JPH0332203B2 - - Google Patents

Info

Publication number
JPH0332203B2
JPH0332203B2 JP61079206A JP7920686A JPH0332203B2 JP H0332203 B2 JPH0332203 B2 JP H0332203B2 JP 61079206 A JP61079206 A JP 61079206A JP 7920686 A JP7920686 A JP 7920686A JP H0332203 B2 JPH0332203 B2 JP H0332203B2
Authority
JP
Japan
Prior art keywords
double layer
electric double
voltage
sulfolane
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61079206A
Other languages
Japanese (ja)
Other versions
JPS62237715A (en
Inventor
Takeshi Morimoto
Kazuya Hiratsuka
Yasuhiro Sanada
Hiroshi Ariga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61079206A priority Critical patent/JPS62237715A/en
Priority to US07/035,866 priority patent/US4725927A/en
Publication of JPS62237715A publication Critical patent/JPS62237715A/en
Publication of JPH0332203B2 publication Critical patent/JPH0332203B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電気二重層キヤパシタに関するもので
ある。 〔従来の技術〕 従来電気二重層キヤパシタの電解液としては過
塩素酸、六フツ化リン酸、四フツ化ホウ素又はト
リフルオロメタンスルホン酸のテトラアルキルア
ンモニウム塩、アンモニウム塩、又はアルカリ金
属塩等の炭素プロピレン、γ−ブチロラクトン、
アセトニトリル、ジメチルホルムアミド、アセト
ニトリル、などの有機溶媒に溶解させた電解液が
知られている(特開昭48−50255、特開昭49−
68254、特開昭59−2324097等)。 しかしながら、これら公知の溶媒を使用する場
合には、得られるキヤパシタの耐電圧は充分なも
のではなく、また電圧を印加した状態で高温下に
さらされると、キヤパシタの定格容量が低下して
しまうという問題が残されていた。 〔発明の解決しようとする問題点〕 本発明は、従来技術における上記問題点を解消
しようとするものであり、耐電圧が高くかつ高温
下での容量劣化の少ない電気二重層キヤパシタを
提供しようとするものである。 〔問題点を解決するための手段〕 すなわち、本発明は分極性電極と電解度との界
面で形成される電気二重層を利用する電気二重層
キヤパシタにおいて、該電解液が、スルホラン、
又はその誘導体からなる溶媒に溶質を溶解させた
溶液であることを徴とする電気二重層キヤパシタ
を提供しようとするのである。 本発明において、電解質の溶媒として使用され
るスルホランの誘導体としては、好ましくは3−
メチルスルホラン、2,4−ジメチルスルホラン
などが例示され、これらスルホラン又はその誘導
体はそれぞれ単独に用いることができる。しかし
ながら、本発明では、場合により、これらスルホ
ラン又はその誘導体を混合し混合溶媒として使用
することができる。かくした場合、スルホラン単
独では凝固点が28.5℃と高いが、誘電率が大きい
特性を有し、一方3−メチルスルホランあるいは
2,4−ジメチルスルホランは凝固点が低く、低
温物性がよいため、これらの混合溶媒は、両者の
特性を兼ね備えた性質、即ち、低温特性及び大き
い誘電率をもつことができる。スルホランとその
誘導体が混合される場合、誘導体の混合量は、好
ましくは、20〜70重量%、特には30〜60重量%と
することが、十分な低温特性及び内部抵抗値を付
与するために好ましい。 上記スルホラン又はその誘導体には、もちろん
既知の他の溶媒、例えば、炭酸プロピレン、γ−
ブチロラクトン、アセトニトリルを添加して、そ
の特性を改善することができる。 本発明において、電解液の溶質の種類は特に限
定されることがなく、従来より公知ないしは周知
のものが種々採用可能である。好ましい例として
は、電気化学的に安定な溶質であるアルカリ金
属、アルカリ土類金属、アンモニウム又はラトラ
アルキルアンモニウムなどの4フツ化ホウ酸塩、
6フツ化リン酸塩、過塩素酸塩、6フツ化ヒ素酸
塩、4塩化アルミン酸塩、又はトリフルオロアル
キル(好ましくはメタン)スルホン酸塩などが使
用される。なかでも、溶媒に対する溶解度、電気
導電性、電気化学的安定性の面から、テトラアル
キルアンモニウムの4フツ化ホウ酸塩あるいは6
フツ化リン酸塩は好ましい溶質である。本発明の
電解液中のこれら溶質を好ましくは0.1〜3モル、
特には0.5〜1.5モルの濃度で溶解せしめられる。 〔実施例〕 つぎに、実施例および比較例により本発明をさ
らに具体的に説明する。 なお、以下の実施例および比較例において、試
験装置は下記のようにして組立た。 まず、内面にねじ山を設けたニツケル製円筒形
有底容器中に各々被試験電解液を含浸させた陰極
側活性炭繊維(比表面積2000m2/g、3.14cm2、0.4
mm厚)、ポリプロピレン不織布製セパレータ(4.9
cm2、0.4mm厚)、陽極側活性炭繊維(3.14m2、2mm
厚)を順次重ねて配置する。この際活性炭繊維は
セパレータを挟んで完全に対向させた配置にす
る。 つぎに、この容器に内外両面にねじ山を設けた
ポリテトラフルオロエチレン製リングをねじ込み
活性炭繊維およびセパレータの位置を固定する。 そして、白金リード線付白金網集電体(200メ
ツシユ)を先端に付けたねじ付きポリテトラフル
オロエチレン棒を前記リングの開口部にねじ込
み、白金リード線とニツケル製容器内の導通を
LCRメータ交流二端子法で確認することにより
セツトを完了する。なお、白金リード線は前記棒
の中心に設けた穴を介して外部に引きだしてあ
る。 上記のように組み立てた試験装置を使用し、第
1表に示される溶質と溶媒からなる種々の電解液
を活性炭繊維からなる陽極及び陰極電極に十分に
含浸するようにして使用したキヤパシタについて
特性を評価した。 評価項目は耐電圧の指標となる電解液の分解電
圧、および高温貯蔵後の容量維持率であり、それ
ぞれ以下の手順で測定した。 分解電圧は、試験キヤパシタをセツトした後、
直流電圧を印加して10分後の漏れ電流を測定し、
印加電圧を徐々に増加させたとき漏れ電流が急激
に立ち上る電圧を分解電圧とした。 高温貯蔵後の容量維持率(I0)の測定は次のよ
うに行なつた。まず、試験キヤパシタをセツトし
た後、2.8で1時間定電圧充電を行なう。その
後、1mAで定電流放電し、放電時の端子電圧が
1.0に至るまでの時間を測定し、その値より初
期容量(F0)算出した。 次に同試験セルを2.8の電圧を印加しながら、
85℃の恒温槽中で1000時間貯蔵した後、上記の同
様の方法で貯蔵後の容量(F)を測定し、高温貯
蔵後の容量維持率、I0=F/F0×100を算出した。 電解液の種類を変えて試験した結果を第1表に
示す。なお、試験No.10、11、12は、比較のために
従来例を示したものである。表中TEAはテトラ
エチルアンモニウム、TBAはテトラブチルアン
モニウムを表わす。
[Industrial Field of Application] The present invention relates to an electric double layer capacitor. [Prior art] Conventional electrolytes for electric double layer capacitors include carbonaceous materials such as perchloric acid, phosphoric acid hexafluoride, boron tetrafluoride, or tetraalkylammonium salts, ammonium salts, or alkali metal salts of trifluoromethanesulfonic acid. Propylene, γ-butyrolactone,
Electrolytes dissolved in organic solvents such as acetonitrile, dimethylformamide, acetonitrile, etc. are known (Japanese Patent Laid-Open Nos. 48-50255, 1973-
68254, Japanese Patent Application Publication No. 59-2324097, etc.). However, when these known solvents are used, the withstand voltage of the capacitor obtained is not sufficient, and the rated capacity of the capacitor decreases when exposed to high temperatures with voltage applied. Problems remained. [Problems to be Solved by the Invention] The present invention attempts to solve the above-mentioned problems in the prior art, and aims to provide an electric double layer capacitor that has a high withstand voltage and less capacity deterioration at high temperatures. It is something to do. [Means for Solving the Problems] That is, the present invention provides an electric double layer capacitor that utilizes an electric double layer formed at the interface between a polarizable electrode and an electrolyte, in which the electrolyte contains sulfolane,
The purpose of the present invention is to provide an electric double layer capacitor characterized by a solution in which a solute is dissolved in a solvent made of a solute or a derivative thereof. In the present invention, the sulfolane derivative used as the electrolyte solvent is preferably 3-
Examples include methylsulfolane and 2,4-dimethylsulfolane, and each of these sulfolanes or derivatives thereof can be used alone. However, in the present invention, these sulfolane or its derivatives may be mixed and used as a mixed solvent depending on the case. In this case, sulfolane alone has a high freezing point of 28.5°C but has a large dielectric constant, while 3-methylsulfolane or 2,4-dimethylsulfolane have a low freezing point and good low-temperature properties, so a mixture of these The solvent can have properties that combine both properties, ie, low temperature properties and a high dielectric constant. When sulfolane and its derivatives are mixed, the amount of the derivative mixed is preferably 20 to 70% by weight, particularly 30 to 60% by weight, in order to provide sufficient low temperature characteristics and internal resistance value. preferable. The above sulfolane or its derivatives may of course be used with other known solvents, such as propylene carbonate, γ-
Butyrolactone, acetonitrile can be added to improve its properties. In the present invention, the type of solute in the electrolytic solution is not particularly limited, and various conventionally known or well-known solutes can be employed. Preferred examples include tetrafluoroborates such as alkali metals, alkaline earth metals, ammonium or latraalkylammonium, which are electrochemically stable solutes;
Used are hexafluorophosphate, perchlorate, hexafluoroarsenate, tetrachloride aluminate, trifluoroalkyl (preferably methane) sulfonate, and the like. Among them, tetraalkyl ammonium tetrafluoroborate or
Fluorinated phosphate is a preferred solute. These solutes in the electrolyte of the present invention are preferably 0.1 to 3 mol,
In particular, it is dissolved in a concentration of 0.5 to 1.5 molar. [Example] Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In addition, in the following Examples and Comparative Examples, the test apparatus was assembled as follows. First, activated carbon fibers on the cathode side (specific surface area 2000 m 2 /g, 3.14 cm 2 , 0.4
mm thickness), polypropylene nonwoven separator (4.9
cm 2 , 0.4mm thick), activated carbon fiber on the anode side (3.14m 2 , 2mm
Thickness) are placed one on top of the other. At this time, the activated carbon fibers are placed completely opposite each other with a separator in between. Next, a ring made of polytetrafluoroethylene having threads on both the inside and outside of the container is screwed into the container to fix the positions of the activated carbon fibers and the separator. Then, a threaded polytetrafluoroethylene rod with a platinum wire mesh current collector (200 mesh) attached to the tip is screwed into the opening of the ring to establish continuity between the platinum lead wire and the inside of the nickel container.
Complete the setup by checking with the LCR meter AC two terminal method. Note that the platinum lead wire is drawn out through a hole provided at the center of the rod. Using the test apparatus assembled as described above, the characteristics of capacitors were determined by sufficiently impregnating the anode and cathode electrodes made of activated carbon fibers with various electrolytes consisting of the solutes and solvents shown in Table 1. evaluated. The evaluation items were the decomposition voltage of the electrolytic solution, which is an indicator of withstand voltage, and the capacity retention rate after high-temperature storage, and each was measured using the following procedure. The decomposition voltage is determined after setting the test capacitor.
Measure the leakage current 10 minutes after applying DC voltage,
The voltage at which the leakage current suddenly rose when the applied voltage was gradually increased was defined as the decomposition voltage. The capacity retention rate (I 0 ) after high-temperature storage was measured as follows. First, after setting the test capacitor, perform constant voltage charging for 1 hour at step 2.8. After that, constant current discharge is performed at 1mA, and the terminal voltage at the time of discharge is
The time taken to reach 1.0 was measured, and the initial capacity (F 0 ) was calculated from that value. Next, while applying a voltage of 2.8 to the same test cell,
After storing for 1000 hours in a constant temperature bath at 85°C, the capacity after storage (F) was measured using the same method as above, and the capacity retention rate after high temperature storage, I 0 = F/F 0 × 100, was calculated. . Table 1 shows the results of tests using different types of electrolyte. Note that Test Nos. 10, 11, and 12 show conventional examples for comparison. In the table, TEA represents tetraethylammonium and TBA represents tetrabutylammonium.

〔発明の効果〕〔Effect of the invention〕

本発明になるキヤパシタは、耐電圧および高温
下での容量劣化の点で従来のものより優れてお
り、その工業的価値はきわめて大である。
The capacitor of the present invention is superior to conventional capacitors in terms of withstand voltage and capacity deterioration under high temperatures, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1 分極性電極と電解液の界面で形成される電気
二重層を利用する電気二重層コンデンサにおい
て、該電解液が、スルホラン、又はその誘導体か
らなる溶媒に溶質を溶解させた溶液であることを
特徴とする電気二重層キヤパシタ。 2 スルホランの誘導体が3−メチルスルホラン
もしくは2,4−ジメチルスルホランである特許
請求の範囲第1項記載の電気二重層キヤパシタ。
[Claims] 1. An electric double layer capacitor that utilizes an electric double layer formed at the interface between a polarizable electrode and an electrolyte, in which the electrolyte has a solute dissolved in a solvent consisting of sulfolane or a derivative thereof. An electric double layer capacitor characterized in that it is a solution. 2. The electric double layer capacitor according to claim 1, wherein the sulfolane derivative is 3-methylsulfolane or 2,4-dimethylsulfolane.
JP61079206A 1986-04-08 1986-04-08 Electric double-layer capacitor Granted JPS62237715A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61079206A JPS62237715A (en) 1986-04-08 1986-04-08 Electric double-layer capacitor
US07/035,866 US4725927A (en) 1986-04-08 1987-04-08 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079206A JPS62237715A (en) 1986-04-08 1986-04-08 Electric double-layer capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6133192A Division JPH07101661B2 (en) 1994-06-15 1994-06-15 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS62237715A JPS62237715A (en) 1987-10-17
JPH0332203B2 true JPH0332203B2 (en) 1991-05-10

Family

ID=13683470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079206A Granted JPS62237715A (en) 1986-04-08 1986-04-08 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JPS62237715A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020698A1 (en) 1999-09-16 2001-03-22 Matsushita Electric Industrial Co., Ltd. Electrochemical capacitor
EP1324358A3 (en) 2001-12-11 2003-12-17 Asahi Glass Co., Ltd. Electric double layer capacitor
DE60319769T2 (en) 2002-04-22 2009-04-30 Asahi Glass Co., Ltd. Electric double layer capacitor
JPWO2005008700A1 (en) 2003-07-17 2006-11-02 旭硝子株式会社 Electric double layer capacitor
WO2008018326A1 (en) 2006-08-11 2008-02-14 Asahi Glass Company, Limited Nonaqueous electrolyte solution for electric double layer capacitor and electric double layer capacitor using the same
CN102216264B (en) 2008-11-17 2014-01-15 住友精化株式会社 Sulfone compound
JP5674390B2 (en) * 2010-09-13 2015-02-25 住友精化株式会社 Sulfone compound and non-aqueous electrolyte using the same
US9583272B2 (en) 2012-03-29 2017-02-28 Sumitomo Seika Chemicals Co., Ltd. Electrolyte solution for electrochemical devices, aluminum electrolytic capacitor, and electric double layer capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541015A (en) * 1978-09-18 1980-03-22 Hitachi Ltd Signal processing method in high speed facsimile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541015A (en) * 1978-09-18 1980-03-22 Hitachi Ltd Signal processing method in high speed facsimile

Also Published As

Publication number Publication date
JPS62237715A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US4725927A (en) Electric double layer capacitor
US5754393A (en) Electric double layer capacitor
US4725926A (en) Electric double layer capacitor having high capacity
US7411777B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
EP2037468A1 (en) Additive for electrolyte solution and electrolyte solution
JP2000150316A (en) Electrolyte for use in a capacitor
US6496357B2 (en) Metal oxide electrochemical psedocapacitor employing organic electrolyte
JPH0332203B2 (en)
JP4000603B2 (en) Electric double layer capacitor
US11948741B2 (en) Electrolyte solution for electrochemical device, and electrochemical device
JPS63173312A (en) Electric double-layer capacitor
JPH07101661B2 (en) Electric double layer capacitor
JPS62252927A (en) High capacitance electric double-layer capacitor
JPS6312122A (en) Electric double-layer capacitor
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
Watanabe et al. Capacitance and electrochemical stability of activated carbon electrodes in sulfone electrolytes for electric double layer capacitors
JPS61252619A (en) New electric double-layer capacitor
JP2005175239A5 (en)
JPS61289614A (en) Electric double layer capacitor
JPH0845792A (en) Electric double layered capacitor
JPS61252620A (en) Improved electric double-layer capacitor
JP2003324038A (en) Electrolyte for electrochemical capacitor and electrochemical capacitor using it
JPS6290919A (en) Electric double-layer capacitor
JPS61248513A (en) Improved electric double-layer capacitor
JPS61244011A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term