JPH0332889B2 - - Google Patents

Info

Publication number
JPH0332889B2
JPH0332889B2 JP58196191A JP19619183A JPH0332889B2 JP H0332889 B2 JPH0332889 B2 JP H0332889B2 JP 58196191 A JP58196191 A JP 58196191A JP 19619183 A JP19619183 A JP 19619183A JP H0332889 B2 JPH0332889 B2 JP H0332889B2
Authority
JP
Japan
Prior art keywords
steel plate
iron loss
annealing
steel sheet
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58196191A
Other languages
Japanese (ja)
Other versions
JPS6089545A (en
Inventor
Masao Iguchi
Michiro Komatsubara
Ujihiro Nishiike
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19619183A priority Critical patent/JPS6089545A/en
Publication of JPS6089545A publication Critical patent/JPS6089545A/en
Publication of JPH0332889B2 publication Critical patent/JPH0332889B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (技術分野) 鉄損の極めて低い一方向性けい素鋼板に関して
この明細書に述べる技術内容は、異張力の働く領
域を鋼板表面に区画形成させることにより、歪取
り焼鈍によつて磁気特性が劣化しない一方向性け
い素鋼板を与えようとするものである。
Detailed Description of the Invention (Technical Field) The technical content described in this specification regarding a unidirectional silicon steel sheet with extremely low iron loss is that the strain relief annealing process is performed by forming regions on the surface of the steel sheet where different tensions act. The purpose is to provide a unidirectional silicon steel sheet whose magnetic properties do not deteriorate due to

(技術的背景) 一方向性けい素鋼板は主として変圧器その他の
電気機器の鉄心として利用され、その磁化特性が
優れていること、すなわち鉄損(W17/50で代表
される)が低いことが要求されている。
(Technical background) Unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are known for their excellent magnetization characteristics, that is, their low iron loss (represented by W17/50). requested.

このためには、第一に鋼板中の2次再結晶粒の
<001>粒方位を圧延方向に高度に揃えることが
必要であり、第二には、最終製品の鋼中に存在す
る不純物や析出物をできるだけ減少させる必要が
ある。これらの点の綿密な留意の下で製造される
一方向性けい素鋼板は今日まで多くの改善努力に
よつて、その鉄損値も年を追つて改善され、最近
では板厚0.30mmの製品でW17/50の値が1.05W/Kg
の低鉄損のものが製造されている。
To achieve this, firstly, it is necessary to align the <001> grain orientation of the secondary recrystallized grains in the steel sheet to a high degree in the rolling direction, and secondly, it is necessary to highly align the <001> grain orientation of the secondary recrystallized grains in the steel sheet, and secondly, it is necessary to prevent impurities present in the final product steel. It is necessary to reduce precipitates as much as possible. Unidirectional silicon steel sheets, which are manufactured with careful attention to these points, have been improved over the years through many improvement efforts, and recently products with a thickness of 0.30 mm have been improved. The value of W17/50 is 1.05W/Kg
Low iron loss products are manufactured.

しかし、数年前のエネルギー危機を境にして、
電力損失のより少ない電気機器を求める傾向が一
段と強まり、それらの鉄芯材料として、さらに鉄
損の低い一方向性けい素鋼板の製造が要請される
ようになつている。
However, after the energy crisis a few years ago,
There is a growing trend for electrical equipment with lower power loss, and there is a growing demand for the production of unidirectional silicon steel sheets with even lower core loss as the iron core material for these devices.

(従来技術とその問題点) ところで、一方向性けい素鋼板の鉄損を下げる
には、 Si含有量を高める、 製品板厚を薄くする、 2次再結晶粒を細かくする、 不純物含有量を低減する、 (110)〔001〕方位の2次再結晶粒をより高度
に揃える など、主に冶金学的な手法が一般に知られている
が、これらの手法は、現行の生産手段での限界値
に達し、もはやそれ以上の改善は極めて、難し
く、たとえ、多少の改善が認められても、その努
力の割には鉄損改善の実効は僅かとなるに至つ
た。
(Conventional technology and its problems) By the way, in order to reduce the iron loss of grain-oriented silicon steel sheets, there are several ways to reduce the iron loss: increase the Si content, reduce the thickness of the product sheet, make the secondary recrystallized grains finer, and reduce the impurity content. Mainly metallurgical methods are generally known, such as reducing the number of secondary recrystallized grains with (110) [001] orientation, but these methods are limited by current production methods. Once the iron loss value has been reached, it is extremely difficult to make any further improvement, and even if some improvement is recognized, the effectiveness of the iron loss improvement is small compared to the efforts made.

これらの方法とは別に、特公昭54−23647号公
報に、開示されているように、鋼板表面に2次再
結晶阻止領域を形成させることにより、2次再結
晶粒を細粒化させることが提案されている。しか
し、この技術は2次再結晶粒径の制御が安定して
いないため、実用的とは云いがたい。
Apart from these methods, as disclosed in Japanese Patent Publication No. 54-23647, secondary recrystallization grains can be made finer by forming a secondary recrystallization inhibiting region on the steel sheet surface. Proposed. However, this technique cannot be said to be practical because control of the secondary recrystallized grain size is not stable.

一方、特公昭58−5968号公報には、2次再結晶
後の鋼板の表面にボールペン状小球によつて微小
歪を鋼板表層に導入することにより、磁区の幅を
微細化し、鉄損を低減する技術、またさらに、特
公昭57−2252号公報には、最終製品板表面に圧延
方向とほぼ直角にレーザービームを数mm間隔にて
照射し、鋼板表層に高転位密度領域を導入するこ
とにより磁区の幅を微細化し、鉄損を低減する技
術も続いて提案され、そしてまた、特開昭57−
188810号公報では、放電加工により鋼板表層に微
少歪を導入して磁区幅を微細化し、鉄損を低減す
る同様な技術が提案されている。これら3種類の
方法は、いずれも、2次再結晶後の鋼板の地鉄表
面に微少な塑性歪を導入することにより、磁区幅
を微細化して鉄損の低減を図るものであつて、均
しく実用的であり、かつ鉄損低減効果も優れてい
るが、鋼板の打抜き加工、せん断加工や、巻き加
工後の歪取り焼鈍その他コーテイングの焼付け処
理の如き熱処理によつて、塑性歪導入による効果
が減殺される欠点を伴う。なおコーテイング処理
後に微少な塑性歪を導入する場合は、絶縁性を維
持するために、絶縁コーテイングを再塗装せねば
ならず歪付与工程、再塗装工程と、工程の大幅増
加になり、コストアツプをもたらす。
On the other hand, Japanese Patent Publication No. 58-5968 discloses that micro-strain is introduced into the surface layer of the steel plate after secondary recrystallization using ballpoint pen-shaped balls, thereby making the width of the magnetic domain finer and reducing iron loss. In addition, Japanese Patent Publication No. 57-2252 discloses a technique to introduce high dislocation density regions into the surface layer of the steel sheet by irradiating the surface of the final product sheet with a laser beam at intervals of several mm almost perpendicular to the rolling direction. Techniques for reducing iron loss by reducing the width of magnetic domains were subsequently proposed, and also in JP-A-57-
Publication No. 188810 proposes a similar technique in which microstrain is introduced into the surface layer of a steel sheet by electric discharge machining to refine the magnetic domain width and reduce iron loss. All of these three methods aim to reduce iron loss by refining the magnetic domain width by introducing a small amount of plastic strain to the surface of the base steel of the steel sheet after secondary recrystallization. Although it is very practical and has an excellent iron loss reduction effect, the effect of introducing plastic strain can be reduced by punching or shearing the steel plate, or by heat treatment such as strain relief annealing after winding or baking treatment of the coating. It has the disadvantage that it is reduced. In addition, if a small amount of plastic strain is introduced after the coating process, the insulating coating must be repainted in order to maintain insulation properties, resulting in a significant increase in the number of processes including the strain imparting process and the repainting process, resulting in an increase in costs. .

(発明の目的) 上記の先行技術とは発想を異にした磁区幅の細
分化手段をもつて、高温における歪取り焼鈍後に
おいても特性劣化を伴わずに、製品の磁区幅細分
化の実効を確保し得るようにした一方向性けい素
鋼板を与えることがこの発明の目的である。
(Purpose of the Invention) By having a magnetic domain width refining means that is different in concept from the above-mentioned prior art, it is possible to effectively refine the magnetic domain width of products without deteriorating the characteristics even after strain relief annealing at high temperatures. It is an object of the present invention to provide a unidirectional silicon steel sheet which can be secured.

(解決手段の解明経緯) これより先に発明者らは、鉄損低下を目指し
て、一方向性けい素鋼の製造工程途中における集
合組織およびインヒビター分散状況に新たな検討
を加え、脱炭・1次再結晶焼鈍前又は2次再結晶
焼鈍前の鋼板表面上に圧延方向とほぼ直角に脱炭
促進領域と脱炭遅滞領域とを交互に区画し、かく
して不均質の2次再結晶粒を発達させることによ
り、鉄損を低下させる新しい一方向性けい素鋼板
の製造が可能であることを見出し、特願昭58−
145763号をもつて既に特許出願を行なつた。
(History of the elucidation of the solution) The inventors first conducted new studies on the texture and inhibitor dispersion during the manufacturing process of unidirectional silicon steel, aiming to reduce iron loss. Decarburization promotion regions and decarburization retardation regions are alternately divided approximately perpendicular to the rolling direction on the surface of the steel sheet before primary recrystallization annealing or before secondary recrystallization annealing, thereby forming heterogeneous secondary recrystallization grains. It was discovered that it was possible to manufacture a new unidirectional silicon steel sheet with lower iron loss by further developing the material, and a patent application was filed in 1982
A patent application has already been filed with No. 145763.

このような2次再結晶粒の不均質化を優先形成
させるという新規着想を、他の諸工程段階に応用
する広範囲の基礎実験を行ない検討を始めた。
We conducted a wide range of basic experiments and began investigating the application of this new idea of preferentially forming secondary recrystallized grains to be heterogeneous to other process steps.

その一つの展開として、一方向性けい素鋼板の
2次再結晶焼鈍後に、鋼板表面に区画形成された
異張力の働く領域をつくることによつて製品の磁
区幅を細分化するならば、著しく超低鉄損化を図
り得ることが、新たに発見されたのである。ここ
に鋼板表面上で異張力の働く領域はたとえば、鋼
板の圧延方向を横切る向きに化学研摩の如きを施
して得られる、圧延方向に沿つた板面凹凸が、張
力付与型の絶縁被膜によつて、該凹凸のパターン
に従う異張力を生じるように区画形成することが
できる。
As one development, after secondary recrystallization annealing of a unidirectional silicon steel sheet, the magnetic domain width of the product can be significantly finely divided by creating zones on the surface of the steel sheet where different tensions act. It has been newly discovered that ultra-low iron loss can be achieved. The area where different tensions act on the surface of the steel plate is, for example, the unevenness of the plate surface along the rolling direction obtained by applying chemical polishing in a direction transverse to the rolling direction of the steel plate, due to the tension-applying insulating coating. Accordingly, it is possible to form sections so as to generate different tensions according to the pattern of the unevenness.

(発明の構成) この発明は、表面に凹凸領域を区画形成した地
鉄の全面に、張力付与被膜を被成した一方向性け
い素鋼板であつて、 該鋼板表面に、凹凸パターンに従う異張力の働
く領域を有することを特徴とする、低鉄損一方向
性けい素鋼板である。
(Structure of the Invention) The present invention provides a unidirectional silicon steel plate in which a tension imparting coating is applied to the entire surface of a base steel having an uneven region formed thereon, and the surface of the steel plate is provided with a different tension according to an uneven pattern. This is a low iron loss unidirectional silicon steel sheet characterized by having a working area.

次にこの発明による成功が導かれるに至つた経
過および発明の基本思想について説明する。
Next, the process that led to the success of this invention and the basic idea of the invention will be explained.

C0.043%、Si3.35%、Se0.018%、Sb0.025%、
Mo0.013%を含有する鋼塊から熱間圧延により
2.7mm厚の熱延板を得た。その900℃で3分間均一
化焼鈍後圧下率約70%の1次冷延を施し、950℃
で3分間の中間焼鈍後圧下率約65%の2次冷延を
施して0.3mm厚の最終冷延板とした。
C0.043%, Si3.35%, Se0.018%, Sb0.025%,
By hot rolling from a steel ingot containing Mo0.013%
A hot rolled sheet with a thickness of 2.7 mm was obtained. After uniform annealing at 900°C for 3 minutes, primary cold rolling with a rolling reduction of approximately 70% was performed, and the temperature was increased to 950°C.
After intermediate annealing for 3 minutes, secondary cold rolling was performed at a rolling reduction of approximately 65% to obtain a final cold rolled sheet with a thickness of 0.3 mm.

その後鋼板表面を脱脂後820℃の湿水素中で脱
炭・1次再結晶焼鈍したあと、常法に従い850℃
で50時間の2次再結晶焼鈍と1200℃で5時間水素
中での純化焼鈍を施した。
After that, the steel plate surface was degreased, decarburized and primary recrystallized annealed in wet hydrogen at 820℃, and then heated to 850℃ according to the usual method.
Secondary recrystallization annealing was performed at 1200° C. for 5 hours and purification annealing in hydrogen for 5 hours.

次に溶融NaOH溶液でフオルステライト被膜
を除去、ついで3%HFとH2O2液中で化学研摩
を、第1図に鋼板表面をあらわした模式図に仮想
線で示す区画に従つて施した、第2図のa〜dの
区分にて、順次実験を次のようにして行なつた。
Next, the forsterite coating was removed with a molten NaOH solution, and then chemical polishing was performed in a 3% HF and H 2 O solution according to the sections indicated by imaginary lines in the schematic diagram showing the steel plate surface in Figure 1. , Experiments were conducted sequentially in sections a to d in FIG. 2 as follows.

まず鋼板表面を化学研摩しただけの試料aに圧
延方向の引張り力Tをかけて磁気特性変化を測定
した、そのとき平均的な引張応力σに依存した磁
気特性の変化を第3図にてブロツトaに示す。次
に鋼板の片面で圧延方向とほぼ直角に10mm間隔で
5mm幅のビニールテープを順次にはりつけ、他面
は全面ビニールテープをはりつけ上記の化学研摩
を行ない、約5〜10μm深さの片面凹凸をもつ試
料bを作成しこれも同じく引張り力Tに依存した
磁気特性の変化を測定し、第3図にてブロツトb
に示す結果を得た。
First, we applied a tensile force T in the rolling direction to sample a, whose surface had only been chemically polished, to measure changes in its magnetic properties. Figure 3 plots the changes in magnetic properties depending on the average tensile stress σ. Shown in a. Next, on one side of the steel plate, vinyl tape of 5 mm width is sequentially pasted at 10 mm intervals almost perpendicular to the rolling direction, and on the other side, vinyl tape is applied to the entire surface, and the above chemical polishing is performed to create unevenness on one side with a depth of about 5 to 10 μm. Sample b was prepared and the change in magnetic properties depending on the tensile force T was also measured.
The results shown are obtained.

次に鋼板の平滑な他面についても、第2図のb
の条件と同様、10mm間隔で5mm幅のビニールテー
プを順次はりつけるとともに、既に凹凸のついて
いる片面には全面にビニールテープをはりつけて
他面に化学研摩を行ない、約5〜10μの凹凸を形
成した。このようにして鋼板の両面に凹凸をつけ
た試料cにつき、引張り力Tに依存した磁気特性
の変化を測定した結果も第3図のブロツトcに示
す。
Next, regarding the other smooth surface of the steel plate, see b in Figure 2.
Similar to the conditions described above, 5 mm wide vinyl tape was sequentially applied at 10 mm intervals, and vinyl tape was applied to the entire surface of one side that already had unevenness, and chemical polishing was performed on the other side to form an unevenness of approximately 5 to 10 μ. . Blot c in FIG. 3 also shows the results of measuring changes in magnetic properties depending on the tensile force T for sample c, in which both sides of the steel plate were made uneven.

最後には、両面凹凸に加えて圧延方向と直角5
mm間隔でレーザー照射を行ない、微少塑性歪を導
入した試料dにつき引張力Tに依存した磁気特性
の変化を測定し、その結果を第3図にてブロツト
dをもつて示す。
Finally, in addition to the unevenness on both sides, 5 perpendicular to the rolling direction
Laser irradiation was performed at intervals of mm to measure changes in magnetic properties depending on the tensile force T for sample d to which a slight plastic strain was introduced, and the results are shown as blot d in FIG.

なお第3図は各試料の鉄損につき、重量補正を
行なつた後の結果をブロツトして示したものであ
る。
Note that FIG. 3 is a blot showing the results after weight correction for the iron loss of each sample.

第2図と第3図から、試料表面が平滑な状態で
一様な引張応力が加わると、たとえば{T.
Yamamoto、S.Taguchi、A.Sakakura and T.
Nozawa:IEEE Trans:Mag:M8(1972)、
P.677}に述べられたと同様に、鉄損が低下する。
From Figures 2 and 3, it can be seen that when a uniform tensile stress is applied to a smooth sample surface, for example, {T.
Yamamoto, S. Taguchi, A. Sakakura and T.
Nozawa: IEEE Trans: Mag: M8 (1972),
P.677}, the iron loss decreases.

なおこの製品の2次粒径が3.5mmと小さいため
に鉄損の低下度は引張応力が0.2Kg/mm2で0.03W/
Kgと小さいが、鋼板の片面あるいは両面に圧延方
向にほぼ直角に凹凸をつけた(b)および(c)の試料に
引張り力Tを加えると、鉄損が急激に低下するこ
とが注目される。とくに平均的な引張応力が0.2
Kg/mm2程度での鉄損の低下度はbの片面凹凸試料
で0.09W/Kg、cの両面凹凸試料で0.11W/Kgも低
下することがわかる。
Furthermore, since the secondary particle size of this product is as small as 3.5 mm, the reduction in iron loss is 0.03 W/ at a tensile stress of 0.2 Kg/mm 2 .
Although it is as small as Kg, it is noteworthy that when a tensile force T is applied to the specimens in (b) and (c), which have irregularities on one or both sides of the steel plate almost perpendicular to the rolling direction, the iron loss decreases rapidly. . Especially when the average tensile stress is 0.2
It can be seen that the degree of decrease in iron loss at about Kg/mm 2 is 0.09 W/Kg for the single-sided uneven sample b, and 0.11 W/Kg for the double-sided uneven sample c.

また鋼板両面に凹凸をつけた後、レーザー照射
により高転位密度領域を導入した試料dは、引張
力Tを作用させない状態でレーザー照射による鉄
損低下が0.03W/Kg程度に生じたがの後に引張力
Tを加えてもあまり鉄損が低下しないことが注目
される。
In addition, in sample d, in which high dislocation density regions were introduced by laser irradiation after roughening both sides of the steel plate, the iron loss decreased by about 0.03 W/Kg due to laser irradiation without applying tensile force T. It is noteworthy that the iron loss does not decrease much even when the tensile force T is applied.

上記の実験結果は従来公知の鋼板表面全体に均
一な圧延方向の弾性歪を導入する方法(つまり第
2図aに従う第3図のブロツトa)および微少な
塑性歪領域又はレーザー照射による高転位密度領
域を導入する方法(つまり第2図dに従う第3図
のブロツトd)よりも、異張力による弾性歪を導
入する方法(つまり第2図b,cに従う第3図の
ブロツトb,c)にて極めて効果的に鉄損を低下
させることが可能であることを示している。すな
わち、有効な磁区の細分化方法は鋼板表面に異張
力による弾性歪の導入によつて達成されることが
新規に見出されたのである。
The above experimental results are based on the conventional method of introducing uniform elastic strain in the rolling direction over the entire surface of the steel sheet (that is, the blot a in Figure 3 according to Figure 2 a) and the method of introducing a uniform elastic strain in the rolling direction to the entire surface of the steel sheet (i.e., the blot a in Figure 3 according to Figure 2 a) and the method of introducing a uniform elastic strain in the rolling direction to the entire surface of the steel sheet (i.e., the blot a in Figure 3 according to Figure 2 a) The method of introducing elastic strain due to different tensions (that is, the blots b and c of Fig. 3 according to Fig. 2 b and c) is better than the method of introducing a region (that is, the blot d of Fig. 3 according to Fig. 2 d). This shows that it is possible to reduce iron loss extremely effectively. In other words, it has been newly discovered that an effective method for refining magnetic domains can be achieved by introducing elastic strain to the surface of a steel sheet by applying different tensions.

このような異張力弾性歪を附加した一方向性け
い素鋼板においては従来の地鉄表層部に塑性歪領
域やレーザー照射痕のよな高転位密度領域を存在
させる手法の場合と異なり、人為的な塑性歪領域
が存在しないので、通常800℃前後で1分間から
数時間にわたつてなされる歪取焼鈍を施して鉄損
が劣化しないという利点がある。
Unlike the conventional method of creating high dislocation density regions such as plastic strain regions and laser irradiation marks in the surface layer of the steel, unlike the conventional method of creating unidirectional silicon steel sheets to which different tensile elastic strains have been added, artificial Since there is no plastic strain region, there is an advantage that the iron loss does not deteriorate even when strain relief annealing is normally performed at around 800°C for 1 minute to several hours.

従来の塑性歪やレーザー照射痕の高転位密度領
域を存在させる方法では地鉄表層部の塑性歪が高
温によつて消滅していくので鉄損の劣化が起ると
いう欠点があるが、この発明の場合歪取り焼鈍の
有無にかかわらず良好な鉄損を示す。
Conventional methods of creating high dislocation density regions due to plastic strain or laser irradiation marks have the disadvantage that the plastic strain in the surface layer of the steel base disappears at high temperatures, leading to deterioration of iron loss. shows good iron loss regardless of whether or not strain relief annealing is performed.

以上この発明に係るけい素鋼板を従来の鋼板と
対比して説明したところから明らかなように、こ
の発明は先行公知技術とは本質的思想を異にする
ものでありあとで実施例で検証するように効果も
はるかに優れている。
As is clear from the above explanation of the silicon steel sheet according to the present invention in comparison with a conventional steel sheet, this invention is essentially different in concept from the prior art, and will be verified later with examples. The effect is also much better.

次にこの発明におけるけい素鋼板の素材および
製造工程について説明する。
Next, the material and manufacturing process of the silicon steel plate in this invention will be explained.

まず出発素材は公知の製鋼方法、例えば転炉、
電気炉などによつて製鋼し、さらに造塊又は連続
鋳造などによつてスラブとした後、熱間圧延によ
つて得られる熱延コイルを用いる。
First, the starting material is prepared using a known steelmaking method, such as a converter.
A hot-rolled coil obtained by manufacturing steel using an electric furnace, forming a slab by ingot-forming or continuous casting, and then hot rolling is used.

この熱延板の成分組成は、従来公知の一方向性
けい素鋼板と同じく、例えばSi2.0〜4.0%、
Mo0.005〜0.05%、Sb0.005〜0.25%、Sあるいは
Se0.005〜0.05%を含有するけい素鋼板、Si2.0
〜4.0%、Al0.01〜0.05%、S0.005〜0.05%、
N0.001〜0.01%を含有するけい素鋼板又は
Si2.0〜4.0%、S0.005〜0.05%、B0.0003〜0.0040
%、N0.001〜0.01%を含有するけい素鋼板の如き
においても適用可能である。
The composition of this hot-rolled sheet is the same as that of conventionally known unidirectional silicon steel sheets, such as 2.0 to 4.0% Si,
Mo0.005~0.05%, Sb0.005~0.25%, S or
Silicon steel sheet containing Se0.005~0.05%, Si2.0
~4.0%, Al0.01~0.05%, S0.005~0.05%,
Silicon steel plate containing N0.001~0.01% or
Si2.0~4.0%, S0.005~0.05%, B0.0003~0.0040
%, it is also applicable to silicon steel sheets containing N0.001 to 0.01%.

熱延板は800℃〜1100℃で均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は
通常850℃から1050℃の中間焼鈍をはさんで最初
の圧下率は50%から80%程度、最終の圧下率は50
%から80%程度で冷延する2回法のいずれかにて
0.2mmから0.35mm厚の最終板厚程度とする2回冷
延法とすることができるが通常仕上り板厚は0.3
mm厚とされることが多い。
Hot-rolled sheets undergo uniform annealing at 800°C to 1100°C.
One-time cold rolling method in which the final plate thickness is obtained by cold rolling twice, or intermediate annealing is usually performed at 850°C to 1050°C, and the initial rolling reduction is about 50% to 80%, and the final rolling reduction is 50%.
% to 80% by two-step cold rolling method
It is possible to use a two-step cold rolling method to achieve a final plate thickness of 0.2 mm to 0.35 mm, but the usual finished plate thickness is 0.3 mm.
Often mm thick.

最終冷延を終り、製品板厚に仕上げた鋼板は湿
水素中で750℃から850℃で2〜15分程度の脱炭・
1次再結焼鈍が施される。
After the final cold rolling, the steel plate finished to the product thickness is decarburized in wet hydrogen at 750℃ to 850℃ for about 2 to 15 minutes.
Primary reconsolidation annealing is performed.

その後鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布し、最終焼鈍が施される。この最終焼
鈍は(110)〔001〕方位の2次再結晶粒を充分発
達させるため施されるもので通常箱焼鈍によつて
直ちに1000℃以上に昇温しその温度に保持するこ
とによつて行なわれるが、(110)〔001〕方位に高
度に揃つた2次再結晶組織を発達させるためには
820℃から900℃の低温で保定焼鈍する方が有利で
あり、そのほか例えば0.5〜15℃/hの昇温速度で
の徐熱焼鈍でも良い。この処理後の鋼板表面上に
圧延方向にほぼ直角に凹凸領域を区画形成する
が、この区画領域は通常1〜50mm間隔にて、その
ほぼ半幅にて区画形成する。また深さは1〜20μ
程度であれば充分効果を発揮し、このような区画
形成は片面でも充分効果を発揮するが、通常鋼板
の両面に区画形成する方がより効果的である。こ
の鋼板表面に凹凸を作る手法は、従来公知の化学
的あるいは機械的手法等を用いて良い。
After that, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and final annealing is performed. This final annealing is performed to sufficiently develop secondary recrystallized grains with (110) [001] orientation, and is usually performed by immediately raising the temperature to 1000°C or higher by box annealing and maintaining it at that temperature. However, in order to develop a secondary recrystallized structure highly aligned in the (110) [001] direction,
It is more advantageous to perform holding annealing at a low temperature of 820°C to 900°C, and slow annealing at a temperature increase rate of 0.5 to 15°C/h may also be used. After this treatment, uneven regions are formed on the surface of the steel sheet substantially perpendicularly to the rolling direction, and these partitioned regions are usually formed at intervals of 1 to 50 mm and approximately half the width of the uneven regions. Also, the depth is 1 to 20μ
Although it is sufficiently effective to form sections on one side, it is usually more effective to form sections on both sides of the steel plate. A conventionally known chemical or mechanical method may be used to create the unevenness on the surface of the steel plate.

このように鋼板表面を凹凸に区画形成した鋼板
に張力附加型コーテング処理を行なう。このコー
テング処理は従来の一方向性けい素鋼板のコーテ
ング液を用いて約350℃以上の温度で塗布焼付け
後または塗布焼付けの工程中約800℃〜900℃の温
度で熱処理することにより、鋼板表面の張力は鋼
板と表面被膜との熱膨脹率の差によつて鋼板表面
に区画された異張力の弾性歪を与える。
A tension coating treatment is performed on the steel plate whose surface is thus partitioned into irregularities. This coating treatment uses a conventional coating solution for unidirectional silicon steel sheets and heat-treats the surface of the steel sheet at a temperature of approximately 800°C to 900°C after coating and baking at a temperature of approximately 350℃ or higher or during the coating and baking process. The tension gives a different tension elastic strain on the steel plate surface due to the difference in coefficient of thermal expansion between the steel plate and the surface coating.

このようにして鋼板表面に異張力弾性歪を有す
る一方向性けい素鋼板が得られるが、かかる鋼板
は、従来の微小塑性歪やレーザー照射痕の高転移
密度領域を存在させる方法で得られたものと異な
り、地鉄表層部に塑性歪が存在することはない。
In this way, a unidirectional silicon steel plate having a different tensile elastic strain on the surface of the steel plate is obtained, but such a steel plate cannot be obtained by the conventional method of creating microplastic strain or a high dislocation density region of laser irradiation marks. Unlike the conventional method, there is no plastic strain in the surface layer of the steel.

(発明の効果) かくしてこの発明は通常の歪取り焼鈍において
特性が劣化しない著効をそなえる低鉄損一方向性
けい素鋼板である。
(Effects of the Invention) Thus, the present invention provides a low iron loss unidirectional silicon steel sheet which has a remarkable effect that properties do not deteriorate during normal strain relief annealing.

次に本発明を実施例について説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 C0.045%、Si3.35%、Mo0.013%、Se0.017%、
Sb0.023%を含有する熱延板を(2.7mm厚)900℃
で3分間の均一化焼鈍後950℃の中間焼鈍をはさ
んで2回の冷間圧延を施して0.3mm厚の最終冷延
板とした。その820℃の湿水素中で脱炭・1次再
結晶焼鈍を施した後、850℃で50時間の2次再結
晶焼鈍および1180℃で5時間の鈍化焼鈍を施し
た。
Example 1 C0.045%, Si3.35%, Mo0.013%, Se0.017%,
Hot-rolled plate containing 0.023% Sb (2.7mm thickness) at 900℃
After uniform annealing for 3 minutes, cold rolling was performed twice with an intermediate annealing at 950° C. to obtain a final cold rolled sheet with a thickness of 0.3 mm. After decarburization and primary recrystallization annealing in wet hydrogen at 820°C, secondary recrystallization annealing was performed at 850°C for 50 hours and blunting annealing at 1180°C for 5 hours.

その後鋼板表面を圧延方向にほぼ直角に10mm間
隔で5mm巾で深さ地鉄内約5μm深さにて除去後
ついでコロイド状シリカ30%水分散液100c.c.、リ
ン酸マグネシウム40%液80c.c.および無水クロム酸
3gと重クロム酸1.5gから成る処理液で処理し、
これを大気中で800℃1分間焼付けて絶縁被膜を
形成させた。
After that, the surface of the steel plate was removed approximately perpendicular to the rolling direction at 10 mm intervals in a width of 5 mm at a depth of approximately 5 μm within the steel base, followed by 100 c.c. of a 30% aqueous dispersion of colloidal silica and 80 c.c. of a 40% magnesium phosphate solution. c. and treated with a treatment solution consisting of 3 g of chromic anhydride and 1.5 g of dichromic acid,
This was baked in the air at 800°C for 1 minute to form an insulating film.

そのときの製品の磁気特性は次のようであつ
た。
The magnetic properties of the product at that time were as follows.

B10=1.91T、W17/50=0.96W/Kg 実施例 2 C0.043%、Si3.26%、酸可溶Al0.025%、S0.018
%、N0.0062%を含有した熱延板(2.2mm厚)を
1050℃で均一化焼鈍後急冷処理し、1回の冷間圧
延を施して0.3mm厚の最終冷延板とした。なお冷
間圧延途中は350℃の温間圧延を施した。その後
800℃で湿水素中で脱炭・1次再結晶焼鈍を施し
た後、850℃から5℃/hrで昇温して2次再結晶さ
せたあと1200℃で5時間水素中で純化焼鈍を施し
た。その後鋼板表面を圧延方向にほぼ直角に8mm
間隔で4mm巾で地鉄内約4μm深さにて除去後、
ついでコロイド状シリカ20%水分散液100c.c.、リ
ン酸アルミニウム50%水溶液60c.c.、無水クロム酸
6g、ホウ酸2gの組成のコーテイング処理液で
処理し、これを大気中で800℃で2分間焼付けて
絶縁被膜を形成させた。
B 10 = 1.91T, W 17/50 = 0.96W/Kg Example 2 C0.043%, Si3.26%, acid-soluble Al0.025%, S0.018
%, hot rolled plate (2.2mm thickness) containing N0.0062%
After uniform annealing at 1050°C, the material was rapidly cooled and cold-rolled once to obtain a final cold-rolled sheet with a thickness of 0.3 mm. Note that during cold rolling, warm rolling was performed at 350°C. after that
After decarburization and primary recrystallization annealing in wet hydrogen at 800℃, the temperature was raised from 850℃ to 5℃/hr for secondary recrystallization, and then purification annealing was performed in hydrogen at 1200℃ for 5 hours. provided. After that, the steel plate surface is 8mm approximately perpendicular to the rolling direction.
After removing it at a depth of about 4μm within the substructure with a width of 4mm at intervals,
Next, it was treated with a coating solution containing 100 c.c. of a 20% aqueous dispersion of colloidal silica, 60 c.c. of a 50% aqueous solution of aluminum phosphate, 6 g of chromic anhydride, and 2 g of boric acid, and heated at 800°C in the air. An insulating film was formed by baking for 2 minutes.

そのときの製品の磁気特性は次のようであつ
た。
The magnetic properties of the product at that time were as follows.

B10=1.93T、 W17/50=0.97W/Kg B 10 = 1.93T, W 17/50 = 0.97W/Kg

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は仕上焼鈍後の鋼板の部分表面を示す平
面図、第2図a〜cは、種々な化学研磨を施した
鋼板断面、また同図dはさらに化学研磨による凹
凸各領域にレーザー照射を加えた鋼板断面の模式
図であり、第3図は第2図のa〜dの各試料の平
均引張り応力に依存した磁気特性の変化を示す図
表である。
Figure 1 is a plan view showing the partial surface of the steel plate after finish annealing, Figure 2 a to c are cross sections of the steel plate that have been subjected to various chemical polishing, and Figure 2 d is a plan view of the surface of the steel plate after finishing annealing. FIG. 3 is a chart showing changes in magnetic properties depending on the average tensile stress of each of the samples a to d in FIG. 2.

Claims (1)

【特許請求の範囲】 1 表面に凹凸領域を区画形成した地鉄の全面
に、張力付与被膜を被成した一方向性けい素鋼板
であつて、 該鋼板表面に、該凹凸パターンに従う異張力の
働く領域を有することを特徴とする、低鉄損一方
向性けい素鋼板。 2 鋼板がその地鉄表層に、塑性歪域をもたぬ、
特許請求の範囲第1項記載の一方向性けい素鋼
板。
[Scope of Claims] 1. A unidirectional silicon steel plate in which a tension-imparting coating is applied to the entire surface of a base steel having an uneven region formed thereon, the steel plate having a different tension applied to the surface of the steel plate according to the uneven pattern. A low iron loss unidirectional silicon steel plate characterized by having a working area. 2 The steel plate does not have a plastic strain region on its surface layer.
A unidirectional silicon steel sheet according to claim 1.
JP19619183A 1983-10-21 1983-10-21 Grain-oriented silicon steel sheet causing small iron loss Granted JPS6089545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19619183A JPS6089545A (en) 1983-10-21 1983-10-21 Grain-oriented silicon steel sheet causing small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19619183A JPS6089545A (en) 1983-10-21 1983-10-21 Grain-oriented silicon steel sheet causing small iron loss

Publications (2)

Publication Number Publication Date
JPS6089545A JPS6089545A (en) 1985-05-20
JPH0332889B2 true JPH0332889B2 (en) 1991-05-15

Family

ID=16353702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19619183A Granted JPS6089545A (en) 1983-10-21 1983-10-21 Grain-oriented silicon steel sheet causing small iron loss

Country Status (1)

Country Link
JP (1) JPS6089545A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203928A (en) * 1986-03-25 1993-04-20 Kawasaki Steel Corporation Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
JP5740854B2 (en) * 2010-06-29 2015-07-01 Jfeスチール株式会社 Oriented electrical steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056525A (en) * 1973-09-21 1975-05-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056525A (en) * 1973-09-21 1975-05-17

Also Published As

Publication number Publication date
JPS6089545A (en) 1985-05-20

Similar Documents

Publication Publication Date Title
EP0033878B1 (en) Method for treating an electromagnetic steel sheet by laser-beam irradiation
JPH0369968B2 (en)
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JPH0332889B2 (en)
JPH0617137A (en) Production of grain-priented silicon steel sheet free from glass film and having high magnetic flux density
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JPH06184638A (en) Production of grain-oriented silicon steel sheet having uniform glass film and remarkably excellent in magnetic property
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH02433B2 (en)
KR100273095B1 (en) The manufacturing method of oriented electric steelsheet with low temperature slab heating
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP2001164344A (en) Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH0218392B2 (en)
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH01198430A (en) Production of grain oriented electrical steel sheet having extremely good iron loss characteristics and film adhesiveness
KR960003900B1 (en) Process for the production of oriented electrical steel sheet having excellent magnetic properties
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPH0218391B2 (en)