JPH0330427A - Low temperature formation of insulating film - Google Patents

Low temperature formation of insulating film

Info

Publication number
JPH0330427A
JPH0330427A JP16392689A JP16392689A JPH0330427A JP H0330427 A JPH0330427 A JP H0330427A JP 16392689 A JP16392689 A JP 16392689A JP 16392689 A JP16392689 A JP 16392689A JP H0330427 A JPH0330427 A JP H0330427A
Authority
JP
Japan
Prior art keywords
coated
film
collodion
mixed solution
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16392689A
Other languages
Japanese (ja)
Inventor
Nobuo Miyamoto
信雄 宮本
Michio Niwano
道夫 庭野
Koji Honma
孝治 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEMITORONIKUSU KK
Original Assignee
KEMITORONIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEMITORONIKUSU KK filed Critical KEMITORONIKUSU KK
Priority to JP16392689A priority Critical patent/JPH0330427A/en
Publication of JPH0330427A publication Critical patent/JPH0330427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an insulating film easily at low oxidation temperature by a method wherein a substrate is coated with a mixed solution comprising tetraethoxysilane, collodion and an organic solvent and then the coated film is irradiated with ultraviolet rays. CONSTITUTION:A substrate of semiconductor, etc., is coated with a mixed solution comprising collodion, tetraethoxysilane (TEOS) and an organic solvent and then the coated film is irradiated with ultraviolet rays to form a silicon dioxide thin film. For example, as for the material of the coated film, the mixed solution of TEOS, collodion and acetate in the volume mixing ratio of 6:2:1 or 4:2:1 is used to be spin coated on a silicon wafer by a spinner and then dried up in room temperature for five minutes. Finally, the silicon wafer coated with the said film is mounted on a specimen base 1 and then irradiated with the ultraviolet rays from a low pressure mercury lamp 2 in the atmosphere of nitrogen fed from a leading-in pipe 3 at a distance of 2cm for 60 minutes.

Description

【発明の詳細な説明】 〔産業上の利用分Il!F ) 本発明は、半導体素子などにおいて用いられる絶縁膜の
製造方法に関し、特に100度C以下の低温で二酸化シ
リコン絶縁膜の形成を可能にする方法に関するものであ
る。この絶縁膜の低温形成法は、次凹代の高密度LSI
の開発において必要不可欠の技法である。
[Detailed Description of the Invention] [Industrial Application Il! F) The present invention relates to a method for manufacturing an insulating film used in semiconductor devices, etc., and particularly to a method that enables the formation of a silicon dioxide insulating film at a low temperature of 100 degrees Celsius or lower. This low-temperature formation method for insulating films is suitable for high-density LSIs with sub-concave margins.
This is an essential technique in the development of

〔従来の技術〕[Conventional technology]

従来、酸化膜の低温形成力として提案されている方法は
光励起化学蒸着法(Pl)OtO−indtlcedC
IIQIiCal vapor Deposition
 、略して光CVDと呼ぶ)である。この方法において
は、原料ガスを化学反応槽に導入し、そのガスを光励起
することによって化学反応を促進させ、基板上に酸化膜
を堆積させる。化学反応に必要なエネルギーとして熱エ
ネルギーの代わりに光エネルギーを用いるため酸化膜形
勢温度の低温化が可能になる。しかし、この方法の問題
点としては、特殊な反応槽が必要とされること、また、
特別なガス供給システムが必要とされることが挙げられ
る。また、膜形成に必要とされる以上のガス量を反応槽
に供給しなければならないことも大きな欠点である。こ
れらの問題点は、量産性、低コスト化を困難とする。半
導体デバイスの高密度化、高性能化のなめには、絶縁膜
の形成温度の低下が必須とされている。また、生産能力
の向上および生産設備の単純化もまた重要な課題となっ
ている。一方、量産を可能にする簡便な方法としては、
S OG (5pin−on−Glass )法が挙げ
られる。この方法は、シラノールなどのSOG溶液を基
板上に回転塗布し、熱処理を加えることによって酸化膜
形成を図るもので、多層AI配線の平坦化技術として一
部実用化されている。しかしこの方法は、熱処理温度は
400〜500度Cと比較的高いという欠点がある。
Conventionally, the method proposed for low-temperature formation of oxide films is photoactivated chemical vapor deposition (Pl) OtO-indtlcedC.
IIQIiCal vapor Deposition
(abbreviated as photo-CVD). In this method, a raw material gas is introduced into a chemical reaction tank and the gas is excited with light to promote a chemical reaction and deposit an oxide film on the substrate. Since light energy is used instead of thermal energy as the energy required for chemical reactions, it is possible to lower the temperature of the oxide film. However, problems with this method include the need for a special reaction tank, and
It is mentioned that a special gas supply system is required. Another major drawback is that a larger amount of gas than is required for film formation must be supplied to the reaction tank. These problems make mass production and cost reduction difficult. In order to increase the density and performance of semiconductor devices, it is essential to lower the formation temperature of insulating films. In addition, improving production capacity and simplifying production equipment are also important issues. On the other hand, as a simple method to enable mass production,
An example is the SOG (5 pin-on-glass) method. This method attempts to form an oxide film by spin-coating a SOG solution such as silanol onto a substrate and applying heat treatment, and has been partially put into practical use as a planarization technique for multilayer AI wiring. However, this method has the disadvantage that the heat treatment temperature is relatively high at 400 to 500 degrees Celsius.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、これらの問題点を解決することにある
。すなわち、簡便で、しかも酸化温度の低い絶縁膜形成
法を見いだすことである。
An object of the present invention is to solve these problems. That is, the goal is to find a method for forming an insulating film that is simple and has a low oxidation temperature.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、酸化膜形成のための原料としてテトラエト
キシシラン(S i (OC2t(s ) a、以下T
EO8と略す)とコロジオンにトロセルロースを有機溶
媒に溶かしたもの)の混合溶液を用い、この溶液を基板
上に塗布し、その塗布膜に窒素雰囲気中で紫外線を照射
することによって達成される。
The above purpose is to use tetraethoxysilane (S i (OC2t(s) a) as a raw material for oxide film formation.
This is achieved by using a mixed solution of collodion (abbreviated as EO8) and collodion (collodion and trocellulose dissolved in an organic solvent), coating this solution on a substrate, and irradiating the coated film with ultraviolet rays in a nitrogen atmosphere.

〔作用〕[Effect]

TEOSは常温において非常に揮発性の高い液体であり
、空気に晒すと空気中の水分と加水分解反応を起こして
二酸化シリコンを形成する。
TEOS is a highly volatile liquid at room temperature, and when exposed to air, it undergoes a hydrolysis reaction with moisture in the air to form silicon dioxide.

そこで、本発明においては、TEOSをニトロセルロー
スの混合溶液であるコロジオンに溶かし、TEOSが蒸
発することと加水分解することを防ぐ。ニトロセルロー
スはm雄状の物質であるなめ、TEOSとコロジオンの
混合液を基板上に塗布すると、ニトロセルロースは三次
元網目構造を形成し、これが担体となって″F区O8を
保持する。ニトロセルロースは紫外光に対して非常に反
応性が高く、紫外線照射をすると光分解を起こして二酸
化炭素、水、二酸化窒素などになって塗布膜より脱離す
る。一方、T EO8は紫外線照射によって光分解し、
二酸化シリコンとなって基板上に堆積する。光CVDの
場合と同様に、本発明においては酸化のためのエネルギ
ーとして光エネルギーを利用するなめ、酸化温度の低温
化が可能となる。
Therefore, in the present invention, TEOS is dissolved in collodion, which is a mixed solution of nitrocellulose, to prevent evaporation and hydrolysis of TEOS. Since nitrocellulose is a male-like substance, when a mixed solution of TEOS and collodion is applied onto a substrate, nitrocellulose forms a three-dimensional network structure, which acts as a carrier and holds the "F" section O8. Cellulose is highly reactive to ultraviolet light, and when irradiated with ultraviolet light, it photodecomposes and becomes carbon dioxide, water, nitrogen dioxide, etc., which are released from the coating film.On the other hand, TEO8 reacts with light when exposed to ultraviolet light. Disassemble,
It becomes silicon dioxide and is deposited on the substrate. As in the case of photo-CVD, the present invention uses light energy as the energy for oxidation, so it is possible to lower the oxidation temperature.

〔実施例〕〔Example〕

次に実施例により本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to Examples.

塗布膜の原料はTEOSとコロジオンおよびア七トンの
混合溶液で、混合比は体積比で6:2:1ないし4:2
+1である。TEOSはトーレシリコーン製で、純度は
99.5%である。
The raw material for the coating film is a mixed solution of TEOS, collodion, and a7ton, and the mixing ratio is 6:2:1 to 4:2 by volume.
+1. TEOS is manufactured by Torre Silicone and has a purity of 99.5%.

コロジオンは和光線薬製で、使用した溶液の1ml中の
成分は硝化度10〜12.5%のニトロセルロース40
g、エチルエーテル700m1、エタノール250m1
である。混合溶液をスピナーによりシリコンウェーハ上
に回転塗布し、5分間室温乾燥した9回転塗布時のスピ
ナーの回転数は5000rpmとした。なお、シリコン
ウェーハの表面は、この塗布工程の前に弗酸処理により
洗浄した。
Collodion is manufactured by Wako Shinyaku, and the ingredients in 1ml of the solution used are nitrocellulose 40 with a degree of nitrification of 10 to 12.5%.
g, ethyl ether 700ml, ethanol 250ml
It is. The mixed solution was spin-coated onto a silicon wafer using a spinner, and the spinner was rotated at 5000 rpm during nine spins and dried at room temperature for 5 minutes. Note that the surface of the silicon wafer was cleaned by hydrofluoric acid treatment before this coating step.

第1図に、紫外線照射に用いた装置の概略図を示したが
、このようにして塗布膜を形成したシリコンウェーハを
試料台1の上に置き、低圧水銀ランプ2(ケミトロニク
ス製、W250型、66W)からの紫外線を導入管3か
ら供給される窒素の分団気中で60分間、2cmの距離
から照射しな。本装置においては、試料台lと紫外線ラ
ンプ2とを含む照射室4はアルミニウム製であり、さら
にその外側には、反応系を窒素雰囲気に保つため、グロ
ーブボックス5を設置している。なお、導入された窒素
および、反応生成物は排気管6により糸外に排出される
。低圧水銀ランプからの紫外線の主成分は、波長が18
5nmと254 n rr+の二種類である。照射光強
度は254nmにおいて約3 m W / c m ”
であり、この時のウェーハの温度は60度C程度であっ
た。窒素雰囲気中で照射する理由は、空気中の酸素によ
る紫外線の吸収を防ぐためである。
Figure 1 shows a schematic diagram of the equipment used for ultraviolet irradiation.The silicon wafer on which the coating film was formed in this way was placed on the sample stage 1, and a low-pressure mercury lamp 2 (manufactured by Chemitronics, model W250) was placed on the sample stage 1. , 66W) from a distance of 2 cm for 60 minutes in a nitrogen atmosphere supplied from the introduction tube 3. In this apparatus, an irradiation chamber 4 including a sample stage 1 and an ultraviolet lamp 2 is made of aluminum, and a glove box 5 is installed outside the irradiation chamber 4 in order to maintain the reaction system in a nitrogen atmosphere. Note that the introduced nitrogen and reaction products are discharged to the outside of the yarn through the exhaust pipe 6. The main component of ultraviolet light from a low-pressure mercury lamp has a wavelength of 18
There are two types: 5 nm and 254 n rr+. The irradiation light intensity is approximately 3 mW/cm” at 254 nm.
The temperature of the wafer at this time was about 60 degrees Celsius. The reason for irradiating in a nitrogen atmosphere is to prevent absorption of ultraviolet rays by oxygen in the air.

以上の処理によって形成されな酸化膜の膜厚は80nm
であった。本発明の方法によって形成できる酸化膜の膜
厚は、混合溶液の粘度とスピナーの回転数によって制御
できる。スピナーの回転数を調節することによって得ら
れる最大膜厚は200nmである。
The thickness of the oxide film formed by the above treatment is 80 nm.
Met. The thickness of the oxide film that can be formed by the method of the present invention can be controlled by the viscosity of the mixed solution and the rotation speed of the spinner. The maximum film thickness obtained by adjusting the rotation speed of the spinner is 200 nm.

膜質を同定するなめ、赤外線吸収法による分析を行った
。結果を第二図に示す。図の上部の曲線が紫外線照射前
の測定結果、下部の曲線が同照射後の測定結果である9
図中の記号は、各吸収ピークの成因となる化学結合を表
す。有機物に起因する吸収(−C)[、による]300
および3000cm−’付近の吸収、C=O結合による
1600cm−’の吸収)が紫外線の照射後に消失して
おり、赤外吸収スペクトルから、TE01を含む混合物
が紫外線により分解し二酸化シリコンj模が形成された
ことがわかる。
In order to identify the film quality, we conducted an analysis using infrared absorption method. The results are shown in Figure 2. The upper curve in the figure is the measurement result before UV irradiation, and the lower curve is the measurement result after the same irradiation9.
The symbols in the figure represent chemical bonds that cause each absorption peak. Absorption due to organic matter (-C) [by] 300
and absorption near 3000 cm-' and absorption at 1600 cm-' due to C=O bonds) disappeared after irradiation with ultraviolet light, and from the infrared absorption spectrum, the mixture containing TE01 was decomposed by ultraviolet light and a silicon dioxide model was formed. I know what happened.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、二酸化シリコン絶縁膜を低温で、しか
も非常に簡便な方法で形成できる。
According to the present invention, a silicon dioxide insulating film can be formed at low temperature and by a very simple method.

一つの応用例として、多層AI配線が挙げられる。この
配線の層間絶縁膜を形成する場合には、基板温度を35
0度C以下に抑える必要がある。
One application example is multilayer AI wiring. When forming an interlayer insulating film for this wiring, the substrate temperature should be increased to 35°C.
It is necessary to keep the temperature below 0 degrees Celsius.

このような低温に熱処理温度を抑えることは、従来の熱
酸化膜形成法や、CVD法においては不可能に近い。こ
の点、本発明においては低温酸化膜形成が可能であり、
従ってこの層間絶縁膜形成を可能にする。しかも簡便で
あることから量産化に最適である。
It is nearly impossible to suppress the heat treatment temperature to such a low temperature using conventional thermal oxide film forming methods or CVD methods. In this regard, in the present invention, low-temperature oxide film formation is possible,
Therefore, it is possible to form this interlayer insulating film. Moreover, since it is simple, it is ideal for mass production.

池の例として、本発明で成膜される酸化膜はLSI製造
工程の最終段階である傑護膜形成工程にも活用できる。
As an example, the oxide film formed according to the present invention can also be used in the protective film forming process, which is the final stage of the LSI manufacturing process.

立体的な層状構造が形成された最終段階のデバイスにお
いてはできるだけ低温で保護膜被覆することが要求され
る。この場合にも本発明は最適である。したがって、本
発明の方法は次巴代の高密度LSI実現に対し多大の寄
与をすると期待できる。
In the final stage of a device in which a three-dimensional layered structure is formed, it is required to coat the device with a protective film at as low a temperature as possible. The present invention is also optimal in this case. Therefore, the method of the present invention can be expected to make a significant contribution to the realization of next-generation high-density LSIs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いた酸化膜形成装置の概略
図、第2図は本発明で形成された酸化膜の赤外吸収スペ
クトルである。 1・・・資料台  2・・・低圧水銀ランプ3・・・窒
素導入管  4・・・照射室5・・・グローブボックス
  6・・・排気管剤1■ M2図 濾誼
FIG. 1 is a schematic diagram of an oxide film forming apparatus used in an example of the present invention, and FIG. 2 is an infrared absorption spectrum of an oxide film formed according to the present invention. 1...Data table 2...Low pressure mercury lamp 3...Nitrogen introduction tube 4...Irradiation chamber 5...Glove box 6...Exhaust pipe agent 1■ M2 diagram filter

Claims (1)

【特許請求の範囲】[Claims] コロジオンとテトラエトキシシランおよび有機溶媒から
成る混合溶液を半導体等の基板上に塗布し、その塗布膜
に紫外線を照射することによって二酸化シリコンン薄膜
を形成することを特徴とする絶縁膜形成法。
An insulating film forming method characterized by coating a mixed solution of collodion, tetraethoxysilane, and an organic solvent on a substrate such as a semiconductor, and forming a silicon dioxide thin film by irradiating the coated film with ultraviolet rays.
JP16392689A 1989-06-28 1989-06-28 Low temperature formation of insulating film Pending JPH0330427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16392689A JPH0330427A (en) 1989-06-28 1989-06-28 Low temperature formation of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16392689A JPH0330427A (en) 1989-06-28 1989-06-28 Low temperature formation of insulating film

Publications (1)

Publication Number Publication Date
JPH0330427A true JPH0330427A (en) 1991-02-08

Family

ID=15783449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16392689A Pending JPH0330427A (en) 1989-06-28 1989-06-28 Low temperature formation of insulating film

Country Status (1)

Country Link
JP (1) JPH0330427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088908A1 (en) 2006-02-02 2007-08-09 Jsr Corporation Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device
US7291567B2 (en) 2004-07-23 2007-11-06 Jsr Corporation Silica-based film, method of forming the same, composition for forming insulating film for semiconductor device, interconnect structure, and semiconductor device
US7399715B2 (en) 2004-07-09 2008-07-15 Jsr Corporation Organic silica-based film, method of forming the same, composition for forming insulating film for semiconductor device, interconnect structure, and semiconductor device
US8268403B2 (en) 2004-05-11 2012-09-18 Jsr Corporation Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268403B2 (en) 2004-05-11 2012-09-18 Jsr Corporation Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
US7399715B2 (en) 2004-07-09 2008-07-15 Jsr Corporation Organic silica-based film, method of forming the same, composition for forming insulating film for semiconductor device, interconnect structure, and semiconductor device
US7932295B2 (en) 2004-07-09 2011-04-26 Jsr Corporation Organic silica-based film, method of forming the same, composition for forming insulating film for semiconductor device, interconnect structure, and semiconductor device
US7291567B2 (en) 2004-07-23 2007-11-06 Jsr Corporation Silica-based film, method of forming the same, composition for forming insulating film for semiconductor device, interconnect structure, and semiconductor device
WO2007088908A1 (en) 2006-02-02 2007-08-09 Jsr Corporation Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device
US7893538B2 (en) 2006-02-02 2011-02-22 Jsr Corporation Organic silica film and method for forming same, composition for forming insulating film of semiconductor device and method for producing same, wiring structure and semiconductor device

Similar Documents

Publication Publication Date Title
US6037275A (en) Nanoporous silica via combined stream deposition
KR100298100B1 (en) Polysilazane-based coating solution for the formation of interlayer insulating coating film and Method for the formation of silicon dioxide-based interlayer insulating coating film using the same
US6559071B2 (en) Process for producing dielectric thin films
TW483947B (en) Vapor deposition routes to nanoporous silica
KR100627098B1 (en) Method of forming low dielectric constant insulating film
JP2004500695A (en) Nano-sized porous dielectric film with low dielectric constant and low water content, modified by electron beam exposure
US7799705B1 (en) Methods for producing low stress porous low-k dielectric materials using precursors with organic functional groups
JP3061255B2 (en) Film formation method
US5614271A (en) Method for the formation of a silica-based coating film
US20040096672A1 (en) Non-thermal process for forming porous low dielectric constant films
EP0005491A1 (en) Process for the preparation of low temperature silicon nitride films by photochemical vapor deposition
CN1260763A (en) Process for producing manoporous dielectric films at high pH
US6364953B1 (en) Method and apparatus for making aerogel film
JPH0330427A (en) Low temperature formation of insulating film
US6074962A (en) Method for the formation of silica-based coating film
JP2007266462A (en) Silica thin film and manufacturing method therefor
KR100455886B1 (en) Semiconductor device fabrication method
JPS5982732A (en) Manufacture for semiconductor device
JPH01194980A (en) Formation of silica coating film and formed coating film
JPS5925223A (en) Method for cleaning of substrate and device therefor
JPH08124923A (en) Method and system for heat treating thin oxide film
JP2002075980A (en) Method for depositing low dielectric film by vacuum ultraviolet cvd
US6551442B2 (en) Method of producing semiconductor device and system for producing the same
JPH09249851A (en) Reduction of relative permittivity of polymer thin film and formation of interlaminar insulating film
JPS61216449A (en) Method and apparatus for forming pattern thin-film