and opening is successively conducted from R phase at time differences t1, t2 of 1ms or more. When the current is cut off just after the opening of T phase, then, reignition occurs as the T phase gap is short. Other phases are opened before 1ms or more, and the gap is arc-bridged. The reignition current overlaps this, and at that point of time, the other phases are cut off to generate a large surge. A non- linear resistance body 26 limits this, and as the other phases are opened earlier than T phase by 1ms or more, and the voltage resistance between electrodes is sufficiently higher than this limit voltage, no reignition is caused in the T phase, and a sharp surge generation is eliminated.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、真空遮断器(真空コンタクタ、真空開閉器も
含む)に係り、特に遮断時の開閉サージ部抑制構造に関
するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a vacuum circuit breaker (including a vacuum contactor and a vacuum switch), and particularly relates to a structure for suppressing switching surge portions during circuit interruption. It is.

(従来の技術) 周知のように、真空遮断器で誘導性負荷電流を遮断する
と、特異な開閉サージを発生する。この開閉サージは、
その発生メカニズムより、(1)電流裁断サージ。
(Prior Art) As is well known, when an inductive load current is interrupted by a vacuum circuit breaker, a peculiar switching surge is generated. This opening/closing surge is
From the mechanism of occurrence, (1) current cutting surge.

(2)多重再発弧(繰り返し再発弧)サージ。(2) Multiple re-ignition (repetitive re-ignition) surge.

(3)三相同時遮断(三相誘発裁断)サージ。(3) Three-phase simultaneous shutdown (three-phase induced cutting) surge.

の3種類に分類できる。(1)はAC電流の自然零点を
待たずに、強制的に電流が遮断される現象で、負荷のイ
ンダクタンスに蓄えられている電磁エネルギが、回路の
漂遊キャパシタンスの静電エネルギに変換される過程で
発生する。また、(2)は、電流遮断後に真空バルブ極
間に発生する過渡回復電圧が極間耐圧を上回ると、極間
で再発弧が起こる。この時極間を流れる高周波電流が消
弧されると、再び過渡回復電圧があられれ、また極間で
放電が起こるというように、再発弧と高周波電流消弧を
繰り返し発生す6過程で、徐々に極間電圧が上昇してい
く現象がある。さらに、(3)は、遮断第1相の極間で
再発弧が発生すると、この時流れる高周波電流が回路の
漂遊キャパシタンスを介して他相のAC電流に重畳し、
強制的に電流零点を形威し、その零点で遮断される現象
である。この時、他相は、見掛上負荷電流相当の電流を
裁断したことと同じになり、大きいサージ電圧が発生す
る。
It can be classified into three types. (1) is a phenomenon in which the current is forcibly interrupted without waiting for the natural zero point of the AC current, and is a process in which electromagnetic energy stored in the inductance of the load is converted to electrostatic energy in the stray capacitance of the circuit. Occurs in Furthermore, in (2), when the transient recovery voltage generated between the electrodes of the vacuum valve exceeds the withstand voltage between the electrodes after the current is cut off, re-ignition occurs between the electrodes. At this time, when the high-frequency current flowing between the electrodes is extinguished, a transient recovery voltage is generated again, and a discharge occurs between the electrodes. In this 6-step process, re-ignition and high-frequency current extinguishment occur repeatedly. There is a phenomenon in which the voltage between electrodes increases. Furthermore, (3) shows that when a re-ignition occurs between the poles of the first phase of interruption, the high frequency current flowing at this time is superimposed on the AC current of other phases via the stray capacitance of the circuit.
This is a phenomenon in which the current is forced to a zero point and is cut off at that zero point. At this time, the other phase is equivalent to cutting a current equivalent to the apparent load current, and a large surge voltage is generated.

これら開閉サージを抑制する方法としては、(イ)真空
バルブの接点材料を、裁断電流値の低いものから選択す
る。
As a method for suppressing these opening/closing surges, (a) select the contact material of the vacuum valve from one with a low cutting current value;

(ロ)CRサージサプレッサや避雷器等のサージ保護装
置を設置する。
(b) Install surge protection devices such as CR surge suppressors and lightning arresters.

の2種類に大別できる。(イ)の方法は、真空コンタク
タなどのように大電流の遮断を必要としない機器に適用
されている。また、(ロ)の方法は、真空遮断器のよう
に事故時の大電流遮断を必要とする機器に採用されてい
る(電気学会雑誌 Vol。
It can be roughly divided into two types. Method (a) is applied to equipment that does not require interruption of large currents, such as vacuum contactors. In addition, the method (b) is used in devices that require large current interruption in the event of an accident, such as vacuum circuit breakers (IEEJ Journal Vol.

93、 No、gを参照)。93, No. g).

(発明が解決しようとする課題) 上記したように、一般に真空遮断器での開閉サージ保護
は、CRサージサプレッサや避雷器などのサージ保護装
置を設置している。しかしながら、これらサージ保護装
置を設置することは、機器のスペースファクタを悪化さ
せると共に、真空遮断器の適用される回路に適したサー
ジ保護装置を選定するという作業が必要となり、システ
ムエンジニアの作業をわずられし、選定ミス等の発生が
懸念される。
(Problems to be Solved by the Invention) As described above, switching surge protection in a vacuum circuit breaker is generally achieved by installing a surge protection device such as a CR surge suppressor or lightning arrester. However, installing these surge protectors worsens the space factor of the equipment and requires the work of selecting a surge protector suitable for the circuit to which the vacuum circuit breaker is applied, which takes the work of system engineers. There is a concern that the results may be shifted and selection errors may occur.

そこで、本発明は、大電流遮断が可能で、かつサージ保
護装置を必要としない真空遮断器を提供することを目的
としている。
Therefore, an object of the present invention is to provide a vacuum circuit breaker that is capable of interrupting large currents and does not require a surge protection device.

[発明の構成] (課題を解決するための手段) 本発明は、各相に真空バルブを設け、この各相の真空バ
ルブを一括して開閉する操作機構を備えた真空遮断器に
おいて、各相の真空バルブの開極時を1ms以上異なら
せると共に、真空バルブの可動側または固定側の少なく
とも一方に非直線抵抗体を接続したものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a vacuum circuit breaker provided with a vacuum valve for each phase and an operation mechanism for opening and closing the vacuum valves of each phase at once. The opening times of the vacuum valves are made different by 1 ms or more, and a non-linear resistor is connected to at least one of the movable side or the fixed side of the vacuum valve.

(作 用) 真空遮断器においては、遮断第1相が再発弧し、三相同
時遮断が発生すると、他の2相は接点が未だ開いていな
いかまたは充分な耐電圧を有しているため、他相に発生
するサージは再発弧せず、非直線抵抗体でその波高値が
制限される。
(Function) In a vacuum circuit breaker, when the first phase of the shutdown occurs again and three-phase simultaneous shutdown occurs, the other two phases either have contacts that are not yet open or have sufficient withstand voltage. , surges occurring in other phases do not re-ignite, and their peak values are limited by the non-linear resistor.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は、本発明の一実施例の要部を一部切断して示す側
面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway side view showing a main part of an embodiment of the present invention.

同図に示すように、真空遮断器10は、移動自在とした
台枠11に、操作機構12と、絶縁枠体13を介して真
空バルブ14を取付けている。
As shown in the figure, the vacuum circuit breaker 10 has an operating mechanism 12 and a vacuum valve 14 attached to a movable underframe 11 via an insulating frame 13.

ここで、操作機構12は、主リンク15や開路バネ(図
示しない)等を含むリンク機構、主リンク15に連結さ
れる三相共通の主軸16.この主軸16に連結され、各
相ごとのスタッド17.  このスタッド17と主軸1
6の間に設けられるワイプバネ18.スタッド17に連
結される接続リンク19などで構成されている。なお、
ワイプバネ18の上部側に設けられる座金は、スタッド
17に対し移動自在とする。また、真空バルブ14には
、上部に固定側主接点を接合した固定軸(図示しない)
と接続された電源側主回路端子20が水平方向に伸び、
下部に可動側主接点を接合した可動軸141に可撓導体
!4bを介して接続された負荷側主回路端子21が水平
方向に伸び、これら電源側主回路端子20と負荷側主回
路端子2!の各端部には、主回路断路部201 、21
aが設けられ、主回路断路部20aには電源側導体22
、主回路断路部21aには負荷側導体23がそれぞれ接
離自在に接続されるようになっている。さらに、真空バ
ルブ14の可動軸14mは、絶縁材から形成された操作
ロッド24を介して接続リンク19に連結されている。
Here, the operating mechanism 12 includes a link mechanism including a main link 15 and an opening spring (not shown), and a main shaft 16 common to the three phases connected to the main link 15. Studs 17. connected to this main shaft 16 for each phase. This stud 17 and main shaft 1
Wipe spring 18 provided between 6 and 6. It is composed of a connecting link 19 connected to a stud 17, and the like. In addition,
A washer provided on the upper side of the wipe spring 18 is movable with respect to the stud 17. The vacuum valve 14 also includes a fixed shaft (not shown) with a fixed main contact connected to the upper part.
The power supply side main circuit terminal 20 connected to extends horizontally,
Flexible conductor on the movable shaft 141 with the movable main contact connected to the bottom! 4b, the load side main circuit terminal 21 extends horizontally, and the power supply side main circuit terminal 20 and the load side main circuit terminal 2! At each end of the main circuit disconnecting section 201, 21
a, and a power supply side conductor 22 is provided in the main circuit disconnection section 20a.
, the load-side conductors 23 are connected to the main circuit disconnection section 21a so as to be freely connectable and detachable. Furthermore, the movable shaft 14m of the vacuum valve 14 is connected to the connecting link 19 via an operating rod 24 made of an insulating material.

以上の構成において、スタッド17は、上部側が主軸1
6に設けた孔を貫通して伸び、その端部にはナツトとロ
ックナツトをねじ込み、このナツトとロックナツトのね
じ込み位置によって、ワイプ長25に各相で差を設ける
ことができるようになっている。
In the above configuration, the upper side of the stud 17 is connected to the main shaft 1.
It extends through a hole provided in 6, and a nut and a lock nut are screwed into the end thereof, and the wipe length 25 can be made different for each phase depending on the screwing position of the nut and lock nut.

また、負荷側導体23には、図示しない閉鎖配電盤(真
空遮断器IOが収納される)に取付けられた非直線抵抗
体26が接続されている。
Further, a non-linear resistor 26 attached to a closed switchboard (in which a vacuum circuit breaker IO is housed) (not shown) is connected to the load-side conductor 23.

なお、真空遮断器1Gの投入状態では、開路バネ(図示
しない)は引張られて蓄勢しており、ワイプバネ18は
圧縮されて蓄勢している。
Note that when the vacuum circuit breaker 1G is in the closed state, the opening spring (not shown) is pulled and stores energy, and the wipe spring 18 is compressed and stores energy.

次に、以上の構成による実施例の作用を説明する。まず
、トリップ指令がでると、操作機構12が動作し、開路
バネ(図示しない)の放勢により主リンク15を介して
主軸16を真空バルブ14側の斜上方に移動させる。こ
の主軸16の動作により、ワイプバネ18は放勢を開始
し、ワイプ長25が減少していき、遂には主軸16とス
タッド17の頭部とが接し、ワイプ長25は零(0)と
なる。ここで、ワイプ長25には、各相に差が設けであ
るから、ワイプ長25の小さい相から順次ワイプ長25
が零(0)となる。
Next, the operation of the embodiment with the above configuration will be explained. First, when a trip command is issued, the operating mechanism 12 is operated and the opening spring (not shown) is released to move the main shaft 16 diagonally upward toward the vacuum valve 14 via the main link 15. Due to this operation of the main shaft 16, the wipe spring 18 starts to release its force, and the wipe length 25 decreases until the main shaft 16 and the head of the stud 17 come into contact, and the wipe length 25 becomes zero (0). Here, since the wipe length 25 is different for each phase, the wipe length 25 is sequentially increased from the phase with the smaller wipe length 25.
becomes zero (0).

ワイプ長25が零(0)となり、主軸16とスタッド1
7の頭部が接すると、この後の操作機構12の動作は直
接接続リンク19に伝達され、この接続リンク19を時
計方向に回動し、操作ロッド24を介して真空バルブ1
4の可動軸10を下方に駆動し、主接点間にギャップを
形成する。つまり、真空遮断器10が遮断動作をする。
The wipe length 25 becomes zero (0), and the main shaft 16 and stud 1
7 makes contact, the subsequent operation of the operating mechanism 12 is transmitted to the direct connection link 19, which is rotated clockwise and connected to the vacuum valve 1 via the operating rod 24.
The movable shaft 10 of No. 4 is driven downward to form a gap between the main contacts. In other words, the vacuum circuit breaker 10 performs a breaking operation.

これらの動作を、ワイプ長25+主接点ギヤツブ長と主
接点(可動側)のストロークの関係で示すと第2図のよ
うになり、各相の主接点は、R相よりS相、T相の順に
jl+j2の時間差をもって開極する。したがって、ワ
イプ長25の差を調整することにより、jllj2を1
ff11以上にすることができる。
These operations are shown in Figure 2 in terms of the relationship between the wipe length 25 + main contact gear length and the stroke of the main contact (movable side). The electrodes are sequentially opened with a time difference of jl+j2. Therefore, by adjusting the difference in wipe length 25, jllj2 can be reduced to 1
ff can be set to 11 or more.

前述したように真空遮断器で遅れの小電流遮断すると、
電流遮断サージ、繰り返し再発弧サージ。
As mentioned above, when a vacuum circuit breaker interrupts a small current with a delay,
Current interruption surge, repeated re-ignition surge.

三相同時遮断サージ等特異なサージが発生する。Unique surges occur, such as three-phase simultaneous shutdown surges.

この中で最大のサージは三相同時遮断時である。Among these, the largest surge occurs when three phases are shut down simultaneously.

これは遮断第1相が再発弧した時に発生した高周波電流
が、他相の交流電流に重畳して、電流零点が形成され、
その零点で電流が消弧されるために発生する現象である
This is because the high-frequency current generated when the first phase of the cut-off restarts is superimposed on the alternating current of the other phases, forming a current zero point.
This phenomenon occurs because the current is extinguished at the zero point.

三相同時遮断発生時には、各相で消弧と放電(再発弧)
を繰り返し発生することが普通である。
When three-phase simultaneous shutdown occurs, arc extinction and discharge (re-ignition) in each phase
It is normal for this to occur repeatedly.

この時、単に発生サージの波頭値のみを制限しても再発
弧時の急峻なサージにより、機器の絶縁が破壊してしま
うことがある。このため、この急峻なサージの発生も抑
制する必要がある。
At this time, even if only the wavefront value of the generated surge is limited, the insulation of the equipment may be destroyed due to the steep surge upon re-ignition. Therefore, it is necessary to suppress the occurrence of this steep surge.

このような三相で繰り返し再発弧が発生する時間は、実
フィールドにおける調査結果によれば1ffIs以下で
ある。
According to research results in the actual field, the time it takes for repeated re-ignition to occur in such three phases is less than 1ffIs.

また、このように三相で再発弧が発生するのは、各相の
主接点ギャップ長が短く、発生した回復電圧に対し極間
耐圧が低いために発生する。
Further, the reason why re-ignition occurs in three phases is because the main contact gap length of each phase is short and the inter-electrode breakdown voltage is low with respect to the generated recovery voltage.

本実施例の真空遮断器では、真空遮断器のある相が開極
した時には、他相は、既に1ms以上前に開極している
か、1相が既に1旧以前に開極し残る1相が未だ接続し
ているかまたは未だ接続していないかの何れかになる。
In the vacuum circuit breaker of this embodiment, when a certain phase of the vacuum circuit breaker opens, the other phases have already opened 1 ms or more ago, or one phase has already opened before 1 and the remaining phase is either still connected or not yet connected.

第2図に示すように、T相が開極直後に電流遮断したと
する。T相ギャップ長は短いため、再発弧する。一方、
他相は既に1+s以上前に開極し、ギャップ間はアーク
で橋絡している。このアーク電流に再発弧電流が重畳し
天竜零点が形成されると、他相はその点で遮断する。こ
の結果、他相で見掛上大きな電流が裁断されたことにな
るため、非常に大きなサージが発生しようとする。しか
しながら、回路に設置されている非直線抵抗体26によ
り、発生したサージ電圧はその制限電圧に抑制される。
As shown in FIG. 2, it is assumed that the current is cut off immediately after the T phase is opened. Since the T-phase gap length is short, re-ignition occurs. on the other hand,
The other phase has already opened 1+s or more ago, and the gap is bridged by an arc. When a re-ignition current is superimposed on this arc current and a Tenryu zero point is formed, other phases are cut off at that point. As a result, an apparently large current is cut in the other phase, and a very large surge is likely to occur. However, the generated surge voltage is suppressed to the limited voltage by the non-linear resistor 26 installed in the circuit.

一方、他相では、T相よりlllls以上前に開極して
いるから、極間の耐電圧は充分この制限電圧より高い。
On the other hand, since the other phases open more than lllls before the T phase, the withstand voltage between the electrodes is sufficiently higher than this limit voltage.

したがって、この相か電流遮断し、制限電圧までのサー
ジ電圧が発生する間にこの相で再発弧は発生せず、急峻
なサージ発生はなくなる。
Therefore, the current in this phase is cut off, and while a surge voltage up to the limit voltage is generated, no re-ignition occurs in this phase, and no sharp surge occurs.

このことから、非直線抵抗体26の制限電圧を対地絶縁
を考慮した値まで上昇させることができる。
From this, the limited voltage of the nonlinear resistor 26 can be increased to a value that takes into account ground insulation.

結果として、非直線抵抗体26の寿命が長くなる。As a result, the life of the non-linear resistor 26 is extended.

なお、上述した実施例では、非直線抵抗体26を真空遮
断器の外部に設けたが、真空遮断器の内部に組込んでも
よく、また、負荷側の代りに電源側に設けてもよい。
In the above-described embodiment, the non-linear resistor 26 is provided outside the vacuum circuit breaker, but it may be incorporated inside the vacuum circuit breaker, or may be provided on the power supply side instead of the load side.

[発明の効果] 以上説明したように本発明によれば、大電流遮断が可能
で、かつサージ保護装置を必要とせず、過大な再発弧に
よる急峻波サージを抑制した真空遮断器を提供すること
ができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide a vacuum circuit breaker that is capable of interrupting large currents, does not require a surge protection device, and suppresses steep wave surges caused by excessive re-ignition. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1は本発明の一実施例の要部を一部切断して示す側面
図、第2図は本発明の一実施例の作用を示す説明図であ
る。 2・・・操作機構 4・・・真空バルブ 5・・・主リンク 6・・・主軸 7・・・スタッド 8・・・ワイプバネ 9・・・接続リンク 25・・・ワイプ長 26・・・非直線抵抗体 (8733)
The first is a partially cutaway side view showing a main part of an embodiment of the present invention, and the second is an explanatory view showing the operation of the embodiment of the present invention. 2...Operating mechanism 4...Vacuum valve 5...Main link 6...Main shaft 7...Stud 8...Wipe spring 9...Connection link 25...Wipe length 26...Non Linear resistor (8733)

Claims (1)

【特許請求の範囲】[Claims] 各相に真空バルブを設け、この各相の真空バルブを一括
して開閉する操作機構を備えた真空遮断器において、前
記各相の真空バルブの開極時を1ms以上異ならせると
ともに、前記真空バルブの可動側または固定側の少なく
とも一方に比直線抵抗体を接続したことを特徴とする真
空遮断器。
In a vacuum circuit breaker provided with a vacuum valve for each phase and equipped with an operation mechanism for opening and closing the vacuum valves of each phase at once, the opening times of the vacuum valves of each phase are made to differ by 1 ms or more, and the vacuum valve is A vacuum circuit breaker, characterized in that a specific linear resistor is connected to at least one of the movable side or the fixed side of the vacuum circuit breaker.
JP16547089A 1989-06-29 1989-06-29 Vacuum circuit breaker Pending JPH0334228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16547089A JPH0334228A (en) 1989-06-29 1989-06-29 Vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16547089A JPH0334228A (en) 1989-06-29 1989-06-29 Vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH0334228A true JPH0334228A (en) 1991-02-14

Family

ID=15813027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16547089A Pending JPH0334228A (en) 1989-06-29 1989-06-29 Vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH0334228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008152A (en) * 2013-01-09 2015-01-15 三菱電機株式会社 Vacuum circuit breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008152A (en) * 2013-01-09 2015-01-15 三菱電機株式会社 Vacuum circuit breaker

Similar Documents

Publication Publication Date Title
JP2892717B2 (en) Power switching controller
EP0117914B1 (en) Circuit breaker having a parallel resistor arrangement
EP0532045B1 (en) Electrical power supply system
JP3589061B2 (en) Vacuum switchgear and method for opening and closing vacuum switchgear
US7986061B2 (en) Electrical switching device
Bellei et al. Current-limiting inductors used in capacitor bank applications and their impact on fault current interruption
Chernoskutov et al. Analysis of SF6 Circuit Breakers Failures Related to Missing Current Zero-Part I
JPH0334228A (en) Vacuum circuit breaker
GB2221794A (en) Circuit breaker
JP3369228B2 (en) High-speed reclosable earthing switch
JP3337749B2 (en) High-speed reclosable earthing switch
CN211907314U (en) Circuit breaker with nonlinear opening and closing resistor
JP3369224B2 (en) High-speed reclosable earthing switch
JP3372055B2 (en) High-speed reclosable grounding device
RU2321129C2 (en) Distributing power network
Farag et al. Guidelines for the application of vacuum contactors
CN111489913A (en) Circuit breaker with nonlinear opening and closing resistor
RU1805527C (en) High-voltage switchgear installation
JPH03219513A (en) Vacuum-type circuit breaker
JPH02291621A (en) Method and equipment for changing over electric circuit
JPH0654417A (en) High-speed reclosing grounding device
JPH0620566A (en) High-speed reclosing grounding device
RU2037229C1 (en) Three-pole vacuum switch
JPH07105800A (en) High speed reclosing and grounding switch
JPH0636659A (en) High speed reclosing grounding device