JPH0636659A - High speed reclosing grounding device - Google Patents

High speed reclosing grounding device

Info

Publication number
JPH0636659A
JPH0636659A JP4186896A JP18689692A JPH0636659A JP H0636659 A JPH0636659 A JP H0636659A JP 4186896 A JP4186896 A JP 4186896A JP 18689692 A JP18689692 A JP 18689692A JP H0636659 A JPH0636659 A JP H0636659A
Authority
JP
Japan
Prior art keywords
phase
ground fault
transmission line
grounding switch
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4186896A
Other languages
Japanese (ja)
Inventor
Hisatoshi Ikeda
久利 池田
Ikuo Miwa
郁夫 三輪
Hitoshi Mizoguchi
均 溝口
Takashi Yokota
岳志 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4186896A priority Critical patent/JPH0636659A/en
Publication of JPH0636659A publication Critical patent/JPH0636659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Breakers (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

PURPOSE:To make interruption possible surely, even if a ground fault is followed by another one occurring in another phase as a grounding device in the phase of the fault is operated for opening contacts, of induced currents in the phase of the fault, thereby making possible subsequent reclosing of a switch at high speed. CONSTITUTION:While a first ground switch ES-A in the phase of a fault is being operated to open contacts, a following ground fault in another phase is detected at a transmission line fault detecting protection relay Ry and then a command of that detection is introduced into an operation control unit 10 in the operating phase. After a period of time set by a post-time working timer 10c has elapsed, a command to open contacts is sent to a second ground switch ES-B only if the command of detection is within the operation holding time of a time holding timer 6 and is ANDed with an alreadly input command to open contacts. At that point the following ground fault in the other phase has already been solved, so the induced current in the phase of the fault can be interrupted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力用高電圧送電線に
おいて、送電線路の碍子連アークホーン間に生じる逆フ
ラッシオーバー(逆閃絡)によって1線地絡事故が発生
した場合、その送電線路を高速で再閉路するために使用
される高速再閉路接地装置に関するもので、特に、前記
地絡事故が発生した相と同一回線の他相にて前記地絡事
故と時差を持って後追い地絡事故が発生する場合でも、
遮断器の再閉路による再送電を可能にする高速再閉路接
地装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-voltage power transmission line for electric power, and when a one-line ground fault occurs due to a reverse flashover (reverse flashover) that occurs between insulator-lined arc horns of the transmission line, the transmission of the power is performed. The present invention relates to a high-speed reclosing grounding device used for reclosing a line at a high speed, and particularly to a follow-up ground with a time difference from the ground fault accident in another phase of the same line as the phase in which the ground fault accident occurs. Even if a accident occurs,
The present invention relates to a high-speed reclosing grounding device that enables re-power transmission by reclosing a circuit breaker.

【0002】[0002]

【従来の技術】送電線に雷が落ちると、送電線に吊られ
た碍子連のアークホーンに逆フラッシオーバーが発生す
る。送電線に生じる事故の大半は、この逆フラッシオー
バーを原因とする1線地絡事故である。地絡事故による
故障を解消するためには、故障区間を無電圧として、事
故原因である逆フラッシオーバーを消弧してしまえば良
い。具体的には、故障を起こした送電線の両端にある送
電線路用の遮断器に再閉路動作を行わせることが有効で
ある。再閉路動作とは、一旦開極して、故障区間を無電
圧とし、逆フラッシオーバーを消弧した後、再度投入す
ることである。この様な再閉路動作を行うことにより、
停電に至ることなく、再送電を行うことができる。再閉
路の代表的な方式としては単相再閉路方式がある。この
単相再閉路方式は、電力の変動が少なく、過渡安定度に
優れているため広く使われている。
2. Description of the Related Art When lightning strikes a power transmission line, a reverse flashover occurs in an arc horn of a series of insulators suspended on the power transmission line. Most of the accidents that occur on power lines are single-line ground faults caused by this reverse flashover. In order to eliminate the failure due to the ground fault, it is sufficient to set the failure section to no voltage and extinguish the reverse flashover that is the cause of the accident. Specifically, it is effective to cause the circuit breakers at both ends of the failed transmission line to perform the reclosing operation. The reclosing operation is to open the contact once, make the faulty section have no voltage, extinguish the reverse flashover, and then turn it on again. By performing such reclosing operation,
Power can be retransmitted without a power failure. A typical method of reclosing is a single-phase reclosing method. This single-phase reclosing method is widely used because it has little fluctuation in power and excellent transient stability.

【0003】ところが、近年では電力需要の増大に伴っ
て、高電圧送電線として1100kVなどUHV系送電
線が用いられている。このUHV系送電線にて単相再閉
路を行う場合には、従来の500kV系統の場合に比較
して、同一回線の他相や併架された他回線から受ける静
電電磁誘導が大きい。このような他相からの静電電磁誘
導が大きいと、碍子連アークホーンの逆フラッシオーバ
ーが発生した時、たとえ故障区間両端の遮断器を開極状
態にしたにせよ、逆フラッシオーバーを消弧することが
難しくなる。そこで、UHV系のような高電圧送電線で
は、逆フラッシオーバーを消弧するために、高電圧送電
線の1線地絡相に接地開閉器が設置されている。すなわ
ち、事故発生箇所をその両端の遮断器によって送電線路
から切り離した後、この接地開閉器を遮断器の開閉動作
と協調して高速投入することにより、碍子連アークホー
ンに持続する電磁誘導電流アークを消弧し、且つ即座に
開極動作を行って誘導電流を遮断して、遮断器の再閉路
による再送電を可能にしている。
However, in recent years, UHV system power transmission lines such as 1100 kV have been used as high voltage power transmission lines with the increase in power demand. When a single-phase reclose is performed in this UHV transmission line, electrostatic electromagnetic induction received from another phase of the same line or another line connected together is larger than in the case of the conventional 500 kV system. When the electrostatic induction from the other phase is large, when reverse flashover of the insulator arc horn occurs, even if the circuit breakers at both ends of the fault section are opened, the reverse flashover is extinguished. Becomes difficult to do. Therefore, in a high-voltage power transmission line such as a UHV system, a ground switch is installed in the one-line ground fault phase of the high-voltage power transmission line in order to extinguish the reverse flashover. That is, after disconnecting the location of the accident from the power transmission line by the circuit breakers at both ends, by turning on this grounding switch at high speed in cooperation with the switching operation of the circuit breaker, the electromagnetic induction current arc that continues in the insulator arc horn. Arc is extinguished, and the opening operation is immediately performed to interrupt the induced current, enabling re-power transmission by reclosing the circuit breaker.

【0004】以下、この接地開閉器を採用した保護シス
テムを、図面を参照して具体的に説明する。図5はこの
システムの構成を示す説明図である。図において、1は
ブッシング、3はUHV系の鉄塔である。2は高電圧用
の送電線であり、上相、中相、下相の3線を有し、ブッ
シング1と鉄塔3又は鉄塔3同士の間に張り渡されてい
る。各鉄塔3にはアークホーン3aを備えた碍子連3b
が設けられ、この碍子連3bによって送電線2が鉄塔3
に吊り下げられている。送電線2の一定区間の両端に
は、遮断器GCBと接地開閉器ESが設けられている。
なお、4は雷雲、5は雷である。このシステムにおい
て、3線の送電線2のある1線に雷雲4から雷5が落ち
ると、その送電線2を吊り下げている碍子連3bのアー
クホーン3aに逆フラッシオーバー3cが発生し、送電
線2からこの逆フラッシオーバー3cを介して鉄塔3へ
地絡事故電流が流れ、地絡事故が生じる。
A protection system employing this grounding switch will be specifically described below with reference to the drawings. FIG. 5 is an explanatory diagram showing the configuration of this system. In the figure, 1 is a bushing and 3 is a UHV type steel tower. A high-voltage power transmission line 2 has three lines of an upper phase, a middle phase, and a lower phase, and is stretched between the bushing 1 and the steel tower 3 or between the steel towers 3. Each steel tower 3 has an arc horn 3a and an insulator string 3b.
Is provided, and the power transmission line 2 is connected to the steel tower 3 by this insulator string 3b.
It is hung on. A circuit breaker GCB and a ground switch ES are provided at both ends of a certain section of the power transmission line 2.
Note that 4 is a thundercloud and 5 is a thundercloud. In this system, when a thunder cloud 4 strikes one line with a three-line power transmission line 2, a reverse flashover 3c occurs in the arc horn 3a of the insulator string 3b that suspends the power transmission line 2, and A ground fault accident current flows from the electric wire 2 to the steel tower 3 through the reverse flashover 3c, and a ground fault accident occurs.

【0005】この逆フラッシオーバー3cにより1線地
絡事故が起きた場合の遮断器GCB及び接地開閉器ES
の動作順序を、図6の動作シーケンス図に沿って説明す
る。すなわち、地絡事故発生前は、遮断器GCBは投入
状態、接地開閉器ESは開極状態である。送電線2に地
絡事故が発生すると、送電線事故検出保護リレー時間で
あるT1時間経過後、まず遮断器GCBが開極動作を行
う。しかし、事故送電線2には、他相からの静電電磁誘
導により誘導電流が流れ、それによってアークホーン3
a間には依然として逆フラッシオーバー3cが持続して
いる。そこで、遮断器GCBが開極した状態で、接地開
閉器ESを強制的に高速で投入動作を行い、アークホー
ン3a部分で接地されている誘導電流を接地開閉器ES
側に導くことにより、アークホーン3aの逆フラッシオ
ーバーを消弧する。接地開閉器は、θ時間投入状態を続
けて逆フラッシオーバーを消弧した後、開極状態に戻っ
て誘導電流を遮断し、最後に遮断器が投入動作を行い送
電を再開する。
A circuit breaker GCB and a grounding switch ES when a one-line ground fault occurs due to the reverse flashover 3c
The operation sequence of will be described with reference to the operation sequence diagram of FIG. That is, before the occurrence of the ground fault accident, the circuit breaker GCB is in the closed state and the ground switch ES is in the open state. When a ground fault occurs on the power transmission line 2, the circuit breaker GCB first performs an opening operation after a lapse of T1 time, which is the time for transmission line accident detection protection relay. However, an induced current flows in the accident power transmission line 2 due to electrostatic electromagnetic induction from another phase, which causes the arc horn 3
The reverse flashover 3c still continues between a and a. Therefore, with the circuit breaker GCB open, the grounding switch ES is forcibly turned on at high speed, and the induced current grounded in the arc horn 3a is grounded.
By guiding it to the side, the reverse flashover of the arc horn 3a is extinguished. The grounding switch continues to be turned on for θ hours to extinguish the reverse flashover, then returns to the open state to shut off the induced current, and finally the circuit breaker makes a closing operation to resume power transmission.

【0006】続いて、図7を参照して、地絡事故電流及
び接地開閉器ESに流れる電流について説明する。前記
の通り、送電線2は上相、中相、下相を有しており、各
相には所定の負荷電流が流れているが、前記の地絡事故
が送電線2の中相にて発生したと仮定する。送電線2の
中相において、図中T01が地絡事故発生時、T02が
遮断器GCBの開極動作開始時で、送電線2の中相にT
01〜T02間だけ事故電流が流れている。ところが、
送電線2の中相は他の健全相である上相及び下相や、併
架された他の回線から静電電磁誘導を受けるため、遮断
器が開極した状態では、そのアークホーンには誘導電流
に起因する逆フラッシオーバーが依然として生じている
ため、逆フラッシオーバーの消弧のために接地開閉器を
投入する。すると、接地開閉器には、図7に示すよう
に、その投入時点T03以降、最初は直流成分の含まれ
た地絡事故電流と電磁誘導電流とが重畳され電流零点よ
りも変移した電流が流れ、その後地絡事故電流が接地さ
れるにつれて電磁誘導電流成分が多くなり、電流零点を
通る交流電流が流れることになる。そこで、接地開閉器
によって、この誘導電流を遮断する場合には、電流零点
になるタイミングを捕らえて開極動作を行う。
Next, the ground fault current and the current flowing through the ground switch ES will be described with reference to FIG. As described above, the power transmission line 2 has an upper phase, a middle phase, and a lower phase, and a predetermined load current flows in each phase, but the ground fault occurs in the middle phase of the power transmission line 2. Suppose it has occurred. In the middle phase of the power transmission line 2, T01 in the figure is a ground fault, T02 is the opening operation of the circuit breaker GCB, and the middle phase of the power transmission line 2 is T.
The fault current flows only between 01 and T02. However,
Since the middle phase of the power transmission line 2 receives electrostatic electromagnetic induction from other healthy phases such as the upper phase and the lower phase, and other lines that are connected in parallel, the arc horn is not connected to the arc horn when the circuit breaker is open. Since the reverse flashover due to the induced current is still occurring, the ground switch is turned on to extinguish the reverse flashover. Then, in the grounding switch, as shown in FIG. 7, after the turning-on time T03, the ground fault fault current and the electromagnetic induction current, which include the DC component, are initially superimposed, and a current displaced from the current zero point flows. After that, as the ground fault accident current is grounded, the electromagnetic induction current component increases, and an alternating current passing through the current zero point flows. Therefore, when the induced current is cut off by the grounding switch, the opening operation is performed by catching the timing when the current becomes zero.

【0007】しかし、このような電磁誘導電流は、図8
に示すように、2000Aにも達するものであり、その
電流遮断時には、図9に示すように、電気回路の過渡現
象分と故障送電線が他線から受ける静電誘導電圧が重畳
した過渡回復電圧とが印加される。このような比較的大
きな電流と、比較的大きな上昇率及び高い波高値の過渡
回復電圧条件の遮断は、単にSF6 ガス中で棒状の接触
子を開閉するだけの並切り形の接地開閉器では遮断する
ことができず、遮断器と同様にパッファ形の消弧室を有
する接地開閉器が必要となる。
However, such an electromagnetically induced current is generated in FIG.
As shown in Fig. 9, when the current is cut off, as shown in Fig. 9, the transient recovery voltage in which the transient phenomenon component of the electric circuit and the electrostatic induction voltage received by the faulty transmission line from another line are superposed. And are applied. Such a relatively large current, a relatively large rise rate, and a high peak value of transient recovery voltage conditions are interrupted by a parallel-type grounding switch that simply opens and closes a rod-shaped contact in SF6 gas. Therefore, a grounding switch having a puffer-shaped arc-extinguishing chamber as well as a circuit breaker is required.

【0008】図10は、前記のような接地開閉器として
従来から知られている装置の具体的構成を示すものであ
る。この接地開閉器は、絶縁ガスを充填した接地タンク
19内に収納されており、タンク19の中心部に送電線
側に接続された導体11が設けられ、その一部に固定電
極12が設けられている。タンク19における固定電極
12に対向した部分には、可動電極13が固定電極12
に向かって接離可能に支持されている。この固定電極1
2は、その基部において、図示しない操作装置に連結さ
れいる。可動電極13の先端側には、可動電極13と同
心円状に消弧ガス案内用のノズル14が設けられてい
る。このノズル14は、可動電極13の外周に同心円状
に配置されたパッファシリンダ18の先端に固定されて
いる。このパッファシリンダ18の基部が可動電極13
の操作装置に連結され、可動電極13と共に固定電極側
に向かって往復動する。可動電極13とパッファシリン
ダ18との間の空間がパッファ室16になっており、そ
の先端側は前記ノズル14の連通している。パッファ室
16の基端側(ノズル14と反対側)には、固定された
パッファピストン17が設けられている。このパッファ
ピストン17は、可動電極13及びパッファシリンダ1
8の対してスライド自在に組み込まれている。
FIG. 10 shows a concrete structure of an apparatus conventionally known as the grounding switch as described above. This grounding switch is housed in a grounding tank 19 filled with insulating gas, a conductor 11 connected to the power transmission line side is provided at the center of the tank 19, and a fixed electrode 12 is provided at a part of the conductor 11. ing. In the portion of the tank 19 facing the fixed electrode 12, the movable electrode 13 is
It is supported so that it can approach and separate toward. This fixed electrode 1
2 is connected at its base to an operating device (not shown). A nozzle 14 for guiding the arc-extinguishing gas is provided concentrically with the movable electrode 13 on the tip side of the movable electrode 13. The nozzle 14 is fixed to the tip of a puffer cylinder 18 arranged concentrically on the outer periphery of the movable electrode 13. The base of the puffer cylinder 18 is the movable electrode 13.
And is reciprocated together with the movable electrode 13 toward the fixed electrode side. A space between the movable electrode 13 and the puffer cylinder 18 is a puffer chamber 16, and the tip end side thereof communicates with the nozzle 14. A fixed puffer piston 17 is provided on the base end side of the puffer chamber 16 (on the side opposite to the nozzle 14). The puffer piston 17 includes the movable electrode 13 and the puffer cylinder 1.
It is installed slidably with respect to 8.

【0009】このような構成を有する従来の接地開閉器
を、図10のような開極状態とする場合には、図示しな
い操作装置を駆動して、可動電極13及びパッファシリ
ンダ18をタンク19側(図中下方)に移動させ、固定
電極12と可動電極13とを開離させる。すると、移動
するパッファシリンダ18と固定されているパッファピ
ストン17との間のパッファ室16の容積が縮小し、パ
ッファ室16内部の絶縁ガスが消弧ガス21となってノ
ズル14から吹き出され、固定電極12と可動電極13
との間のアークを消弧する。この場合の可動電極13の
ストローク20とパッファ室16内のパッファ圧力ΔP
との関係を示すと、図11の通りである。すなわち、可
動電極13の開極ストロークのほぼ1/2の行程におい
てパッファ圧力は最大値に達し、開極完了に伴い圧力は
低下している。
When the conventional grounding switch having such a structure is brought into an open state as shown in FIG. 10, an operating device (not shown) is driven to move the movable electrode 13 and the puffer cylinder 18 to the tank 19 side. (Moved downward in the figure) to separate the fixed electrode 12 and the movable electrode 13. Then, the volume of the puffer chamber 16 between the moving puffer cylinder 18 and the fixed puffer piston 17 is reduced, and the insulating gas inside the puffer chamber 16 becomes the arc extinguishing gas 21 and is blown out from the nozzle 14 to be fixed. Electrode 12 and movable electrode 13
Extinguish the arc between and. In this case, the stroke 20 of the movable electrode 13 and the puffer pressure ΔP in the puffer chamber 16
The relationship between and is as shown in FIG. That is, the puffer pressure reaches the maximum value in the stroke approximately 1/2 of the opening stroke of the movable electrode 13, and the pressure decreases as the opening is completed.

【0010】[0010]

【発明が解決しようとする課題】ところで、前記のよう
な接地開閉器による電流遮断時において、送電線の隣接
する他の相、例えば図7の上相で時間T04において、
直流電流成分が多い後追い故障が発生すると、中相の送
電線には、上相の事故電流による電磁誘導で生じた直流
電流成分の多い誘導電流が流れ、図7のA部分に示すよ
うに、中相の接地開閉器には電流零点を形成しない零ミ
ス電流が流れることになる。この零ミス電流を遮断する
ことは、通常の交流電流の零点遮断に比較すると格段に
困難であり、従来の接地開閉器の能力を超えたものであ
る。その結果、後追い故障の発生タイミングがちょうど
中相の接地開閉器の開極タイミングと重なり、合せて後
追い故障電流分に直流電流分が多く含まれている場合に
は、再閉路が実現されず、高電圧の電力送電に対し由々
しい問題が発生することになる。
By the way, at the time of current interruption by the grounding switch as described above, at another phase adjacent to the transmission line, for example, the upper phase of FIG. 7, at time T04,
When a follow-up failure with a large amount of direct current component occurs, an induction current with a large amount of direct current component generated by electromagnetic induction due to an upper phase fault current flows through the middle-phase transmission line, and as shown in part A of FIG. A zero-miss current that does not form a current zero flows in the middle-phase grounding switch. It is much more difficult to cut off this zero-miss current than to cut off the zero point of a normal AC current, which exceeds the capability of the conventional grounding switch. As a result, the timing of occurrence of the follow-up failure exactly coincides with the opening timing of the grounding switch of the middle phase, and when the follow-up failure current content includes a large amount of direct current, reclosing is not realized, There will be serious problems with high voltage power transmission.

【0011】この点を、図10の接地開閉器の動作に従
って具体的に述べると、次の通りである。まず、図10
の装置では、可動側接触子13が開極動作を止めるまで
の間、パッファシリンダ18内の絶縁性消弧ガスを固定
側と可動側の両接触子12,13間に発生しているアー
クに吹き付けることにより、アークの消弧と電流遮断及
び電流後の耐極間電圧責務を処理している。ところが、
前記接地開閉器に求められる開極時の過渡回復電圧性能
を考えると、図9の波形に示すように商用周波の1/2
のサイクルで過渡回復電圧ピークを得るため、開極スピ
ードは遮断器並の速度が必要となり、前記図11の開極
開始からストロークエンドに達するまでの時間tが短
く、ΔPが一定値以上にある実質のガス流れ吹き付け時
間は2サイクル程度が限界である。
This point will be concretely described according to the operation of the grounding switch shown in FIG. First, FIG.
In the above device, the insulating arc-extinguishing gas in the puffer cylinder 18 is generated in the arc generated between the fixed-side and movable-side contacts 12 and 13 until the movable-side contact 13 stops the opening operation. By spraying, the arc extinguishing and current interruption, and the post-current withstand voltage resistance are handled. However,
Considering the transient recovery voltage performance required for the grounding switch at the time of opening, as shown in the waveform of FIG.
In order to obtain the transient recovery voltage peak in the cycle of, the opening speed needs to be as fast as that of a circuit breaker, the time t from the opening start to the stroke end in FIG. 11 is short, and ΔP is a certain value or more. The actual gas flow blowing time is limited to about 2 cycles.

【0012】一方、接地開閉器開極動作直後で、まだ接
地開閉器が電流遮断を完了する前に前述のように隣接相
で後追い故障が発生すると、図7のA部に示すような電
流零点を形成しない零ミス誘導電流(約数千A)が4サ
イクル程度(時間にして80〜100ミリ秒程度)流れ
る条件が発生する。この場合、交流電流の消弧メカニズ
ム上、電流零点を形成しないアークの消弧が難しいこと
から、このタイミングで後追い故障誘導電流を受けた接
地開閉器はストローク終端まで開極動作を終了しても極
間にアークを形成し続けることになる。そして、その
後、電流零点が復帰したアーク電流となっても、2サイ
クル程度であるパッファ室からのガス流の吹き付け時間
はすでに経過しているため、消弧不能状態のままとな
る。
On the other hand, immediately after the opening operation of the grounding switch, if a trailing failure occurs in the adjacent phase as described above before the grounding switch completes the current interruption, the current zero point as shown in part A of FIG. A condition occurs in which a zero-miss induction current (about several thousand A) that does not form a current flows for about 4 cycles (about 80 to 100 milliseconds in terms of time). In this case, it is difficult to extinguish the arc that does not form a current zero point due to the mechanism of extinguishing the alternating current.Therefore, even if the grounding switch that receives the follow-up failure induction current at this timing completes the opening operation until the stroke end. The arc will continue to form between the poles. Then, even after that, even if the arc current returns to the zero current point, the blowing time of the gas flow from the puffer chamber, which is about two cycles, has already passed, and therefore the arc extinguishing state remains.

【0013】本発明は以上のような従来技術の有する問
題点を解消するために提案されたもので、その目的とす
るところは、1線地絡事故発生後に他相で後追い地絡事
故が発生しそれが前記事故発生相の接地装置の開極途中
であっても、前記事故発生相における誘導電流の遮断を
確実に行うことができ、その後の遮断器の高速再閉路を
可能とした高速再閉路接地装置を提供することにある。
The present invention has been proposed in order to solve the problems of the prior art as described above. The purpose of the present invention is to generate a follow-up ground fault accident in another phase after a one-line ground fault accident occurs. However, even if it is in the middle of opening the grounding device of the accident occurrence phase, the induced current can be surely interrupted in the accident occurrence phase, and the high-speed reclosing that enables the high-speed reclosing of the circuit breaker thereafter. It is to provide a closed circuit grounding device.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、遮断器を結ぶ高電圧送電線の1線地絡相
に設置されており、前記送電線に設けられた碍子連のア
ークホーンにおける逆フラッシオーバーによる1線地絡
事故に対して、前記送電線の両端にある遮断器を開極し
た状態で高速で投入動作を行い、前記逆フラッシオーバ
ーの消弧後に開極動作を行う接地開閉器を備えた高速再
閉路接地装置において、前記送電線の1線地絡相に、常
時は開で、地絡事故時にはその高速再閉路の一連の動作
の一つとして投入及び開極動作を行う第1の接地開閉器
と、この第1の接地開閉器に対して直列に接続された常
時は閉の第2の接地開閉器を設け、各層の送電線には、
前記地絡事故が発生した相と同一回線の他相にて前記地
絡事故と時差を持って後追い地絡事故が発生したことを
検知する送電線事故検出保護リレーを接続し、前記高速
再閉路の一連の動作のうち第1の開閉器による最後の開
極指令から一定の時間内に、前記送電線事故検出保護リ
レーが前記後追い地絡事故を検出した際には、他相にお
ける地絡事故が除去される時間の経過後に開極動作を行
うように、第2の接地開閉器に開極指令を発する制御ユ
ニットを設けたことを特徴とする。
In order to achieve the above object, the present invention is installed in a one-wire ground fault phase of a high-voltage transmission line connecting a circuit breaker, and an insulator string provided in the transmission line. For a one-line ground fault due to reverse flashover in the arc horn, the closing operation is performed at high speed with the circuit breakers at both ends of the transmission line opened, and the opening operation is performed after the reverse flashover is extinguished. In a high-speed reclosing grounding device having a grounding switch for performing the above-mentioned operation, the one-line ground fault phase of the power transmission line is normally open, and is opened and closed as one of a series of operations of the high-speed reclosing in case of a ground fault. A first grounding switch that performs a pole operation and a normally-closed second grounding switch that is connected in series to the first grounding switch are provided, and the power transmission line of each layer includes:
Connect a transmission line accident detection protection relay that detects the occurrence of a follow-up ground fault accident with a time difference from the ground fault accident in the same phase as the phase in which the ground fault accident occurred, and connects the high-speed reclosing circuit. When the transmission line accident detection and protection relay detects the follow-up ground fault accident within a fixed time from the last opening command by the first switch in the series of operations, the ground fault accident in another phase Is provided with a control unit for issuing an opening command to the second grounding switch so that the opening operation is performed after a lapse of time.

【0015】[0015]

【作用】以上のような構成を有する本発明においては、
地絡事故発生相の第1の接地開閉器に開極指令を出した
時点から一定の時差内に、静電電磁誘導の影響が大きい
同一回線の他相にて後追い地絡事故が発生し、第1の接
地開閉器では電流の遮断が不可能となる可能性がある場
合には、その後追い故障発生相の地絡故障検出保護リレ
ーが地絡検出信号を発する。この検出信号から一定の時
間経過後、他相の後追い故障が解消され零点ミス電流が
消滅したタイミングを見図らって、第2の接地開閉器に
対して開極指令を発し、この第2の接地開閉器によって
地絡事故発生相の誘導電流をその電流零点にて遮断す
る。
In the present invention having the above construction,
Within a certain time difference from when the opening command was issued to the first earthing switch of the ground fault accident phase, a follow-up ground fault accident occurred in another phase of the same line where the influence of electrostatic electromagnetic induction was large, When there is a possibility that the current cannot be cut off by the first ground switch, the ground fault detection protection relay of the trailing fault occurrence phase thereafter issues a ground fault detection signal. After a lapse of a certain time from this detection signal, the opening command is issued to the second grounding switch in consideration of the timing at which the trailing failure of the other phase is eliminated and the zero point miss current disappears, and the second grounding switch is issued. The ground switch breaks off the induced current in the phase where the ground fault occurred at its current zero point.

【0016】[0016]

【実施例】以下、本発明による高速再閉路接地装置の一
実施例を図1から図4を参照して具体的に説明する。な
お、図5に示した従来技術と同一の部分に関しては同一
符号を付し、説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the high speed reclosed grounding device according to the present invention will be specifically described below with reference to FIGS. The same parts as those of the conventional technique shown in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted.

【0017】(1)実施例の構成 図1は本実施例を含むシステムの構成図である。この図
1に示すように、同一回線を構成する各相の送電線2の
両端には、従来技術と同様に遮断器GCBが設けられ、
この遮断器GCBに近接して、直列に接続された第1と
第2の接地開閉器ES−A,Bが設けられている。この
第1と第2の接地開閉器は、同等の性能を有するもので
ある。第1の接地開閉器ES−Aは、常時は開で、地絡
事故時にはその高速再閉路の一連の動作の一つとして投
入及び開極動作を行う。第2の接地開閉器HSW−B
は、第1の接地開閉器に対して直列に接続され、常時は
閉になっている。
(1) Configuration of Embodiment FIG. 1 is a configuration diagram of a system including this embodiment. As shown in FIG. 1, a circuit breaker GCB is provided at both ends of the power transmission line 2 of each phase forming the same line, as in the prior art.
First and second grounding switches ES-A and B connected in series are provided near the breaker GCB. The first and second grounding switches have the same performance. The first grounding switch ES-A is normally open, and performs a closing operation and an opening operation as one of a series of operations of the high speed reclosing in the event of a ground fault. Second ground switch HSW-B
Is connected in series to the first grounding switch and is normally closed.

【0018】この場合、本実施例では、第1と第2の接
地開閉器を、図2に示すように、異なる開閉器51,5
2を2個直列に構成するが、複数の接地開閉器を一つの
タンク内に収納した多点切りの開閉器によって構成する
こともできる。すなわち、図2において、51は高速再
閉路時に投入開極を行う第1の接地開閉器、52はこれ
に直列接続された常時閉の第2の接地開閉器である。こ
のうち、第2の接地開閉器52は、接地端子53と第1
の接地開閉器51に対する接続端子54とを備え、第1
の接地開閉器51は、第2の接地開閉器52と送電線に
接続される接続端子55,56を備えている。これらの
端子は、図のような碍子や絶縁スペ―サのような高電圧
に対する絶縁性能を有する部材によって構成されてい
る。
In this case, in this embodiment, the first and second ground switches are different from each other as shown in FIG.
Although two 2 are configured in series, it is also possible to configure a multi-point switch that accommodates a plurality of ground switches in one tank. That is, in FIG. 2, reference numeral 51 is a first grounding switch that performs closing and opening during high-speed reclosing, and 52 is a normally-closed second grounding switch connected in series. Of these, the second ground switch 52 includes the ground terminal 53 and the first ground switch 53.
And a connection terminal 54 for the grounding switch 51 of
The grounding switch 51 includes a second grounding switch 52 and connection terminals 55 and 56 connected to the power transmission line. These terminals are made of a member having an insulating performance against a high voltage, such as an insulator or an insulating spacer as shown in the figure.

【0019】各相の接地開閉器ES−A,Bは、それぞ
れその動作制御ユニット10に接続され、このユニット
10からの投入指令及び開極指令に基づいて開閉し、ア
ークホーン3aに生じる逆フラッシオーバー3cの消弧
及び誘導電流の遮断を行う。この接地開閉器の動作制御
ユニット10は、各相の地絡事故検出用の送電線事故検
出保護リレーRyに接続されている。この保護リレーR
yは、それが設けられた相の地絡事故を検出し、その検
出信号を前記動作制御ユニット10に送出するものであ
る。この地絡事故の検出手段としては、従来公知の検出
手段を適宜使用できるが、本実施例では、各相の遮断器
GCBに近接して変流器CTを設け、この変流器CTに
よって送電線2の電流を監視することにより地絡事故を
検出する。
The earthing switches ES-A and B of each phase are connected to the operation control unit 10, respectively, and are opened and closed based on a closing command and an opening command from the unit 10, and a reverse flash occurs in the arc horn 3a. The over 3c is extinguished and the induced current is cut off. The operation control unit 10 of the ground switch is connected to the transmission line accident detection protection relay Ry for detecting the ground fault of each phase. This protection relay R
y detects the ground fault of the phase in which it is provided and sends the detection signal to the operation control unit 10. As the ground fault accident detecting means, conventionally known detecting means can be appropriately used, but in the present embodiment, a current transformer CT is provided in the vicinity of the breaker GCB of each phase, and the current transformer CT sends the current. A ground fault is detected by monitoring the electric current of the electric wire 2.

【0020】動作制御ユニット10の構成は、図3に拡
大して示す通りである。この動作制御ユニット10は、
地絡事故発生相の接地開閉器ESの開極指令の入力部1
0aと、同一回線の他相の保護リレーRyから入力され
た後追い地絡事故検出信号の検出部10bとを備えてい
る。このうち開極指令の入力部10aの出力側の一端
は、直接第1の接地開閉器の開極指令出力部9Aに接続
され、動作制御ユニット10外部の第1の接地開閉器E
S−Aに接続されている。
The structure of the operation control unit 10 is as shown enlarged in FIG. This operation control unit 10 is
Input part 1 of the opening command of the earthing switch ES in the phase where the ground fault occurs
0a and a detection unit 10b for a rear-following ground fault detection signal input from a protection relay Ry of the other phase of the same line. Of these, one end on the output side of the opening command input section 10a is directly connected to the opening command output section 9A of the first grounding switch, and the first grounding switch E outside the operation control unit 10 is connected.
It is connected to S-A.

【0021】一方、後追い地絡事故検出信号の検出部1
0bは、一例としてその動作保持時間を1〜5サイクル
の間で可変とした時限保持タイマー6に接続され、この
時限保持タイマー6と前記開極指令の入力部10aとが
アンド回路7に接続されている。アンド回路7の出力側
は、第2の接地開閉器に対する開極指令出力部9Bに接
続され、この第2の接地開閉器の開極指令出力部9B
は、一例としてその時限後動作時間を1サイクルから1
秒の間で可変とした時限後動作タイマー10cを介し
て、動作制御ユニット10外部の第2の接地開閉器ES
−Bに接続されている。
On the other hand, the detection unit 1 of the rear follow-up ground fault accident detection signal
0b is, for example, connected to a time hold timer 6 whose operation hold time is variable between 1 and 5 cycles, and the time hold timer 6 and the opening command input section 10a are connected to an AND circuit 7. ing. The output side of the AND circuit 7 is connected to the opening command output unit 9B for the second grounding switch, and the opening command output unit 9B for the second grounding switch is connected.
Is, as an example, the operation time after the time period from 1 cycle to 1
A second grounding switch ES outside the operation control unit 10 is provided via a post-timer operation timer 10c that is variable between seconds.
-Connected to B.

【0022】(2)実施例の作用 前記のような構成を有する本実施例では、地絡事故のな
い通常の送電時には、送電線区間両端の遮断器GCBは
投入状態、常時開の第1の接地開閉器ES−Aは開極状
態、常時閉の第2の接地開閉器ES−Bは投入状態にあ
る。
(2) Operation of the embodiment In the present embodiment having the above-mentioned structure, during normal power transmission without a ground fault, the circuit breakers GCB at both ends of the power transmission line section are in the closed state and the first normally open state. The grounding switch ES-A is in the open state, and the normally closed second grounding switch ES-B is in the closed state.

【0023】その状態で、図4に示すように、ある相で
1線地絡事故が発生すると、その相の送電線2では、事
故発生後所定の時間で遮断器GCBが開極し、電流を遮
断する。その後一定のタイミングで、第1の接地開閉器
ES−Aが投入され、アークホーン3aの逆フラッシオ
ーバー3cを消弧する。投入された接地開閉器ES−A
には、一定の時間(約1秒)経過後に開極指令が出され
る。この開極指令は、動作制御ユニット10にその入力
部10aから入力され、第1の接地開閉器の開極指令出
力部9Aから第1の接地開閉器ES−Aに出力されてそ
の開極動作を開始させると同時に、時限保持タイマー6
に対して動作保持時間のカウント開始の指令を与える。
この状態で、特に他相で後追い地絡が発生しなければ、
第1の接地開閉器ES−Aの開極は成功し、誘導電流の
遮断が行われ、引き続いて遮断器GCBが投入されて送
電線の再閉路がなされる。
In that state, as shown in FIG. 4, when a one-line ground fault occurs in a certain phase, in the transmission line 2 of that phase, the circuit breaker GCB is opened at a predetermined time after the occurrence of the accident, and the current flows. Shut off. After that, at a constant timing, the first grounding switch ES-A is turned on to extinguish the reverse flashover 3c of the arc horn 3a. Turned on ground switch ES-A
A contact opening command is issued after a certain time (about 1 second). This opening command is input to the operation control unit 10 from its input section 10a, and is output from the opening command output section 9A of the first grounding switch to the first grounding switch ES-A to perform its opening operation. At the same time as starting the time hold timer 6
A command to start counting the operation holding time is given to.
In this state, especially if there is no back-up ground fault in another phase,
The opening of the first grounding switch ES-A is successful, the induced current is interrupted, the circuit breaker GCB is subsequently closed, and the transmission line is closed again.

【0024】ところが、開極途中において第1の接地開
閉器ES−Aの動作相以外の相で後追い地絡事故が発生
すると、その影響で零点ミス電流が発生し、前記のよう
な開極動作では誘導電流の遮断は不可能になる恐れがあ
る。そこで、本実施例では、他相の後追い地絡事故を送
電線事故検出保護リレーRyにてを検出すると、その他
相の地絡事故検出指令が、既に動作している相の動作制
御ユニット10に導かれる。この他相地絡事故検出指令
が、第1の接地開閉器ES−Aの開極直後、すなわち前
記時限保持タイマー6の動作保持時間(一般には30〜
50ミリ秒程度)内に入った場合、時限保持タイマー6
を介してこの他相地絡事故検出指令がアンド回路7に入
力される。
However, if a back-up ground fault occurs in a phase other than the operating phase of the first grounding switch ES-A during the opening, a zero-point miss current is generated due to the influence, and the opening operation as described above is performed. Then, there is a risk that it will be impossible to cut off the induced current. Therefore, in this embodiment, when a trailing ground fault accident of another phase is detected by the transmission line accident detection protection relay Ry, a ground fault accident detection command of the other phase is sent to the operation control unit 10 of the already operating phase. Be guided. This other-phase ground fault accident detection command is issued immediately after the opening of the first grounding switch ES-A, that is, the operation holding time of the time holding timer 6 (generally 30 to
If it enters within 50 milliseconds), the time hold timer 6
The other-phase ground fault detection command is input to the AND circuit 7 via.

【0025】そして、この他相地絡事故検出指令と、既
に動作制御ユニット10に入力されている第1の接地開
閉器ES−Aに対する開極指令とのアンド条件が成立す
る場合のみ、アンド回路7から第2の接地開閉器ES−
Bに対する開極指令が出される。この開極指令は、時限
後動作タイマー10cに対するカウント開始指令とな
り、この時限後動作タイマー10cによるカウント時間
経過後(後追い事故発生から50〜70ミリ秒経過後)
に、第2の接地開閉器の開極指令出力部9Bから、第2
の接地開閉器ES−Bに開極指令が出される。
Only when the AND condition between the other-phase ground fault detection command and the opening command for the first grounding switch ES-A already input to the operation control unit 10 is satisfied, the AND circuit is established. 7 to the second ground switch ES-
A contact opening command is issued to B. This opening command becomes a count start command for the post-timer operation timer 10c, and after the count time by the timed post-operation timer 10c has elapsed (after 50 to 70 milliseconds have elapsed from the occurrence of a follow-up accident).
From the opening command output unit 9B of the second grounding switch to the second
An opening command is issued to the grounding switch ES-B.

【0026】すなわち、一般に接地開閉器の遮断時に
は、リレーの動作時間10ミリ秒と遮断時間25〜45
ミリ秒が必要なことから、第2接地開閉器の遮断指令を
後追い事故発生から50〜70ミリ秒程度遅らせると、
第2接地開閉器の遮断は後追い事故発生後85〜125
ミリ秒となる。そして、その時点では、既に他相の後追
い地絡事故が他相の遮断器及び接地開閉器の作用により
解消され、例えば4サイクル程度(80〜100ミリ秒
程度)継続する零点ミス電流も解消しているので、開極
動作を行う第2の接地開閉器では、そのパッファ室から
の消弧ガス流により電流零点を利用して事故相の誘導電
流を遮断することができる。
That is, generally, when the earthing switch is cut off, the relay operating time is 10 milliseconds and the breaking time is 25 to 45.
Since millisecond is required, if the cutoff command of the second grounding switch is delayed by about 50 to 70 milliseconds from the occurrence of a follow-up accident,
Shut off the second earthing switch 85-125 after the occurrence of a follow-up accident
It will be a millisecond. Then, at that time, the trailing ground fault accident of the other phase is already resolved by the action of the circuit breaker and the ground switch of the other phase, and the zero point miss current that continues for about 4 cycles (about 80 to 100 milliseconds) is also resolved. Therefore, in the second grounding switch that performs the opening operation, the arc zero gas flow from the puffer chamber can be used to interrupt the induced current in the accident phase by utilizing the current zero point.

【0027】[0027]

【発明の効果】以上述べたように、本発明によれば、他
相での後追い地絡事故が発生し第1の接地開閉器によっ
て電流遮断が不可能な場合には、第2の接地開閉器を一
定の時間経過後に開極することにより、他相の後追い地
絡事故による静電、電磁誘導によって動作相に誘導され
る電流零点を形成しない誘導電流を確実に遮断すること
が可能となり、後追い地絡事故時においても高速再閉路
が可能な高速再閉路接地装置を提供することができる。
As described above, according to the present invention, when a follow-up ground fault occurs in another phase and the current cannot be cut off by the first earthing switch, the second earthing switch is used. By opening the device after a lapse of a certain period of time, it is possible to reliably cut off the induced current that does not form the current zero point induced in the operating phase by electrostatic or electromagnetic induction due to the post-tracking ground fault of the other phase, It is possible to provide a high-speed reclosing grounding device capable of high-speed reclosing even in the case of a back-up ground fault.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高速再閉路接地装置の一実施例を示す
システム構成図。
FIG. 1 is a system configuration diagram showing an embodiment of a high-speed reclosing grounding device of the present invention.

【図2】図1の実施例における第1と第2の接地開閉器
の構造の一例を示す側面図。
FIG. 2 is a side view showing an example of the structure of first and second ground switches in the embodiment of FIG.

【図3】図1の実施例における動作制御ユニット部を示
す回路図。
FIG. 3 is a circuit diagram showing an operation control unit section in the embodiment of FIG.

【図4】図1の実施例における動作シーケンス図。4 is an operation sequence diagram in the embodiment of FIG.

【図5】従来の接地開閉器の一例を示すシステム構成
図。
FIG. 5 is a system configuration diagram showing an example of a conventional grounding switch.

【図6】従来の接地開閉器の動作シーケンス図。FIG. 6 is an operation sequence diagram of a conventional grounding switch.

【図7】接地開閉器と各相に流れる電流の変化を示す特
性図。
FIG. 7 is a characteristic diagram showing changes in current flowing through the ground switch and each phase.

【図8】接地開閉器の動作相への他相からの静電誘導電
流及び電磁誘導電流の特性を示す波形図。
FIG. 8 is a waveform diagram showing characteristics of an electrostatic induction current and an electromagnetic induction current from the other phase to the operating phase of the ground switch.

【図9】接地開閉器の開極時の過渡回復電圧波形図。FIG. 9 is a transient recovery voltage waveform diagram when the ground switch is opened.

【図10】従来のパッファ形接地開閉器における電極部
分の開極状態を示す断面図。
FIG. 10 is a cross-sectional view showing an open state of an electrode portion in a conventional puffer type grounding switch.

【図11】図10の接地開閉器におけるパッファ室圧力
と動作ストロークの関係を示すグラフ。
11 is a graph showing the relationship between the puffer chamber pressure and the operation stroke in the earthing switch of FIG.

【符号の説明】[Explanation of symbols]

GCB…遮断器 ES−A…第1の接地開閉器 ES−B…第2の接地開閉器 CT…変流器 Ry…送電線事故検出保護リレー 1…ブッシング 2…送電線 3…鉄塔 6…時限保持タイマー 7…アンド回路 9A…第1の接地開閉器の開極指令出力部 9B…第2の接地開閉器の開極指令出力部 10…接地開閉器の動作制御ユニット 10a…開極指令入力部 10b…他相後追い地絡事故検出指令入力部 10c…時限後保持タイマー GCB ... Circuit breaker ES-A ... 1st earthing switch ES-B ... 2nd earthing switch CT ... Current transformer Ry ... Transmission line accident detection protection relay 1 ... Bushing 2 ... Transmission line 3 ... Steel tower 6 ... Time limit Holding timer 7 ... AND circuit 9A ... Opening command output section of first grounding switch 9B ... Opening command output section of second grounding switch 10 ... Operation control unit 10a of grounding switch ... Opening command input section 10b ... Other phase post-tracking ground fault accident detection command input section 10c ... Post-time hold timer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横田 岳志 東京都港区芝浦1丁目1番1号 株式会社 東芝本社事務所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takeshi Yokota 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Head Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】断器を結ぶ高電圧送電線の1線地絡相に設
置されており、前記送電線に設けられた碍子連のアーク
ホーンにおける逆フラッシオーバーによる1線地絡事故
に対して、前記送電線の両端にある遮断器を開極した状
態で高速で投入動作を行い、前記逆フラッシオーバーの
消弧後に開極動作を行う接地開閉器を備えた高速再閉路
接地装置において、 前記送電線の1線地絡相に、常時は開で、地絡事故時に
はその高速再閉路の一連の動作の一つとして投入及び開
極動作を行う第1の接地開閉器と、この第1の接地開閉
器に対して直列に接続された常時は閉の第2の接地開閉
器を設け、 各層の送電線には、前記地絡事故が発生した相と同一回
線の他相にて前記地絡事故と時差を持って後追い地絡事
故が発生したことを検知する送電線事故検出保護リレー
を接続し、 前記高速再閉路の一連の動作のうち第1の開閉器による
最後の開極指令から一定の時間内に、前記送電線事故検
出保護リレーが前記後追い地絡事故を検出した際には、
他相における地絡事故が除去される時間の経過後に開極
動作を行うように、第2の接地開閉器に開極指令を発す
る制御ユニットを設けたことを特徴とする高速再閉路接
地装置。
1. A one-line ground fault that is installed in a one-line ground fault phase of a high-voltage power transmission line connecting a disconnector and is caused by a reverse flashover in an insulator horn arc horn provided on the power transmission line. A high-speed re-closed grounding device having a grounding switch that performs a closing operation at a high speed in a state where the circuit breakers at both ends of the power transmission line are opened, and performs a closing operation after extinguishing the reverse flashover, A first grounding switch that is normally open to the 1-line ground fault phase of the transmission line and that performs opening and closing operations as one of a series of operations of the high-speed reclosing circuit in the event of a ground fault, and the first grounding switch. A normally closed second grounding switch connected in series to the grounding switch is provided, and the transmission line of each layer has the ground fault in another phase of the same line as the phase in which the ground fault occurs. Transmission line accident that detects a back-up ground fault with a time difference from the accident An output protection relay is connected, and the transmission line accident detection protection relay detects the follow-up ground fault accident within a certain time from the last opening command by the first switch in the series of operations of the high-speed reclosing circuit. When you do,
A high-speed re-closed grounding device, characterized in that a control unit for issuing an opening command to the second grounding switch is provided so that the opening operation is carried out after the time when the ground fault in the other phase is eliminated.
JP4186896A 1992-07-14 1992-07-14 High speed reclosing grounding device Pending JPH0636659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4186896A JPH0636659A (en) 1992-07-14 1992-07-14 High speed reclosing grounding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4186896A JPH0636659A (en) 1992-07-14 1992-07-14 High speed reclosing grounding device

Publications (1)

Publication Number Publication Date
JPH0636659A true JPH0636659A (en) 1994-02-10

Family

ID=16196587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4186896A Pending JPH0636659A (en) 1992-07-14 1992-07-14 High speed reclosing grounding device

Country Status (1)

Country Link
JP (1) JPH0636659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606736A1 (en) * 1996-02-23 1997-08-28 Teves Gmbh Alfred Damping layer used for muffling disc brakes
JP2011199932A (en) * 2010-03-17 2011-10-06 Toshiba Corp Transmission line protective relay device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606736A1 (en) * 1996-02-23 1997-08-28 Teves Gmbh Alfred Damping layer used for muffling disc brakes
JP2011199932A (en) * 2010-03-17 2011-10-06 Toshiba Corp Transmission line protective relay device

Similar Documents

Publication Publication Date Title
CN107317300B (en) Intelligent auto recloser
US10937613B2 (en) Triggered gap switching device
JPH06310000A (en) Grounding switch
JP3372054B2 (en) High-speed reclosable grounding device
JPH0636659A (en) High speed reclosing grounding device
JP3372055B2 (en) High-speed reclosable grounding device
JP3432236B2 (en) High-speed reclosable grounding device
JP3369224B2 (en) High-speed reclosable earthing switch
JP3369228B2 (en) High-speed reclosable earthing switch
JP3337749B2 (en) High-speed reclosable earthing switch
CN104868438B (en) Intelligent recloser device and method based on Triggered Vacuum Switch
Delić et al. Capacitive current breaking capability estimation for a 145 kV 40 kA GIS circuit breaker
RU2755021C1 (en) Generator hybrid switch
JPH0620567A (en) High-speed reclosing grounding device
CN212410659U (en) Asymmetric current source in low-current grounding system
CN213025920U (en) Neutral point grounding structure of three-phase alternating current power system
JPH06124627A (en) High speed re-closing path earthed switch
CN211266460U (en) Phase selection breaking device and circuit breaker
JPH07105800A (en) High speed reclosing and grounding switch
JP2557492B2 (en) Reactor current interruption device
JP2003109481A (en) High-speed grounding switch
JPH08321234A (en) High speed grounding switch
JPH06150790A (en) High speed re-closing earth switch device
KR20010013527A (en) Direct grounding system capable of limiting ground fault current
JPH06327137A (en) High speed reclosing ground system