JPH0331795B2 - - Google Patents

Info

Publication number
JPH0331795B2
JPH0331795B2 JP60006312A JP631285A JPH0331795B2 JP H0331795 B2 JPH0331795 B2 JP H0331795B2 JP 60006312 A JP60006312 A JP 60006312A JP 631285 A JP631285 A JP 631285A JP H0331795 B2 JPH0331795 B2 JP H0331795B2
Authority
JP
Japan
Prior art keywords
plating
bath
appearance
grain size
gloss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60006312A
Other languages
Japanese (ja)
Other versions
JPS61166992A (en
Inventor
Kazuhide Ooshima
Nobukazu Suzuki
Satoshi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP631285A priority Critical patent/JPS61166992A/en
Publication of JPS61166992A publication Critical patent/JPS61166992A/en
Publication of JPH0331795B2 publication Critical patent/JPH0331795B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、電気亜鉛メツキ方法に関し、さらに
詳細には、硫酸浴、塩化浴等の酸性浴を使用しな
がら、良好な外観と光沢を有する電気亜鉛メツキ
材を製造することのできる方法に関する。 (従来の技術) 一般に、電気亜鉛メツキ鋼材は、溶融メツキ鋼
材と比べて、皮膜の均一性および外観において優
れているため、自動車、家電、建材用途等に広く
用いられている。 この電気亜鉛レツキに使用されるメツキ浴とし
ては、シアン浴が特に均一電着性および光沢にお
いて優れている。ところが、シアン浴は公害問題
のため使用することができず、このため、現在で
はノンシアン浴として、ジンケート浴をはじめと
して硫酸浴、塩化浴が一般に用いられている。そ
して、特に、生産性向上を目的とする高速メツキ
ラインでは、硫酸浴、塩化浴等の酸性浴が主流と
なつている。 しかしながら、これらの浴では、やはり、均一
電着性(メツキのつきまわり性)および光沢にお
いて、シアン浴には及ばず、これが酸性浴の欠点
となつていた。 すなわち、亜鉛メツキ外観および光沢等の表面
特性は、つぎのような理由により、製造側にとつ
ては無視できない重要な項目となつている。従
来、亜鉛メツキ鋼板は塗装下地用として用いられ
ていたが、最近では、ユーザー側からの塗装省略
要求によつて、亜鉛メツキの上にクロメート、有
機樹脂コーテイングを施し、耐食性、耐指紋性に
優れた表面処理鋼板として裸のまま使用されるこ
とが多くなつてきている。この場合、亜鉛メツキ
の外観、光沢は製品の外観、光沢としてそのまま
反映される。したがつて、いかにして鏡面光沢を
有し外観の美麗なメツキを施すかが重要な課題と
なつている。 そこで、たとえば硫酸酸性浴による亜鉛メツキ
の外観を改善する方法として、 (1) デキストリン、グリセリン、グルコース、フ
ルフラール等の有機添加剤をメツキ浴に添加す
る方法(「電気化学」vol.52,No.5(1984)
p286)、 (2) メツキ浴中にSrCO3,BaCO3を添加してメ
ツキ浴を浄化する方法(特公昭53−18170号公
報)、等が提案されている。 (発明が解決しようとする問題点) しかしながら、上記(1)の方法は、有機添加剤が
実際にカソード界面に吸着され、レベリング作用
(平滑化作用)により光沢を改善する効果は有す
るものの、添加剤の濃度管理範囲は狭く、しかも
分析上、管理が困難であり、特に操業時にメツキ
浴組成の変動しやすい高速高電流密度メツキで
は、製品の均質性が保証されない問題がある。ま
た、添加剤自体カソード界面で還元され、実際に
亜鉛皮膜中に取り込まれるため、添加剤によつて
はメツキの耐食性、クロメート反応性を劣化させ
る問題がある。 また、上記(2)の方法についても、(1)の方法と同
様に、分析管理上の煩雑さと、亜鉛中に微量の
Sr,Baが共析することによる皮膜特性の劣化の
問題がある。 (問題点を解決するための手段) 本発明の発明者らは、上記したように、メツキ
浴中に有機添加剤を添加する従来の方法が種々の
問題点を有していることに鑑みて、メツキ外観に
及ぼすメツキ母材側の要因に着目して鋭意研究し
たところ、亜鉛の初期電析過程において、結晶方
位(集合組織)または結晶粒度(すなわち結晶粒
径)が優先因子であることを知見して本発明を成
すに到つた。 さらに詳細に説明すると、硫酸酸性電気メツキ
として、第1表に示す浴組成を用い、各種冷延鋼
材をメツキ母材として、第1表に示す電析条件で
電気亜鉛メツキを施したところ、第1図に示すよ
うな結果が得られた。すなわち、メツキ母材の表
面結晶粒度をJIS G 0552に示される粒度No.7.0
以上(すなわち結晶粒径35μ以下)とすることに
より、メツキ外観の良好なメツキ材を容易に得ら
れることが判明した。 第 1 表 ZnSO4・7H2O 350g/ Na2SO4 50g/ CH3COONa 10g/ PH:1.8 温度:60℃ 電流密度:40A/dm2 目付量:30g/m2 そこで、本発明は、酸性亜鉛メツキを施すに際
し、メツキ母材として、表面粒度がNo.7.0〜10(す
なわち結晶粒径35μ〜10μ)、好ましくはNo.8〜
10、展伸率が1.0〜2.0の微細な結晶粒を持つ鋼材
を選択し、この鋼材をPH1〜2.5のメツキ浴で、
たとえば第1表に示すような条件で亜鉛メツキを
施すことを特徴とするものである。ここでいう、
粒度No.、展伸率は鋼板圧延面に垂直な方向から見
た際の表面結晶粒度、展伸率のことであり、その
算出値は、JIS G 0552に従う値とされる。又こ
こでいう、結晶粒径とは単位面積(1mm2)当りの
結晶粒の数から、すべての結晶粒を球として換算
した平均直径のことである。 本発明で母材の表面結晶粒度をNo.7.0以上(す
なわち結晶粒径35μ以下)と規定したのは、第1
図から明らかなように、No.7.0以上の細かな結晶
の場合に、メツキ外観をきめ細かな、平滑観、光
沢に優れたものとする効果が顕著だからであり、
またNo.8以上とすることにより一層美麗で光沢の
あるメツキを安定して製造することができる。と
ころが、一方、粒度No.10を超える(すなわち結晶
粒径10μ未満となると)と、新らたに成形性の問
題が生じることとなる。 母材の展伸率を1.0〜2.0としたのは、母材の粒
形をなるべく球状形に近づけることによりメツキ
の外観・光沢を向上させることができるからであ
る。このような母材は、鋼板の連続焼鈍や浸炭処
理により製造供給することができる。 一方、酸性浴での亜鉛メツキの光沢は、一般に
メツキ条件(PH,温度、電流密度等)の影響をも
受けることが知られているが、上記のような母材
を用いるメツキ材の外観は、第2図に示すように
PHの影響を強く受け、PH1〜2.5の間で良好な光
沢が得られる。PHが1未満の場合には、強酸によ
る設備上の問題があり、好ましくない。 (作用) 一般に、多結晶上に電析する亜鉛の結晶形態
は、硫酸浴(添加剤を加えないもの)の場合、断
層(六角状)を呈する。ある一定の方向性を持つ
断層結晶がそれぞれ大きく成長すると、キラキラ
し、外観は劣る(第3図a)。これに対して、断
層結晶が全体に微細なものは、外観もきめ細か
く、平滑観、光沢に優れている(第3図b)。な
お、第3図はSEM観察によるスケツチである。 一方、亜鉛の電析時、結晶の成長方位は下地
(母材)の結晶方位の影響を受け、金属の酸化現
象等でよく観察されるエピタキシヤル効果と類似
の現象が生じる。このエピタキシヤル効果に係る
母材の結晶類は最表面のものである。 メツキ母材がたとえば冷延鋼板のように多結晶
体である場合、亜鉛結晶はフエライト結晶粒1つ
づつに対応して相互に競合しながら成長する(第
4図)。このとき、フエライト結晶粒が小さけれ
ば小さいほど、この競合が高まり、結果的に第3
図bに示すような結晶形態となる。そして、きめ
細かな、良好な外観を呈す。さらに特定的に言え
ば、第1図からも明らかなように、JIS G 0552
の表面粒度No.7.0〜10の場合、十分良好な外観・
光沢が得られる。さらに、メツキ浴のPHを2.5以
下とすることにより、メツキに及ぼすメツキ浴PH
の影響を最も好ましいものとすることができる。 (実施例) 種々の表面結晶粒度および展伸率を有する鋼板
に、第2表に示す酸性浴を基本浴として亜鉛メツ
キを施し、メツキ外観および光沢を評価した。そ
の結果を、第5図および第6図に示す。
(Industrial Application Field) The present invention relates to an electrogalvanizing method, and more specifically, to producing an electrogalvanized material having good appearance and gloss while using an acidic bath such as a sulfuric acid bath or a chloride bath. Regarding how it can be done. (Prior Art) Generally, electrogalvanized steel materials are superior to hot-dip galvanized steel materials in terms of film uniformity and appearance, and are therefore widely used in automobiles, home appliances, building materials, and the like. As a plating bath used in this electrolytic zinc retouching, a cyan bath is particularly excellent in uniform electrodeposition and gloss. However, cyanide baths cannot be used due to pollution problems, and for this reason, zincate baths, sulfuric acid baths, and chloride baths are generally used as non-cyanide baths at present. In particular, in high-speed plating lines aimed at improving productivity, acidic baths such as sulfuric acid baths and chloride baths are mainstream. However, these baths are still inferior to cyan baths in terms of uniform electrodeposition (plating coverage) and gloss, which is a drawback of acidic baths. That is, surface characteristics such as galvanized appearance and gloss are important items that cannot be ignored by manufacturers for the following reasons. Conventionally, galvanized steel sheets were used as a base for painting, but recently, in response to requests from users to omit painting, chromate and organic resin coatings have been applied on top of the galvanized steel sheets, resulting in excellent corrosion resistance and anti-fingerprint properties. Increasingly, it is being used as a bare surface-treated steel sheet. In this case, the appearance and gloss of galvanizing are directly reflected as the appearance and gloss of the product. Therefore, it has become an important issue how to apply plating that has a specular luster and a beautiful appearance. Therefore, as a method to improve the appearance of zinc plating using a sulfuric acid acid bath, for example, (1) a method of adding organic additives such as dextrin, glycerin, glucose, furfural, etc. to the plating bath ("Electrochemistry" vol. 52, No. 5 (1984)
(2) A method of purifying a plating bath by adding SrCO 3 and BaCO 3 to the plating bath (Japanese Patent Publication No. 18170/1983), etc. have been proposed. (Problem to be Solved by the Invention) However, in the method (1) above, the organic additive is actually adsorbed on the cathode interface, and although it has the effect of improving gloss through a leveling effect (smoothing effect), The concentration control range of the agent is narrow and analytically difficult to control. Especially in high-speed, high-current density plating where the plating bath composition tends to fluctuate during operation, there is a problem that product homogeneity cannot be guaranteed. Further, since the additive itself is reduced at the cathode interface and actually incorporated into the zinc film, there is a problem that some additives deteriorate the corrosion resistance and chromate reactivity of plating. In addition, as with method (1), method (2) above also suffers from the complexity of analytical management and the small amount of zinc in the zinc.
There is a problem of deterioration of film properties due to eutectoid deposition of Sr and Ba. (Means for Solving the Problems) In view of the fact that the conventional method of adding organic additives to plating baths has various problems as described above, the inventors of the present invention , through intensive research focusing on the factors of the plating base material that affect the plating appearance, it was found that crystal orientation (texture) or crystal grain size (i.e., crystal grain size) are the priority factors in the initial zinc deposition process. Based on these findings, we have arrived at the present invention. To explain in more detail, electrogalvanizing was carried out under the electrodeposition conditions shown in Table 1 using various cold rolled steel materials as plating base materials using the bath composition shown in Table 1 for sulfuric acid acid electroplating. The results shown in Figure 1 were obtained. In other words, the surface grain size of the plating base material is the grain size No. 7.0 shown in JIS G 0552.
It has been found that a plating material with a good plating appearance can be easily obtained by setting the crystal grain size to 35 μm or less. Table 1 ZnSO 4・7H 2 O 350 g / Na 2 SO 4 50 g / CH 3 COONa 10 g / PH: 1.8 Temperature: 60°C Current density: 40 A/dm 2 basis weight: 30 g/m 2 Therefore, the present invention When applying zinc plating, the surface grain size of the plating base material is No. 7.0 to 10 (i.e., crystal grain size 35 μ to 10 μ), preferably No. 8 to 10.
10. Select a steel material with fine grains with an elongation ratio of 1.0 to 2.0, and heat this steel material in a plating bath with a pH of 1 to 2.5.
For example, it is characterized by galvanizing under the conditions shown in Table 1. Here,
Grain size No. and elongation rate refer to the surface crystal grain size and elongation rate when viewed from the direction perpendicular to the rolling surface of the steel plate, and the calculated values are in accordance with JIS G 0552. The crystal grain size as used herein is the average diameter calculated from the number of crystal grains per unit area (1 mm 2 ), assuming that all crystal grains are spheres. The reason why the surface grain size of the base material is specified as No. 7.0 or more (i.e., grain size 35μ or less) in the present invention is because of the first
As is clear from the figure, in the case of fine crystals of No. 7.0 or higher, the effect of making the plating appearance fine, smooth, and glossy is remarkable.
Moreover, by using No. 8 or higher, more beautiful and glossy plating can be stably produced. However, on the other hand, if the grain size exceeds No. 10 (that is, if the crystal grain size becomes less than 10 μm), new moldability problems will arise. The reason why the elongation rate of the base material is set to 1.0 to 2.0 is that the appearance and gloss of the plating can be improved by making the grain shape of the base material as close to a spherical shape as possible. Such a base material can be manufactured and supplied by continuous annealing or carburizing treatment of a steel plate. On the other hand, it is known that the gloss of zinc plating in an acidic bath is generally affected by the plating conditions (PH, temperature, current density, etc.), but the appearance of the plating materials using the above base material is , as shown in Fig. 2
It is strongly influenced by pH, and good gloss can be obtained between pH 1 and 2.5. If the pH is less than 1, there will be equipment problems due to strong acids, which is not preferable. (Function) In general, the crystalline form of zinc deposited on polycrystals exhibits a cross-section (hexagonal shape) in the case of a sulfuric acid bath (without additives). When each fault crystal with a certain direction grows large, it becomes shiny and its appearance becomes inferior (Figure 3a). On the other hand, those with fine fault crystals as a whole have a fine appearance, smooth appearance, and excellent gloss (Fig. 3b). Note that Figure 3 is a sketch obtained by SEM observation. On the other hand, during zinc electrodeposition, the crystal growth direction is influenced by the crystal orientation of the underlying (base material), and a phenomenon similar to the epitaxial effect often observed in metal oxidation phenomena occurs. The crystals of the base material related to this epitaxial effect are those on the outermost surface. When the plating base material is polycrystalline, such as a cold-rolled steel sheet, zinc crystals grow in competition with each other, corresponding to each ferrite crystal grain (FIG. 4). At this time, the smaller the ferrite crystal grains, the more this competition increases, and as a result, the third
The crystal form is as shown in Figure b. Moreover, it exhibits a fine and good appearance. More specifically, as is clear from Figure 1, JIS G 0552
If the surface particle size is No. 7.0 to 10, a sufficiently good appearance and
Provides gloss. Furthermore, by setting the PH of the plating bath to 2.5 or less, the PH of the plating bath that affects the plating is reduced.
The influence of can be made most favorable. (Example) Steel plates having various surface grain sizes and elongation ratios were galvanized using the acid bath shown in Table 2 as a basic bath, and the plating appearance and gloss were evaluated. The results are shown in FIGS. 5 and 6.

【表】 第4〜6図から明らかなように、被メツキ材
(メツキ母材)の表面結晶粒度をNo.7.0〜10、展伸
率を1.0〜2.0とし、PH1〜2.5のメツキ浴でメツキ
を施すことにより、外観に優れた鏡面光沢のある
亜鉛メツキが製造される。 (発明の効果) 上記したように、本発明によれば、硫酸浴、塩
化浴等の酸性浴を使用しながら、きわめて外観の
優れたメツキ鋼材を製造することができる。ま
た、本発明は、問題の多かつた従来のメツキ浴へ
の有機添加剤添加方法のかわりに、母材側からの
アプローチを採用したもので、メツキ母材の表面
結晶粒度を細かくするとともに、メツキ浴PHを管
理することにより、メツキ外観を改善するもので
あるから、添加剤の濃度管理上の困難性がなく、
きわめて容易に安定した効果を得ることができ
る。また、皮膜自体の特性をほとんど変えずに外
観(光沢)を良好にするものであるので、耐食
性、クロメート処理性等のメツキ特性の劣化を問
題がなく、さらに、高速(高電流密度)メツキラ
インにも適用できる利点がある。
[Table] As is clear from Figures 4 to 6, the surface grain size of the material to be plated (base material for plating) is No. 7.0 to 10, the elongation rate is 1.0 to 2.0, and the plated material is plated in a plating bath with a pH of 1 to 2.5. By applying this process, zinc plating with an excellent appearance and a mirror-like luster is produced. (Effects of the Invention) As described above, according to the present invention, a plated steel material having an extremely excellent appearance can be manufactured while using an acidic bath such as a sulfuric acid bath or a chloride bath. In addition, the present invention adopts an approach from the base material side instead of the conventional method of adding organic additives to the plating bath, which had many problems, and reduces the surface crystal grain size of the plating base material. Since the plating appearance is improved by controlling the plating bath pH, there is no difficulty in controlling the concentration of additives.
Stable effects can be obtained very easily. In addition, since it improves the appearance (gloss) without changing the properties of the film itself, there is no problem with deterioration of plating properties such as corrosion resistance and chromate treatment properties, and it is also suitable for high-speed (high current density) plating lines. It also has the advantage of being applicable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は被メツキ材の表面結晶粒度No.とメツキ
外観との関係を示すグラフ、第2図はメツキ浴PH
とメツキ光沢との関係を示すグラフ、第3図a,
bはSEM観察によるメツキ表面の結晶形態を示
す模式図、第4図は多結晶上の亜鉛電析成長の模
式図、第5図は硫酸亜鉛浴メツキの場合の被メツ
キ材表面結晶粒度No.とメツキ外観および光沢との
関係を示すグラフ、第6図は塩化亜鉛浴メツキの
場合の被メツキ材表面結晶粒度No.とメツキ外観お
よび光沢との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the surface grain size number of the plated material and the plating appearance, and Figure 2 is the plating bath PH.
Graph showing the relationship between and matte gloss, Figure 3a,
b is a schematic diagram showing the crystal morphology of the plating surface observed by SEM, Fig. 4 is a schematic diagram of zinc electrodeposition growth on polycrystals, and Fig. 5 is the crystal grain size No. on the surface of the plated material in the case of zinc sulfate bath plating. FIG. 6 is a graph showing the relationship between the surface grain size number of the plated material and the plating appearance and gloss in the case of zinc chloride bath plating.

Claims (1)

【特許請求の範囲】[Claims] 1 酸性浴電気亜鉛メツキにおいて、被メツキ材
として、JIS G 0552の鋼のフエライト結晶粒度
試験方法による表面結晶粒度がNo.7.0〜No.10、展
伸率が1.0〜2.0の鋼材を使用するとともに、メツ
キ浴のPHを1.0〜2.5の範囲でメツキすることを特
徴とする電気亜鉛メツキ方法。
1. In acid bath electrogalvanizing, a steel material with a surface grain size of No. 7.0 to No. 10 and an elongation ratio of 1.0 to 2.0 according to the JIS G 0552 steel ferrite grain size test method is used as the material to be plated. , an electrogalvanizing method characterized by plating at a pH of a plating bath in the range of 1.0 to 2.5.
JP631285A 1985-01-17 1985-01-17 Electric galvanizing method Granted JPS61166992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP631285A JPS61166992A (en) 1985-01-17 1985-01-17 Electric galvanizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP631285A JPS61166992A (en) 1985-01-17 1985-01-17 Electric galvanizing method

Publications (2)

Publication Number Publication Date
JPS61166992A JPS61166992A (en) 1986-07-28
JPH0331795B2 true JPH0331795B2 (en) 1991-05-08

Family

ID=11634851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP631285A Granted JPS61166992A (en) 1985-01-17 1985-01-17 Electric galvanizing method

Country Status (1)

Country Link
JP (1) JPS61166992A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138516A (en) * 1975-05-27 1976-11-30 Nippon Steel Corp Process for producing cold rolled steel sheet having excellent pressforming properties by low temperature heating of slab
JPS5352222A (en) * 1976-10-25 1978-05-12 Kawasaki Steel Co Ultra low carbon* cold rolled steel sheets excellent in cold workability
JPS56130429A (en) * 1980-03-13 1981-10-13 Sumitomo Metal Ind Ltd Production of high-tensile cold rolled steel sheet of superior deep drawability
JPS5727960A (en) * 1980-07-24 1982-02-15 Minisuterusutobo Sutoroiterusu Concrete mixture and manufacture of chemically stable structure and product therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138516A (en) * 1975-05-27 1976-11-30 Nippon Steel Corp Process for producing cold rolled steel sheet having excellent pressforming properties by low temperature heating of slab
JPS5352222A (en) * 1976-10-25 1978-05-12 Kawasaki Steel Co Ultra low carbon* cold rolled steel sheets excellent in cold workability
JPS56130429A (en) * 1980-03-13 1981-10-13 Sumitomo Metal Ind Ltd Production of high-tensile cold rolled steel sheet of superior deep drawability
JPS5727960A (en) * 1980-07-24 1982-02-15 Minisuterusutobo Sutoroiterusu Concrete mixture and manufacture of chemically stable structure and product therefrom

Also Published As

Publication number Publication date
JPS61166992A (en) 1986-07-28

Similar Documents

Publication Publication Date Title
US4407900A (en) Electroplated corrosion resistant steels and method for manufacturing same
KR0175967B1 (en) Steel plate plated with zinc and method for preparation of the same
US4249999A (en) Electrolytic zinc-nickel alloy plating
JPH0136559B2 (en)
US4036600A (en) Steel substrate electroplated with Al powder dispersed in Zn
JPH0443992B2 (en)
JPH07331483A (en) Production of electrogalvanized steel sheet
JPH0331795B2 (en)
JP2812228B2 (en) Electrogalvanized steel sheet and its manufacturing method
JP2001040494A (en) Electrogalvanized steel sheet excellent in surface appearance and its production
JPH07238387A (en) Electrogalvanized steel sheet excellent in uniformity and appearance
JPH0849091A (en) Production of electrogalvanized steel sheet
JP3267797B2 (en) Manufacturing method of electrogalvanized steel sheet with excellent surface appearance
JPH0776794A (en) Electrogalvanized steel sheet excellent in uniform appearance
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
KR100554755B1 (en) Method for Manufacturing Electro-Galvanized Steel Sheets with Superior Surface Hardness and Appearance
KR100979047B1 (en) Electro-Galvanizing Additive for Excellent Adhesion, Flatness and Surface Appearance, Manufacturing Method Thereof and Plating Method Using it
KR100909692B1 (en) Manufacturing method of electro galvanized steel sheet with excellent surface hardness and surface appearance
JPS58210193A (en) Iron-zinc alloy electroplated steel plate having excellent phosphatability
JPH055912B2 (en)
JPS58141398A (en) Corrosion-resistant steel plate electroplated with zinc alloy and having high deep drawability and its manufacture
JPH09256192A (en) Production of electrogalvanized steel sheet and surface treated galvanized steel sheet excellent in uniformity in plating appearance
JPH08134688A (en) Electrogalvanized steel sheet excellent in surface appearance and its production
JPH0368793A (en) Surface-treated material having superior chemical convertibility and production thereof
JPH08104995A (en) Production of electrogalvanized steel sheet excellent in appearance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term