JPH0331608B2 - - Google Patents

Info

Publication number
JPH0331608B2
JPH0331608B2 JP60294228A JP29422885A JPH0331608B2 JP H0331608 B2 JPH0331608 B2 JP H0331608B2 JP 60294228 A JP60294228 A JP 60294228A JP 29422885 A JP29422885 A JP 29422885A JP H0331608 B2 JPH0331608 B2 JP H0331608B2
Authority
JP
Japan
Prior art keywords
duty
vehicle speed
speed
calculated
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60294228A
Other languages
Japanese (ja)
Other versions
JPS62168728A (en
Inventor
Masaki Hitotsuya
Akira Myazaki
Minoru Takahashi
Tatsuo Teratani
Takeshi Tachibana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP29422885A priority Critical patent/JPS62168728A/en
Priority to EP86202379A priority patent/EP0227198B1/en
Priority to CA000526319A priority patent/CA1292301C/en
Priority to DE8686202379T priority patent/DE3678408D1/en
Priority to US06/948,134 priority patent/US4870583A/en
Publication of JPS62168728A publication Critical patent/JPS62168728A/en
Publication of JPH0331608B2 publication Critical patent/JPH0331608B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、デユーテイ制御型の定速走行制御装
置に関し、特に設定車速と実車速の差(以下、車
速偏差ΔVと呼ぶ)を零に制御するために、早い
積分要素1と遅い積分要素2の2つを設け、車速
偏差を急速に減少させる制御と緩かに車速偏差を
零にする制御を同時に実施し、また、車速加速度
がある値を越えた場合は、この2つの積分要素を
加速度に応じて急激に変化させ、車速の変化を小
さくしようとするものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a duty control type constant speed cruise control device, and in particular to a device for controlling the difference between a set vehicle speed and an actual vehicle speed (hereinafter referred to as vehicle speed deviation ΔV) to zero. In order to achieve this, two integration elements, fast integration element 1 and slow integration element 2, are provided, and control to rapidly reduce the vehicle speed deviation and control to gently reduce the vehicle speed deviation to zero are simultaneously performed, and the vehicle speed acceleration is controlled to a certain value. If the value exceeds , these two integral elements are rapidly changed in accordance with the acceleration in an attempt to reduce the change in vehicle speed.

(従来の技術) デユーテイ制御式の定速走行制御装置は、目標
車速(設定車速)で定速走行するのに必要なデユ
ーテイ値をセツトデユーテイとし、目標車速と走
行車速の差に応じたデユーテイ量をセツトデユー
テイに加算または減算して出力しながら定速走行
制御を行なうものである。しかし、必要デユーテ
イ量は、アクチユエータ、スロツトル駆動系およ
びエンジンの特性のばらつき路面勾配、エアコン
等エンジン負荷の有無、変速ギア段等車両負荷の
変化によつて変わるものであり、セツトデユーテ
イ固定では、必要デユーテイ量との差に応じた車
速偏差が発生する。
(Prior art) A duty control type constant speed driving control device sets the duty value necessary for constant speed driving at a target vehicle speed (set vehicle speed) as the set duty, and sets the duty amount according to the difference between the target vehicle speed and the traveling vehicle speed. Constant speed driving control is performed while adding or subtracting from the set duty and outputting the result. However, the required duty amount varies depending on variations in the characteristics of the actuator, throttle drive system, and engine, road slope, the presence or absence of an engine load such as an air conditioner, and changes in the vehicle load such as transmission gears. A vehicle speed deviation occurs depending on the difference between the

第6図はこの種の定速走行制御装置の一例を示
すシステム構成図で、制御器ECUは車両駆動軸
の回転に比例して回転する磁石によつてON/
OFFするリードスイツチを備えた車速センサか
らの信号により走行車速を検知する。ECUはセ
ツトスイツチがONされると走行車速を記憶し、
OFF後アクチユエータACTのコントロールバル
ブをデユーテイ制御する。コントロールバルブ
ON時は負圧が導入され、スロツトルSLにリンク
したダイアフラム発生力を高める。OFF時は大
気が導入されダイアフラム発生力を弱める。この
間制御中はリリースバルブをONとし、大気をし
や断している。キヤンセル信号(クラツチスイツ
チ(A/T車はニユートラルスタートスイツチ)、
パーキングスイツチ、またはブレーキスイツチ)
が入力されると、コントロールバルブ,リリース
バルブ共OFFとし、両方から大気を導入してす
みやかに制御を停止させる。キヤンセル後リジユ
ームスイツチをONすると、前回記憶車速での走
行制御が復活される。
Figure 6 is a system configuration diagram showing an example of this type of constant speed cruise control device.The controller ECU is turned on/off by a magnet that rotates in proportion to the rotation of the vehicle drive shaft.
The vehicle speed is detected by the signal from the vehicle speed sensor, which is equipped with a reed switch that turns off. When the set switch is turned on, the ECU memorizes the vehicle speed and
After OFF, the control valve of actuator ACT is duty-controlled. control valve
When ON, negative pressure is introduced, increasing the force generated by the diaphragm linked to the throttle SL. When OFF, atmospheric air is introduced and weakens the diaphragm generating force. During this time, the release valve is turned on to cut off the atmosphere. Cancel signal (clutch switch (neutral start switch for A/T vehicles),
parking switch or brake switch)
When input, both the control valve and release valve are turned OFF, atmospheric air is introduced from both, and the control is immediately stopped. If you turn on the resume switch after canceling, driving control at the previously memorized vehicle speed will be restored.

ECUにはマイクロコンピユータを使用し、そ
こでの処理をブロツク化すると第7図のようにな
る。コントロールバルブをオン,オフ制御する出
力デユーテイDはメモリに記憶された目標車速
VMと走行車速Vnの差に応じて決められるが、詳
細には走行車速Vnそのものではなく、車速変化
成分(微分成分)を加算したスキヤツプ車速Vs
を用いる。これはアクチユエータの作動遅れやス
ロツトル、駆動系のヒステリシスや遊びによるむ
だ時間を進み補償するためである。従つて、スキ
ツプ車速Vsは次式により求められる。
A microcomputer is used for the ECU, and the processing there is divided into blocks as shown in Figure 7. The output duty D that controls the control valve on and off is the target vehicle speed stored in memory.
It is determined according to the difference between V M and the traveling vehicle speed Vn, but in detail, it is not the traveling vehicle speed Vn itself, but the skip vehicle speed Vs that is the sum of the vehicle speed change component (differential component).
Use. This is to advance and compensate for dead time due to actuator delay, throttle, drive system hysteresis, and play. Therefore, the skip vehicle speed Vs is determined by the following formula.

Vs=Vn+K×(Vn−Vo-1) ……(1) Vn:現車速 Vo-1:前回車速 K:比例定数 また、出力デユーテイDは次式により求められ
る。
Vs=Vn+K×(Vn−V o-1 ) (1) Vn: Current vehicle speed V o-1 : Previous vehicle speed K: Proportionality constant Further, the output duty D is determined by the following equation.

D=G×ΔV+SD0 ……(2) G:ゲイン SD0:セツトデユーテイ ΔV:車速偏差(=VM−Vs) 〔発明が解決しようとする問題点〕 上述した定速走行制御装置は、車速が変化した
とき第8図に示す制御線上で出力デユーテイDを
変化させ、該車速を設定車速VMに収束させよう
とする。この制御線の勾配がゲインGである。こ
の制御における重要な点は、設定車速を維持する
デユーテイを制御中心にもつてくる事である。し
かし従来の方式は制御中心になるべきデユーテイ
(前述したセツトデユーテイSD0)を一つもしく
は車速だけに応じたデユーテイしかもつておら
ず、実際には車両,路面,重量,車速等によつて
さまざまな値をとる必要がある事のギヤツプか
ら、車速偏差ΔVの発生を避ける事ができなかつ
た。例えば、第8図のように、ある設定車速で走
行するためにはAなるデユーテイが必要であると
すると、車速は線にそつて低下していきデユーテ
イと車速のつり合うB点で走行する事になり、こ
の車速差がセツト偏差として残る。そのためこの
様な車両で定速走行する状態は第9図の如くな
り、走行速度が路面負荷によつて変化する。
D=G×ΔV+SD 0 ...(2) G: Gain SD 0 : Set duty ΔV: Vehicle speed deviation (=V M −Vs) [Problem to be solved by the invention] The constant speed cruise control device described above is When the vehicle speed changes, the output duty D is changed on the control line shown in FIG. 8 in an attempt to converge the vehicle speed to the set vehicle speed V M. The slope of this control line is the gain G. The important point in this control is to focus on the duty of maintaining the set vehicle speed. However, conventional systems only have one duty (the aforementioned set duty SD 0 ) that should be the center of control, or only have a duty that depends only on the vehicle speed, and in reality, it has various values depending on the vehicle, road surface, weight, vehicle speed, etc. Due to the gap that it is necessary to take, the occurrence of vehicle speed deviation ΔV could not be avoided. For example, as shown in Figure 8, if a duty of A is required to drive at a certain set speed, the vehicle speed will decrease along the line and the vehicle will travel at point B where the duty and vehicle speed are balanced. This vehicle speed difference remains as a set deviation. Therefore, the state in which such a vehicle is traveling at a constant speed is as shown in FIG. 9, and the traveling speed changes depending on the road surface load.

上述したセツト偏差は制御線がC点を通るよう
に修正されれば0になる。本発明はその一手法を
提案するものである。
The above-mentioned set deviation becomes 0 if the control line is corrected so as to pass through point C. The present invention proposes one such method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、スロツトル開度を調整するアクチユ
エータのコントロールバルブを、車速とデユーテ
イの変換特性を示す所定勾配の制御線から得られ
る出力デユーテイDでオン,オフ制御し、実際の
走行車速を記憶された目標車速に接近させるデユ
ーテイ制御型の定速走行制御装置において、該目
標車速に対応するセツトデユーテイSDを SD=SD1+(DM−SD1)/n で計算し、また出力デユーテイDを D=G×ΔV+SD G:制御線の勾配 ΔV:車速偏差 DM:デユーテイ変化に早く応答する積分要素 SD1:デユーテイ変化に遅く応答する積分要素 n:定数 で計算し、さらに車速加速度ΔVnが一定値を越
えたときは DM←DM−A・ΔVn SD1←SD1−B・ΔVn {A,B:定数(単位は%デユーテイ/加速
度) なる補正式へDM,SD1を急変させて、該セツト
デーテイSDを出力デユーテイDに接近する方向
へ積分修正する制御器を備えたことを特徴とす
る、ものである。
In the present invention, a control valve of an actuator that adjusts the throttle opening is controlled on and off by an output duty D obtained from a control line with a predetermined slope indicating the conversion characteristics between vehicle speed and duty, and the actual traveling vehicle speed is memorized. In a duty control type constant speed cruise control device that approaches the target vehicle speed, the set duty SD corresponding to the target vehicle speed is calculated as SD=SD1+(DM-SD1)/n, and the output duty D is calculated as D=G×ΔV+SD G : Slope of control line ΔV: Vehicle speed deviation DM: Integral element that responds quickly to duty changes SD1: Integral element that responds slowly to duty changes n: Calculated using a constant, and when vehicle speed acceleration ΔVn exceeds a certain value, DM← DM-A・ΔVn SD1←SD1-B・ΔVn {A, B: constant (unit: % duty/acceleration) Change DM, SD1 suddenly to the correction formula, and move the set date SD toward the output duty D. The invention is characterized in that it is equipped with a controller that performs integral correction.

〔作用〕[Effect]

本発明では出力デユーテイDを D=G×ΔV+SD ……(3) で計算する。SDは可変セツトデユーテイで、 SD=SD1+(DM−SD1)/n ……(4) で表わされる。DMは高速積分要素で、デユーテ
イの変化(車速の変化とも言える)に対し早く応
答してセツト偏差を減少させる機能を持つ。動作
概念としては、第1図aに示すように偏差を減少
させる方向へ制御線を高速回転させるものであ
る。これに対しSD1は低速積分要素で、デユーテ
イの変化に対し遅く応答してセツト偏差を減少さ
せる機能を持つ。動作概念としては第1図bに示
すように偏差を減少させる方向へ制御線を平行移
動させるものである。
In the present invention, the output duty D is calculated as D=G×ΔV+SD (3). SD is a variable set duty and is expressed as SD=SD1+(DM-SD1)/n (4). DM is a high-speed integral element that has the function of quickly responding to changes in duty (also known as changes in vehicle speed) and reducing set deviation. The operating concept is to rotate the control line at high speed in a direction that reduces the deviation, as shown in Figure 1a. On the other hand, SD1 is a low-speed integral element that responds slowly to changes in duty and has the function of reducing set deviation. The concept of operation is to move the control line in parallel in a direction that reduces the deviation, as shown in FIG. 1b.

MD,SD1共に初期値は(2)式のSD0に相当し、
デユーテイDの変化に対し第2図のように変化す
る。同図aは平坦路から登坂路に移つて車速が低
下(デユーテイが増加)する場合の動作例であ
り、同図bは下り坂を含む動作例である。同図a
に示すように車速変化に伴ないデユーテイDが変
化すると、DM,SD1は共に変化し始めるが、
DMの方が応答が早いので先ずDMが追従する。
そして、SD1が遅れて追従するので総合的なSD
は1点鎖線のように変化し、やがてデユーテイD
に一致する。これはSDがSD0からD=Aまで移
動するためで、このとき(3)式はΔV=0,SD=A
で安定する。
The initial values of both MD and SD1 correspond to SD 0 in equation (2),
It changes as shown in FIG. 2 in response to a change in duty D. Figure a shows an operation example when the vehicle speed decreases (duty increases) as the vehicle moves from a flat road to an uphill road, and figure b shows an operation example including a downhill road. Figure a
As shown in , when the duty D changes with the change in vehicle speed, both DM and SD1 start to change.
Since DM responds faster, DM follows first.
And since SD1 follows with a delay, the overall SD
changes like a dashed line, and eventually the duty D
matches. This is because SD moves from SD 0 to D=A, and in this case, equation (3) is ΔV=0, SD=A
becomes stable.

出力デユーテイDは(3),(4)式から D=G×ΔV+{SD1+(DM−SD1)/n}
……(5) と表わされる。
The output duty D is calculated from equations (3) and (4): D=G×ΔV+{SD1+(DM-SD1)/n}
...(5)

第3図は本発明の基本フローチヤートで、第7
図のブロツク図に対応するものである。これらの
処理は50msec毎に実行される。まず、車速セン
サの出力に基づき現在の車速を計算する。次いで
高速積分要素DMを算出するが、本例では高速積
分要素DMを出力デユーテイDとの差に比例して
変化させるようにしている。つまり、 DM(i)=DM(i-1)+α として今回の要素DM(i)を前回DM(i-1)よりαだ
け変化させるようにし、このαを例えば α=(D(i)−DM(i-1)/K で算出する。従つて今回のデユーテイD(i)と前回
の要素DM(i-1)との差が反映されて、修正速度が
可変されるようになる(Kは定数)。
FIG. 3 is a basic flowchart of the present invention, and the seventh
This corresponds to the block diagram in the figure. These processes are executed every 50 msec. First, the current vehicle speed is calculated based on the output of the vehicle speed sensor. Next, the high-speed integral element DM is calculated, and in this example, the high-speed integral element DM is changed in proportion to the difference from the output duty D. In other words, DM(i) = DM (i-1) + α, so that the current element DM(i) is changed from the previous DM (i-1) by α, and this α is, for example, α = (D(i)− Calculated as DM (i-1) /K. Therefore, the difference between the current duty D(i) and the previous element DM (i-1) is reflected, and the correction speed is varied (K is a constant).

次に、低速積分要素SD1を算出する。この低速
積分要素SD1はαより小さい変数βを用いて SD1(i)=SD1(i-1)+β により算出される。このβを固定値とすれば修正
速度は一定になる。例えば D(i-1)>SD1(i-1)のときβ=0.2% D(i-1)<SD1(i-1)のときβ=−0.2% とする。
Next, calculate the low-speed integral element SD1. This slow integral element SD1 is calculated using the variable β smaller than α as follows: SD1(i)=SD1 (i-1) +β. If this β is set to a fixed value, the correction speed will be constant. For example, when D (i-1) > SD1 (i-1), β = 0.2%, and when D (i-1) < SD1 (i-1) , β = -0.2%.

このようにして各時点の高速積分要素DMと低
速積分要素SD1が求まれば、次のステツプでこれ
を(4)式に代入してセツトデユーテイSDが算出さ
れ、このセツトデユーテイSDと車速偏差ΔVを基
に次のステツプで(3)式より出力デユーテイDが算
出され、出力ポートよりデユーテイ制御信号が出
力される。従つて、路面変化等が生じ車速偏差が
生じると、(3)式より、まず出力デユーテイDが変
化し、この出力デユーテイDに追従するよう高速
積分要素DMと低速積分要素SD1が変化し、これ
によりセツトデユーテイSDが変化する。そして、
その路面勾配に対応したセツトデユーテイまで変
化した時点でセツトデユーテイSDは落ちつくこ
とになる。
Once the high-speed integral element DM and low-speed integral element SD1 at each point in time are determined in this way, the set duty SD is calculated by substituting them into equation (4) in the next step, and the set duty SD is calculated based on this set duty SD and the vehicle speed deviation ΔV. In the next step, the output duty D is calculated from equation (3), and a duty control signal is output from the output port. Therefore, when a road surface change occurs and a vehicle speed deviation occurs, from equation (3), the output duty D changes first, and the high speed integral element DM and the low speed integral element SD1 change to follow this output duty D, and this The set duty SD changes accordingly. and,
The set duty SD will settle down when the set duty SD changes to correspond to the road surface slope.

ところで、上述した制御方法はデユーテイの動
きに応じ速い積分要素1(DM)とゆつくりした
積分要素2(SD1)の中間点を中心としてデユー
テイ計算をする方法をとつており、路面変動等に
は速い積分要素の動きによつて応答することをね
らいとしているが、一般的走行状態においてDM
の動きが速すぎると、ゲインが大きくなりすぎ車
速ハンチングにつながるため、あまり速い動きは
できない。このため、急激な変化等の速い応答を
要求されるときは、このままでは制御が遅れがち
になり、車速のオーバーシユート、アンダーシユ
ートが大きくなりすぎる結果となる。そこで、本
発明では車速加速度ΔVnがある一定値を越える
と、各積分要素から加速度に比例した値を減算す
ることによつて急激な変化への速い応答性を付与
し、制御の遅れを防止する。
By the way, the above-mentioned control method uses a method of calculating the duty centering on the midpoint between the fast integral element 1 (DM) and the slow integral element 2 (SD1) according to the movement of the duty, and the The aim is to respond by fast movement of the integral element, but under normal driving conditions the DM
If the movement is too fast, the gain becomes too large, leading to vehicle speed hunting, so it is not possible to move very fast. For this reason, when a quick response such as a sudden change is required, control tends to be delayed if left as is, resulting in excessive overshoot and undershoot of the vehicle speed. Therefore, in the present invention, when the vehicle speed acceleration ΔVn exceeds a certain value, a value proportional to the acceleration is subtracted from each integral element to provide quick response to sudden changes and prevent control delays. .

具体的にはDMからはA・ΔVnを減算し、また
SD1からはB・ΔVnを減算する。A,Bは定数
で、単位は%デユーテイ/加速度である。
Specifically, subtract A・ΔVn from DM, and
Subtract B·ΔVn from SD1. A and B are constants, and the unit is % duty/acceleration.

〔実施例〕〔Example〕

第4図は本発明の一実施例を示すフローチヤー
トで、第3図のフローに破線枠内の処理を追加し
たものである。即ち、高速積分要素DMを算出し
た後、加速度が1.25Km/h/sec以上か否かを判
断し、以下なら低速積分要素SD1の算出ステツプ
に移り、以上ならDMの急変処理を行う。即ち、 DM←DM−A・ΔVo ……(9) においてA=4とし、これによりDMを急変させ
る。その後SD1の算出ステツプに移る。SD1が算
出されると、再び加速度が1.25Km/h/sec以上
か否かを判断し、以下なら、次のデユーテイ計算
ステツプへ移り、以上ならSD1の急変処理を行
う。即ち、 SD1←SD1−B・ΔVo ……(10) においてB=1とし、これによりSD1を急変させ
る。その後デユーテイ計算ステツプへ移る。この
ように加速度ΔVoが例えば1.25Km/h/secを越
えるとDMからは4・ΔVnが、またSD1からは
ΔVnが減算される。このことによりDM,SD1は
急激に変化する。但し、ΔVnは加速時に+、減
速時に−の符号をとるので、デユーテイを下げる
ときはDM,SD1共に減少し、逆に上げるときは
DM,SD1共に増加する。
FIG. 4 is a flowchart showing one embodiment of the present invention, in which processing within the dashed line frame is added to the flow of FIG. 3. That is, after calculating the high-speed integral element DM, it is determined whether the acceleration is 1.25 Km/h/sec or more, and if the acceleration is less than 1.25 km/h/sec, the process moves to the step of calculating the low-speed integral element SD1, and if it is above, the sudden change process of DM is performed. That is, DM←DM−A·ΔV o (9), A=4, and thereby DM is suddenly changed. After that, the process moves to the step of calculating SD1. Once SD1 is calculated, it is determined again whether the acceleration is 1.25 Km/h/sec or more. If it is less than 1.25 km/h/sec, the process moves to the next duty calculation step, and if it is more than 1.25 Km/h/sec, sudden change processing of SD1 is performed. That is, SD1←SD1−B·ΔV o (10), B=1, and SD1 is thereby suddenly changed. After that, the process moves to the duty calculation step. In this way, when the acceleration ΔV o exceeds, for example, 1.25 Km/h/sec, 4·ΔVn is subtracted from DM and ΔVn is subtracted from SD1. As a result, DM and SD1 change rapidly. However, ΔVn takes a + sign when accelerating and a - sign when decelerating, so when lowering the duty, both DM and SD1 decrease, and conversely when increasing it,
Both DM and SD1 increase.

第5図はこの動作説明図で、(a)は第3図の基本
方式によるもの、(b)は第4図の改良方式によるも
のである。同図bのデユーテイ変化は(a)よりも急
峻になり、この結果路面勾配が急変しても車速変
化は小さく抑えられる。
FIG. 5 is an explanatory diagram of this operation, in which (a) is based on the basic method shown in FIG. 3, and (b) is based on the improved method shown in FIG. 4. The duty change shown in FIG. 2B is steeper than that shown in FIG. 6A, and as a result, even if the road surface gradient changes suddenly, the change in vehicle speed can be kept small.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、路面変化等
によりセツトデユーテイの移動が必要な時は要素
DMの動きにより動的ゲインを大きくとり、車速
偏差を小さくおさえつつ要素SD1を移動させてい
く事で、車速の変動を小さく抑えながら、車速偏
差を零にする事が可能となる。また、加速度が一
定値を越えたらDM,SD1を加速度に比例して変
化させるので、路面勾配の急変時にも車速偏差を
小さく抑え、安定した制御性を確保することがで
きる。
As described above, according to the present invention, when it is necessary to move the set duty due to changes in the road surface, etc.
By increasing the dynamic gain through the movement of DM and moving element SD1 while keeping the vehicle speed deviation small, it is possible to reduce the vehicle speed deviation to zero while keeping the vehicle speed variation small. Furthermore, since DM and SD1 are changed in proportion to the acceleration when the acceleration exceeds a certain value, it is possible to keep the vehicle speed deviation small even when the road surface slope suddenly changes, and to ensure stable controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は本発明
の動作説明図、第3図は本発明の基本フローチヤ
ート、第4図は本発明の一実施例を示すフローチ
ヤート、第5図は第3図および第4図の動作説明
図、第6図はデユーテイ制御型定速走行装置のシ
ステム構成図、第7図はそのマイコン処理のブロ
ツク図、第8図は従来のデユーテイ制御の特性
図、第9図はその動作説明図である。 図中、ECUは制御器、ACTはアクチユエータ、
SLはスロツトルである。
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a diagram explaining the operation of the present invention, FIG. 3 is a basic flow chart of the present invention, FIG. 4 is a flow chart showing an embodiment of the present invention, and FIG. The figure is an explanatory diagram of the operation of Figs. 3 and 4, Fig. 6 is a system configuration diagram of the duty control type constant speed traveling device, Fig. 7 is a block diagram of its microcomputer processing, and Fig. 8 is a diagram of the conventional duty control type constant speed traveling device. The characteristic diagram, FIG. 9, is an explanatory diagram of its operation. In the diagram, ECU is a controller, ACT is an actuator,
SL is throttle.

Claims (1)

【特許請求の範囲】 1 スロツトル開度を調整するアクチユエータの
コントロールバルブを、車速とデユーテイの変換
特性を示す所定勾配の制御線から得られる出力デ
ユーテイDでオン,オフ制御し、実際の走行車速
を記憶された目標車速に接近させるデユーテイ制
御型の定速走行制御装置において、該目標車速に
対応するセツトデユーテイSDを SD=SD1+(DM−SD1)/n で計算し、また出力デユーテイDを D=G×ΔV+SD G:制御線の勾配 ΔV:車速偏差 DM:デユーテイ変化に早く応答する積分要素 SD1:デユーテイ変化に遅く応答する積分要素 n:定数 で計算し、さらに車速加速度ΔVnが一定値を越
えたときは DM←DM−A・ΔVn SD1←SD1−B・ΔVn {A,B:定数(単位は%デユーテイ/加速
度)なる補正式でDM,SD1を急変させて、該セ
ツトデーテイSDを出力デユーテイDに接近する
方向へ積分修正する制御器を備えたことを特徴と
する、デユーテイ制御型の定速走行制御装置。
[Claims] 1. A control valve of an actuator that adjusts the throttle opening is controlled on and off using an output duty D obtained from a control line with a predetermined slope indicating the conversion characteristics between vehicle speed and duty, and the actual traveling vehicle speed is controlled. In a duty control type constant speed cruise control device that approaches a stored target vehicle speed, the set duty SD corresponding to the target vehicle speed is calculated as SD=SD1+(DM-SD1)/n, and the output duty D is calculated as D=G. ×ΔV+SD G: Gradient of control line ΔV: Vehicle speed deviation DM: Integral element that responds quickly to duty changes SD1: Integral element that responds slowly to duty changes n: Calculated using a constant, and when vehicle speed acceleration ΔVn exceeds a certain value is DM←DM-A・ΔVn SD1←SD1−B・ΔVn {A, B: constants (unit: % duty/acceleration) By suddenly changing DM, SD1, the set date SD approaches the output duty D. A duty control type constant speed travel control device, characterized in that it is equipped with a controller that performs integral correction in the direction of
JP29422885A 1985-12-26 1985-12-26 Duty control type constant speed traveling controller Granted JPS62168728A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29422885A JPS62168728A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller
EP86202379A EP0227198B1 (en) 1985-12-26 1986-12-24 A constant speed cruise control system of duty ratio control type and a leading angle control method thereof
CA000526319A CA1292301C (en) 1985-12-26 1986-12-24 Constant speed cruise control system of duty ratio control type and a leading angle control method thereof
DE8686202379T DE3678408D1 (en) 1985-12-26 1986-12-24 SYSTEM FOR SPEED CONTROL BY ADJUSTING THE SOLAR POWER AND A METHOD FOR REGULATING WITH PHASE PREFERENCE.
US06/948,134 US4870583A (en) 1985-12-26 1986-12-29 Constant speed cruise control system of the duty ratio control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29422885A JPS62168728A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller

Publications (2)

Publication Number Publication Date
JPS62168728A JPS62168728A (en) 1987-07-25
JPH0331608B2 true JPH0331608B2 (en) 1991-05-07

Family

ID=17804997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29422885A Granted JPS62168728A (en) 1985-12-26 1985-12-26 Duty control type constant speed traveling controller

Country Status (1)

Country Link
JP (1) JPS62168728A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069942B2 (en) * 1986-04-14 1994-02-09 富士通テン株式会社 Advance control method for constant speed traveling device
JPS62199528A (en) * 1986-02-27 1987-09-03 Fujitsu Ten Ltd Spark advance control method of constant driving system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667417A (en) * 1979-11-07 1981-06-06 Hitachi Ltd Car speed control unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667417A (en) * 1979-11-07 1981-06-06 Hitachi Ltd Car speed control unit

Also Published As

Publication number Publication date
JPS62168728A (en) 1987-07-25

Similar Documents

Publication Publication Date Title
JPH0429573B2 (en)
JPH0523969B2 (en)
JPH03156135A (en) Driving wheel slip controller for vehicle
JPH0331608B2 (en)
JP3518174B2 (en) Vehicle follow-up running control device
JPH0331609B2 (en)
JPH0331606B2 (en)
JPH0331607B2 (en)
JP3591015B2 (en) Constant-speed cruise control system for vehicles
JPH054254B2 (en)
JPH08282330A (en) Follow-up travel controller for vehicle
JP3155089B2 (en) Vehicle control device
JPH043335B2 (en)
JPS62168734A (en) Duty control type constant speed traveling controller
JPH054255B2 (en)
JPH07304349A (en) Constant speed traveling controller for vehicle
JPH043334B2 (en)
JPS642819Y2 (en)
JPH08169251A (en) Follow-up travel control device for vehicle
JPS63106144A (en) Constant speed drive unit for automobile
JPH01125529A (en) Drive force controller for vehicle
JPS62120237A (en) Constant speed traveling device for automobile
JPH02258429A (en) Constant-speed running device for vehicle
JPH0518741B2 (en)
JPS62120235A (en) Constant speed traveling device for automobile