JPH0333058A - High strength mica ceramics - Google Patents

High strength mica ceramics

Info

Publication number
JPH0333058A
JPH0333058A JP1166574A JP16657489A JPH0333058A JP H0333058 A JPH0333058 A JP H0333058A JP 1166574 A JP1166574 A JP 1166574A JP 16657489 A JP16657489 A JP 16657489A JP H0333058 A JPH0333058 A JP H0333058A
Authority
JP
Japan
Prior art keywords
weight
machinability
bending strength
ceramics
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1166574A
Other languages
Japanese (ja)
Other versions
JP2716530B2 (en
Inventor
Tetsushi Kosugi
小杉 哲史
Yuji Takao
高尾 裕次
Akira Suzumura
鈴村 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP1166574A priority Critical patent/JP2716530B2/en
Publication of JPH0333058A publication Critical patent/JPH0333058A/en
Application granted granted Critical
Publication of JP2716530B2 publication Critical patent/JP2716530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To facilitate the machinability in the mica ceramics and to provide it with high strength by adding barium fluoride and calcium fluoride to a blend of fluor-phlogopite and alumina, compacting the mixture and thereafter executing burning. CONSTITUTION:The mica ceramics is obtd. by subjecting a mixture of which a blend, 100 pts.wt., constituted of 30 to 50wt.% fluor-phlogopite and alumina is incorporated with 2 to 5 pts.wt. barium fluoride and 2 to 5 pts.wt. calcium fluoride to compacting and burning. In the case where the content of the above fluor-phlogopite is less than 30wt.%, its machinability is deteriorated, and where more than 50wt.%, its bending strength is deteriorated. Furthermore, as for the content of the above barium fluoride and calcium fluoride, where either or both is less than 2wt.%, its machinability is deteriorated, and where either or both is more than 5 pts.wt., its water absorption is increased and its bending strength is deteriorated as well.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、耐熱材料、絶縁材料及び高温用機械部品等
の分野で使用されるマイカセラミ−/クスに係り、更に
詳記すれば、機械加工性容易で且つ高強度な性質を付与
し、上記利用分野の拡大を計った高強度マイカセラミッ
クスに関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to mica ceramic/gloss used in the fields of heat-resistant materials, insulating materials, high-temperature mechanical parts, etc. The present invention relates to high-strength mica ceramics that are easy to prepare and have high strength properties, and are intended to expand the above-mentioned fields of use.

「従来技術及びその問題点」 従来、マイカセラミックスの製造法としては、結晶化ガ
ラス法や埋め焼き焼結法が知られているしかして、この
方法で得られたセラミックスは、曲げ強度が低い欠点が
あった。即ち、前者の方法で得られたセラミックスの曲
げ強度は、1000〜1400kg/crn’であり、
後者の例えば特開昭58−37271号公報に記載の方
法で得られたセラミックスの曲げ強度は、明細書中で一
番高いものでも1530kg/crn’であり、特開昭
82−143889号公報に記載の埋め焼き焼結法で得
られたマイカセラミックスの曲げ強度は、 1200〜
1300kg/crn’と低いもノテあった本発明は、
このような点に着目してなされたものであり、曲げ強度
が高く、優れた機械加工性を有するとともに、セラミッ
クス本来の優れた性質は損なわれない新規マイカセラミ
ックスを提供することを目的とする。
"Prior art and its problems" Conventionally, the crystallized glass method and the buried sintering method are known as methods for manufacturing mica ceramics. However, the ceramics obtained by this method have the disadvantage of low bending strength. was there. That is, the bending strength of the ceramics obtained by the former method is 1000 to 1400 kg/crn',
For example, the bending strength of ceramics obtained by the method described in JP-A No. 58-37271 is 1530 kg/crn', which is the highest in the specification; The bending strength of the mica ceramics obtained by the buried firing and sintering method described is 1200~
The present invention, which was noted as low as 1300 kg/crn',
The present invention was developed with these points in mind, and the object is to provide a new mica ceramic that has high bending strength, excellent machinability, and does not impair the original excellent properties of ceramics.

r問題点を解決するための手段」 木発明者らは、上記目的を達成するため、鋭意研究を行
なった結果、フッ素金雲母30〜50重量%とアルミナ
50〜70重量%とからなる配合物100重置部に対し
、2〜5重量部のフッ化バリウムと2〜5重量部のフッ
化カルシウムとを含有させてなる混合物を、成形後焼成
したマイカセラミックスが1曲げ強度が高く、しかも優
れた機械加工性を有することを見出し本発明を完成する
に至った。
In order to achieve the above object, the inventors conducted extensive research and found that a compound consisting of 30 to 50% by weight of fluorine phlogopite and 50 to 70% by weight of alumina was developed. Mica ceramics produced by molding and firing a mixture containing 2 to 5 parts by weight of barium fluoride and 2 to 5 parts by weight of calcium fluoride per 100 parts stacked have high bending strength and excellent The present inventors discovered that the material has excellent machinability and completed the present invention.

本発明のマイカセラミックスは、フッ素金雲母30〜5
0重量%とアルミナ50〜70重量%とからなる配合物
100重量部に対し、フッ化バリウム2〜5重量部とフ
ッ化カルシウム2〜5重量部とを添加し、混合した後成
形し、焼成することによって得られる。焼成は大気中で
行なっても、或いはフッ素金雲母を埋め粉とする埋め焼
き法で行なってもよい。
The mica ceramic of the present invention has 30 to 5 fluorine phlogopite.
2 to 5 parts by weight of barium fluoride and 2 to 5 parts by weight of calcium fluoride are added to 100 parts by weight of a mixture consisting of 0% by weight and 50 to 70% by weight of alumina, mixed, shaped, and fired. obtained by doing. The firing may be performed in the air or by a filling method using fluorine phlogopite as a filling powder.

本発明のマイカセラミックスは、フッ素金雲母とアルミ
ナとの合計量に対し、フッ素金雲母30〜50重量%で
ある必要があり、フッ素金雲母が30重量%に満たない
と機械加工性が不良となり、フッ素金雲母が50重量%
を超えると曲げ強度が低くなる。
The mica ceramic of the present invention must contain 30 to 50% by weight of fluorophlogopite with respect to the total amount of fluorophlogopite and alumina. If fluorophlogopite is less than 30% by weight, machinability will be poor. , 50% by weight of fluorine phlogopite
If it exceeds , the bending strength will decrease.

本発明に於いては、フッ化バリウムとフッ化カルシウム
の両方を含有させる必要があり、これらのいずれか単独
の場合は、機械加工性が不良となる。フン化バリウムと
フッ化カルシウムとの含有量は、フッ素金雲母とアルミ
ナとの配合物100重量部に対し、いずれも2〜5重量
部である必要があり、いずれか若しくは両方が2重量部
に満たない場合は1機械加工性が不良となり、いずれか
若しくは両方が5重量部を超える場合は、吸水率が高く
なり、また曲げ強度が低くなる。
In the present invention, it is necessary to contain both barium fluoride and calcium fluoride, and if either one of them is used alone, machinability will be poor. The content of barium fluoride and calcium fluoride must be 2 to 5 parts by weight per 100 parts by weight of the mixture of fluorophlogopite and alumina, and either or both must be 2 parts by weight. If it is less than 1, the machinability will be poor, and if either or both exceeds 5 parts by weight, the water absorption will be high and the bending strength will be low.

次に実施例を挙げ本発明を更に説明するが、本発明は、
これら実施例に限定されない。
Next, the present invention will be further explained with reference to Examples.
The invention is not limited to these examples.

「実施例」 実施例1 平均粒径54mのフッ素金雲母50重量%と平均粒径0
.3pmのアルミナ50重量%とからなる配合物100
 重量部に対し、フッ化バリウム3重量部とフッ化カル
シウム3重量部とを添加し、これを水と共にボットミル
中で24時間混合磨砕した後乾燥した。
"Example" Example 1 50% by weight of fluorine phlogopite with an average particle size of 54 m and an average particle size of 0
.. Formulation 100 consisting of 50% by weight of 3pm alumina
3 parts by weight of barium fluoride and 3 parts by weight of calcium fluoride were added to each part by weight, and this was mixed and ground with water in a bot mill for 24 hours, and then dried.

このようにして得た粉末混合物を、750kg/c r
n’の成形圧で、厚さ4mmで直径50問と25mmの
円板に成形した。このものを、フッ素金雲母粉末中に埋
めて1260℃の温度で焼成した。保持時間を1時間と
し、放冷して本発明の焼結体を得た。
The powder mixture thus obtained was weighed at 750 kg/cr
A disc with a thickness of 4 mm and a diameter of 50 pieces and a diameter of 25 mm was molded at a molding pressure of n'. This material was buried in fluorine phlogopite powder and fired at a temperature of 1260°C. The holding time was 1 hour, and the sintered body of the present invention was obtained by cooling.

次に、このようにして得られた焼結体につき、曲げ強度
、機械加工性、熱膨張係数及び電気的性質を測定した。
Next, the bending strength, machinability, coefficient of thermal expansion, and electrical properties of the sintered body thus obtained were measured.

曲げ強度は、支点間距離30mmとし、3点曲げ試験に
より測定した。結果は、1840kg/ctn’であっ
た、機械加工性は、6.0■φの超硬光ムクドリルを用
い、回転数4flOrpmで穴あけ加工をして判定した
、結果は、縁の欠損もなく、仕上がり良好であった。熱
膨張係数(常温〜1000℃)は、8.8 Xl0−6
であり、アルミナとマイカセラミックスの中間の値を示
した。電気的性質は、 Te値で700℃、tanδで
40X−’、耐電圧は15にマ/■と優れた値を示した
The bending strength was measured by a three-point bending test with a distance between fulcrums of 30 mm. The result was 1840 kg/ctn'. Machinability was determined by drilling at a rotation speed of 4 flOrpm using a 6.0 dia. carbide drill. As a result, there was no edge damage. The finish was good. Thermal expansion coefficient (room temperature to 1000°C) is 8.8 Xl0-6
The value was between that of alumina and mica ceramics. As for the electrical properties, the Te value was 700°C, the tan δ was 40X-', and the withstand voltage was 15 mm/■, which were excellent values.

上記結果から本発明のマイカセラミックスは、機械加工
が容易で高強度であると共にセラミック実施例2〜11 フッ素金雲母、アルミナ、フッ化カルシウム及びフッ化
バリウムを次表に記載の割合で配合し、実施例1と同様
の方法で焼結体を作威し、その特性値を測定した。結果
を後記表に示す、尚、実施例9〜11は、大気中で焼成
し、その他は実施例1と同じ埋め焼き焼成で焼成した。
From the above results, the mica ceramics of the present invention are easy to machine and have high strength. A sintered body was produced in the same manner as in Example 1, and its characteristic values were measured. The results are shown in the table below. Examples 9 to 11 were fired in the atmosphere, and the rest were fired using the same filling firing method as in Example 1.

比較例1〜6 比較例として1次表に記載の配合で実施例1と同様にし
て埋め焼き焼成で得た焼結体について。
Comparative Examples 1 to 6 As comparative examples, sintered bodies were obtained by filling and firing in the same manner as in Example 1 using the formulations listed in the first table.

その特性値を測定した。結果は次表に示す通りであった
Its characteristic values were measured. The results are shown in the table below.

実施例及び比較例についての表中の機械加工性と評価は
1次の基準に従って行なった。
The machinability and evaluation in the table for Examples and Comparative Examples were performed according to the following criteria.

機械加工性: 良好:縁の欠損がなく仕上りが良好であったもの。Machinability: Good: Good finish with no edge defects.

不良:縁の欠損が生じるか或いは穴あけが不可であった
もの 評価: ■=曲げ強度が1850kg/crn”以上で機械加工
性が良好であったもの O:曲げ強度が1850kg/crn’以上で機械加工
性が良好であったもの X:曲げ強度が1fl100kg/cm″以下若しくは
機械加工性が不良であったもの 「効果」 以上述べた如く、本発明のマイカセラミックスは、曲げ
強度が高く、優れた機械加工性を有すると共にセラミッ
クス本来の優れた性質を保持する等この種従来のマイカ
セラミックスには見られない著しく優れた性質を保持し
ているので、この種セラミックスの使用されている耐熱
材料、絶縁材料及び高温用機械部品等の分野で利用範囲
の拡大が達せられる。
Defective: Edge defects occurred or drilling was not possible Evaluation: ■ = Bending strength was 1850 kg/crn' or more and machinability was good O: Bending strength was 1850 kg/crn' or more and machine workability was good Good workability This type of mica ceramic has extremely excellent properties not found in conventional mica ceramics, such as machinability and maintains the excellent properties inherent to ceramics, so it is suitable for heat-resistant materials and insulation materials used in this type of ceramic. The scope of use can be expanded in fields such as materials and high-temperature machine parts.

Claims (1)

【特許請求の範囲】[Claims]  フッ素金雲母30〜50重量%とアルミナ50〜70
重量%とからなる配合物100重量部に対し、2〜5重
量部のフッ化バリウムと2〜5重量部のフッ化カルシウ
ムとを含有させてなる混合物を、成形後焼成したことを
特徴とする高強度マイカセラミックス。
Fluorine phlogopite 30-50% by weight and alumina 50-70%
% by weight of a mixture containing 2 to 5 parts by weight of barium fluoride and 2 to 5 parts by weight of calcium fluoride, which was molded and then fired. High strength mica ceramics.
JP1166574A 1989-06-30 1989-06-30 High strength mica ceramics Expired - Lifetime JP2716530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166574A JP2716530B2 (en) 1989-06-30 1989-06-30 High strength mica ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166574A JP2716530B2 (en) 1989-06-30 1989-06-30 High strength mica ceramics

Publications (2)

Publication Number Publication Date
JPH0333058A true JPH0333058A (en) 1991-02-13
JP2716530B2 JP2716530B2 (en) 1998-02-18

Family

ID=15833791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166574A Expired - Lifetime JP2716530B2 (en) 1989-06-30 1989-06-30 High strength mica ceramics

Country Status (1)

Country Link
JP (1) JP2716530B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020526A (en) * 2018-07-12 2018-12-18 钱敏伟 A kind of high voltage transmission line insulating ceramics and preparation method thereof
CN111499359A (en) * 2020-05-13 2020-08-07 珠海粤博佳新材料有限公司 Production process of alumina ceramic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753398C1 (en) * 2020-08-10 2021-08-16 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Masonry composition for bonding masonry elements of electrolysis aggregates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020526A (en) * 2018-07-12 2018-12-18 钱敏伟 A kind of high voltage transmission line insulating ceramics and preparation method thereof
CN109020526B (en) * 2018-07-12 2021-02-05 江西省萍乡电瓷电器厂 Insulating ceramic for high-voltage transmission line and preparation method thereof
CN111499359A (en) * 2020-05-13 2020-08-07 珠海粤博佳新材料有限公司 Production process of alumina ceramic

Also Published As

Publication number Publication date
JP2716530B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
EP0015421B1 (en) Method of producing sintered body of ceramics
EP0073523B1 (en) Sintered body of ceramics and preparation thereof
US4102698A (en) Silicon nitride compositions in the Si3 N4 -Y2 O3 -SiO2 system
JPS6051655A (en) Manufacture of ceramic sintered body
JP2951771B2 (en) Rare earth oxide-alumina-silica sintered body and method for producing the same
JPH0333058A (en) High strength mica ceramics
JPS6050749B2 (en) Silicon carbide sintered body
US3821005A (en) Densification of silicon nitride
US2332343A (en) Ceramic material
JPH03141161A (en) Composite sintered compact
JPS61178472A (en) Heat treatment of silicon nitride sintered body
RU2070181C1 (en) Close-roasted ceramics and method of preparing thereof
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPS6110073A (en) Aluminum nitride sintered body
JPH0250075B2 (en)
JPS61215260A (en) Manufacture of silicon nitride ceramic
JPH0269359A (en) Production of sintered silicon nitride body
JP2687633B2 (en) Method for producing silicon nitride sintered body
KR20200076774A (en) Cordierite based ceramic composition
JPS62113769A (en) Manufacture of silicon nitride sintered body
JPH05330916A (en) Heat-resistant mechanical part for gas turbine
JPH04154668A (en) Production of silicon nitride sintered compact
JPH04275984A (en) Porous machinable ceramics and its production
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material
JPS6278157A (en) Manufacture of silicon nitride sintered body