JPH0329865A - Exciting current detector of transformer - Google Patents

Exciting current detector of transformer

Info

Publication number
JPH0329865A
JPH0329865A JP16377889A JP16377889A JPH0329865A JP H0329865 A JPH0329865 A JP H0329865A JP 16377889 A JP16377889 A JP 16377889A JP 16377889 A JP16377889 A JP 16377889A JP H0329865 A JPH0329865 A JP H0329865A
Authority
JP
Japan
Prior art keywords
current
transformer
detector
primary
current detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16377889A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16377889A priority Critical patent/JPH0329865A/en
Publication of JPH0329865A publication Critical patent/JPH0329865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To accurately detect an exciting current by mounting a current detector for collectively detecting the difference between the value (m) times the primary current of a transformer whose primary/secondary turn ratio is m/n and the value (n) times the secondary current thereof and a means increasing the output of said detector by 1/m or 1/n times. CONSTITUTION:A transformer TR whose primary/secondary turn ratio is m/n (m, n: integer), a current detector CT collectively detecting the difference between the value (m) times the promary current I1 of the transformer TR and the value (n) times the secondary current I2 thereof and a means increasing the output of said detector CT by 1/m or 1/n times are mounted. The detector CT detects the difference m.I1-n.I2 between the value (m) times the current I1 and the value (n) times the current I2 and said difference is increased by 1/m times by a proportional amplifier to detect an exciting current Io converted on a primary side. Further, the current Io required actually is one obtained by increasing the output of the detector CT by 1/m times and, by this constitution, a detection error can be markedly reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はインバータ等の電力変換器の交流側端子に接続
される変圧器の励磁電流検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an excitation current detection device for a transformer connected to an AC side terminal of a power converter such as an inverter.

(従来の技術) 近年、大容量の自己消弧素子(例えばゲートターンオフ
サイリスタ:GT○等)の開発が盛んに行われ、インバ
ータ等の電力変換装置に用いられるようになってきた。
(Prior Art) In recent years, large-capacity self-extinguishing elements (for example, gate turn-off thyristors: GT○, etc.) have been actively developed and are being used in power conversion devices such as inverters.

特にパルス幅変調制御インバータは、可変電圧可変周波
数の正弦波出力が得られることから交流電動機の駆動電
源として盛んに用いられるようになってきた。
In particular, pulse width modulation controlled inverters have come to be widely used as driving power sources for AC motors because they can provide a sine wave output with variable voltage and variable frequency.

当該インバータ等の電力変換器の交流側端子には、絶縁
の目的で、あるいは交流電圧を昇圧したり降圧したりす
る目的で、さらには、複数台のインバータと多重接続す
る目的で、変圧器が設置される。この変圧器は上記電力
変換器を構戊する素子のスイッチング特性のバラツキに
より、あるいは外部的要因により、直流バイアス電圧が
印加し、励磁電流が増太し、やがては片側方向に磁気飽
和(偏磁)することがある。
A transformer is connected to the AC side terminals of the power converter such as the inverter for the purpose of insulation, to step up or step down the AC voltage, or for the purpose of multiple connection with multiple inverters. will be installed. Due to variations in the switching characteristics of the elements that make up the power converter, or due to external factors, this transformer receives a DC bias voltage, increases the excitation current, and eventually reaches magnetic saturation (biased magnetization) in one direction. ) There are things to do.

このような変圧器の直流偏磁を防ぐために、当該変圧器
の励磁電流を検出し、当該励磁電流が過大にならないよ
うに電力変換器の交流側出力電圧を調整する必要がある
In order to prevent such DC bias of the transformer, it is necessary to detect the excitation current of the transformer and adjust the AC side output voltage of the power converter so that the excitation current does not become excessive.

第7図は、従来の変圧器の励磁電流検出装置を示す構!
戊図である。
Figure 7 shows the structure of a conventional transformer exciting current detection device!
It is a diagram.

図中、TRは変圧器、”I.lW2は変圧器T Rの↓
?、2次巻線、CT, , CT2は電流検出器、Kは
比例増幅器、Aは加減算器である。
In the figure, TR is a transformer, and I.W2 is a transformer TR.
? , secondary winding, CT, , CT2 is a current detector, K is a proportional amplifier, and A is an adder/subtractor.

変圧器TRの工次/2次巻数比を81:82とした場合
、比例増幅器Kは、a 2 / a 1倍する増幅器を
用意する。
When the transformer TR has a turn/secondary turns ratio of 81:82, the proportional amplifier K is an amplifier that multiplies a 2 / a by 1.

電流検出器CT1及びCT2により、各々工次電流T■
及び2次電流■2を検出し比例増幅Kにより、2次電流
■2を(a2/a■)倍する。この値I2 = I2 
・(a2 / a1)は2次電流のl次側換算値となる
。さらに1次電流検出値■,と上記2次電流の1次側換
算値■2を減算器Aに入力し、変圧器TRの励磁電流■
。−■、(a2/a.)・丁,を求めている。
The current detectors CT1 and CT2 each detect a working current T■
The secondary current (2) is detected and the secondary current (2) is multiplied by (a2/a2) by proportional amplification K. This value I2 = I2
・(a2/a1) is the primary side conversion value of the secondary current. Furthermore, input the detected primary current value ■, and the primary side conversion value ■2 of the above secondary current into the subtracter A, and input the excitation current of the transformer TR ■
. -■, (a2/a.)・Ding, is sought.

(発明が解決しようとする課題) このような従来の変圧器の励磁電流検出装置は次のよう
な問題点がある。
(Problems to be Solved by the Invention) Such conventional excitation current detection devices for transformers have the following problems.

すなわち、変圧器の励磁電流■。の値は、工次電流I,
や2次電流(1次側換器)Rに比例するとごくわずかな
値であり、電流検出器の精度が悪いと、上記のようにし
て検出された励磁電流は信頼性のない値となってしまう
In other words, the excitation current of the transformer■. The value of is the industrial current I,
The excitation current detected as described above will be an unreliable value if the current detector is not accurate. Put it away.

=3 4 ?えば、大容量の変圧器では、励磁電流T.は↓次電流
■1の2〜3%となるので、■■の定格を100OAと
した場合、I.の定格は30A程度となる。ここで、電
流検出器CT,, CT2の精度誤差を工%とした場合
、IOAの検出誤差が出て従来の手法により変圧器の励
磁電流T。を求めると、単純に考えても約30%の誤差
を含むことになる。実際には,上記励磁電流丁。の計算
は、1次電流T,と2次電流Irのベクトルの差となる
ので、上記励磁電流検出値の誤差はさらに大きくなる。
=3 4? For example, in a large capacity transformer, the exciting current T. is 2 to 3% of the secondary current ■1, so if the rating of ■■ is 100OA, the I. The rating is about 30A. Here, if the accuracy error of the current detectors CT, CT2 is expressed as %, the detection error of IOA will appear, and the excitation current T of the transformer will be calculated using the conventional method. Calculating this will include an error of approximately 30%, even if considered simply. In fact, the above excitation current D. Since the calculation of is the difference between the vectors of the primary current T and the secondary current Ir, the error in the excitation current detection value becomes even larger.

この励磁電流の検出誤差は当該励磁電流を制御したとき
指令値と実電流との相違をもたらし、従って変圧器から
必要な出力電圧が得られなくなる可能性もある。また変
圧器の直流偏磁対策等を行う場合でも正確な励磁電流が
検出できないため荊記電力変換器側から適正な補償電圧
を発生できなくなるという欠点があった。
This detection error of the excitation current causes a difference between the command value and the actual current when the excitation current is controlled, and there is a possibility that the required output voltage cannot be obtained from the transformer. Further, even when taking measures against DC bias in the transformer, etc., there is a drawback that an appropriate compensation voltage cannot be generated from the power converter side because accurate excitation current cannot be detected.

本発明は、以上の問題点に鑑みてなされたもので変圧器
の励磁電流を正確に検出できる励磁電流検出装置を提供
することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an excitation current detection device that can accurately detect the excitation current of a transformer.

〔発明の構威〕[Structure of invention]

(課題を解決するための手段) 以」二の目的を達戒するために、本発明は、工次72次
の巻数比がm対n+k (m,nは整数、黍は−0.5
≦β≦0.5の実数)の変圧器と、当該変圧器の1次電
流のm倍と2次電流のn倍との差を一括して検出する第
1の電流検出器と、2次電流を検出する第2の電流検出
器と、当該第2の電流検出器の出力を沼倍する手段と、
前記第1の電流検出器の出力と」二記β倍する手段の出
力との差を求め、その値を( 1 / m )倍又は1
/(n十濾)倍する手段とを具備している。
(Means for Solving the Problems) In order to achieve the second object, the present invention provides a method in which the turn ratio of the 72nd order of work is m to n+k (m, n are integers, millet is -0.5
≦β≦0.5); a first current detector that collectively detects the difference between m times the primary current and n times the secondary current of the transformer; a second current detector for detecting current; a means for multiplying the output of the second current detector;
The difference between the output of the first current detector and the output of the means for multiplying by 2 β is calculated, and the value is multiplied by (1/m) or 1.
/(n ten filters).

また、同目的を達或するために、本発明は、1次72次
の巻数比がm対n (m,nは整数)の変圧器と、当該
変圧器のl次電流のm倍と2次電流のn倍との差を一括
して検出する電流検出器と、当該電流検出器の出力を(
 1 / m )倍又は(1/n)倍する手段とを具備
している。
Furthermore, in order to achieve the same object, the present invention provides a transformer in which the primary and 72nd turns ratio is m to n (m and n are integers), and m times the primary current of the transformer and 2 A current detector that collectively detects the difference between n times the next current and the output of the current detector (
1/m) or (1/n).

(作用) 変圧器のt次72次巻数比がm対n+kの場合、工次電
流T1はmターンの電流を、また2次電流■2は電流方
向を逆にしてnターンの電流を貫通形ホールCT等の電
流検出器(第1の電流検出器)により一括して検出する
。その結果、m・■ユーn・■2が検出される。また、
第2の電流検出器により、2次電流工2を検出し,演算
増幅器等の手段によりA倍する。眉は−0.5≦k≦0
.5の実数である。それをさらに減算器により、上記第
工の電流検出器の出力から差し引く、その値を( 1 
/ m )倍することにより、次式のように励磁電流(
1次側換算値)Toが求められる。
(Function) When the t-order 72nd turns ratio of the transformer is m to n+k, the primary current T1 is the current of m turns, and the secondary current 2 is the current of n turns with the current direction reversed. The current is detected all at once by a current detector (first current detector) such as a Hall CT. As a result, m・■yu n・■2 is detected. Also,
The secondary current 2 is detected by the second current detector and multiplied by A by means such as an operational amplifier. Eyebrows -0.5≦k≦0
.. It is a real number of 5. This is further subtracted from the output of the above-mentioned first current detector using a subtracter, and the value is (1
/ m ), the excitation current (
The primary side conversion value) To is calculated.

?。=  (m4.−n42−7&42)/m二■■一
(n十沼)・■2/m I1−I. このとき、第1の電流検出器はm・I1−n−I2を検
出すればよいので、■1を直接検出する場合に比較する
と、検出電流の最大値は格段に小さくなり、その分検出
誤差も小さくなる。また、第2の電流検出器はβ■2を
検出すればよく、 沼は−0.5≦k≦0.5の値をと
るので、やはり■2を直接検出する場合に比較すると、
ボの値に比例して検出誤差も小さくなる。
? . = (m4.-n42-7&42)/m2 ■■1 (n Tonuma)・■2/m I1-I. At this time, the first current detector only needs to detect m・I1-n-I2, so compared to the case of directly detecting 1, the maximum value of the detected current becomes much smaller, and the detection error increases accordingly. will also become smaller. Also, the second current detector only needs to detect β■2, and since the swamp takes a value of -0.5≦k≦0.5, compared to the case where ■2 is directly detected,
The detection error also decreases in proportion to the value of .

また、変圧器の1次/2次巻数比がm対nの場合、↓つ
の電流検出器により、1次電流工,のm倍と2次電流■
2のn倍の差を一括して検出する。その結果、m・I1
−n・■2が検出され、さらに比例増幅器により( 1
 / m )倍することにより1次側に換算した励磁電
流1。を検出できる。すなわち?o=(m・I1−n・
I2)/m =I■一 ( n / m )  ・■2=■■−■2 となる。このときの電流検出器はm・I,−n・工,の
電流を検出すればよく、さらに実際に必要とされる励磁
電流■。は当該検出器の出力を1 / m倍したもので
、全体の検出誤差は従来方式より格段に小さくなる。
In addition, if the primary/secondary turns ratio of the transformer is m to n, ↓ two current detectors can be used to calculate m times the primary current and the secondary current
A difference of n times 2 is detected all at once. As a result, m・I1
-n・■2 is detected, and then ( 1
/ m ) excitation current 1 converted to the primary side by multiplying. can be detected. In other words? o=(m・I1−n・
I2)/m=I■1 (n/m) ・■2=■■−■2. The current detector at this time only needs to detect the current of m·I, -n·cm, and the excitation current (2) that is actually required. is the output of the detector multiplied by 1/m, and the overall detection error is much smaller than that of the conventional method.

このようにして変圧器の励磁電流を精度良く検出するこ
とが可能となり、正確な励磁電流制御を7 8ー ?えるようになる。また変圧器の直流偏磁に対しても適
正な補償が可能となる。
In this way, the excitation current of the transformer can be detected with high precision, allowing accurate excitation current control. You will be able to understand. It is also possible to appropriately compensate for DC bias in the transformer.

(実施例) 第1図乃至第6図は本発明の変圧器の励磁電流検出装置
の実施例を示す構或図である。
(Embodiment) FIGS. 1 to 6 are configuration diagrams showing an embodiment of the excitation current detection device for a transformer according to the present invention.

図中.TRは変圧器、り,は1次巻線、w2は2次巻線
、CTエ, CT2, CTは電流検出器、K,K■l
 K2は比例増幅器、Aは加減算器である。
In the figure. TR is the transformer, ri, is the primary winding, w2 is the secondary winding, CT, CT2, CT is the current detector, K, Kl
K2 is a proportional amplifier, and A is an adder/subtractor.

第1図は変圧器TRの1次72次の巻数比が1対lの場
合を示す。
FIG. 1 shows a case where the turns ratio of the primary and 72nd orders of the transformer TR is 1:1.

電流検出器CTは第1図(b)に示すように、流れてい
る電流線を直接貫通させるタイプのホールCT等を用い
る。当該ホールCTに工次電流■1が流れている電線L
エと2次電流工2が流れている電線L2をその電流方向
が逆になるように貫通させ、励磁電流■。= 1:, 
一I2を直接検出している。説明の便宜上、位置差を無
視して考えると、例えば,{次電流I, = 1010
A、2次電流I2=100OAとした場合、励磁電流工
。は■。=工■−I2=1OAを電流検出器CTにより
検出することになる。CTの精度を1%?した場合、検
出誤差はO.LAとなる。従来の電流検出器はIOOO
Aに対する1%の誤差すなわち1oAの誤差があったの
に対し、格段の精度の向上が図れる。
As the current detector CT, as shown in FIG. 1(b), a Hall CT or the like of a type through which a flowing current line passes directly is used. Electric wire L through which the electrical current ■1 is flowing through the relevant hole CT
The excitation current (2) is passed through the electric wire L2 through which the secondary current wire (d) and the secondary current wire (2) are flowing, so that the current direction is reversed. = 1:,
-I2 is directly detected. For convenience of explanation, ignoring the position difference, for example, {order current I, = 1010
A. When the secondary current I2 = 100OA, excitation current. ■. =Engine -I2=1OA will be detected by the current detector CT. CT accuracy 1%? In this case, the detection error is O. Becomes LA. Conventional current detector is IOOO
Whereas there was an error of 1% with respect to A, that is, an error of 1oA, the accuracy can be significantly improved.

変圧器TRの↓次/2次巻数比がm対nの場合、ホール
CTを貫通する電線数は1次電流線がm本、2次電流線
がn本になる。すなわち、電流検出器CTは、m・工■
−n42の電流を検出する。従ってこの値を(1/m)
倍することにより、l次側に換算した励磁電流■。が次
式のように求められる。
When the ↓/secondary turns ratio of the transformer TR is m to n, the number of electric wires passing through the hole CT is m for the primary current line and n for the secondary current line. In other words, the current detector CT is
-Detect the current of n42. Therefore, this value is (1/m)
By multiplying, the excitation current is converted to the primary side. is calculated as follows.

?。=  (m・■■−n・L)/m =I.−(n/m)  ・T■ I, − I2 ただし、I2は2次電流■2の1次側換算値、例えば、
m=2,n=3として、I. =1510A、I2= 
IOOOAの場合 =10 ?なる。電流検出器CTは、m 4. − n 42=
 20Aの電流を検出すればよく、その精度を1%とす
ると検出誤差は0.2Aとなる。 しかも実際に使用す
る励磁電流工。はその(1/m)=0.5倍であるので
、実際の検出誤差は0.IAとなる。従来の検出器では
、1500Aに対する1%すなわち、 15Aの検出誤
差があるのに対し、約150倍の精度の向上が図れる。
? . = (m・■■−n・L)/m =I. -(n/m) ・T■ I, - I2 However, I2 is the primary side conversion value of the secondary current ■2, for example,
Assuming m=2 and n=3, I. =1510A, I2=
For IOOOA = 10? Become. Current detector CT is m4. −n42=
It is sufficient to detect a current of 20 A, and if the accuracy is 1%, the detection error will be 0.2 A. What's more, it's an exciting current machine that is actually used. is (1/m) = 0.5 times that, so the actual detection error is 0. Becomes an IA. While conventional detectors have a detection error of 1% for 1500A, or 15A, the accuracy can be improved by about 150 times.

第2図は、変圧器のl次/2次巻数比が1対1.2の場
合を示す。
FIG. 2 shows a case where the transformer's primary/secondary turns ratio is 1:1.2.

第1の電流検出器CT■は1次電流■■と2次電流工2
の差を検出する。また、第2の電流検出器CT2は2次
電流工2を検出する。この第2の電流検出器CT2の出
力は比例増幅器Kを介して、d=0.2倍される。さら
に減算器Aにより、前記第1の電流検出器CT■の出力
信号■■一12と前記比例増幅器Kの出力信号0.2・
■2の差を求め、次のように励磁電流T。を算出してい
る。
The first current detector CT■ detects the primary current ■■ and the secondary current
Detect the difference between Further, the second current detector CT2 detects the secondary current detector 2. The output of this second current detector CT2 is multiplied by d=0.2 via a proportional amplifier K. Further, a subtracter A converts the output signal 0.2 of the first current detector CT 12 and the output signal 0.2 of the proportional amplifier K.
■ Find the difference between 2 and calculate the excitation current T as follows. is being calculated.

?.=I■−I2−0.2・T7. ?■■−1.2・T2 ?1■−I2 ?えば、I1= 121OA、I2= IOOOAとし
て、位相差を無視して考えると、第工の電流検出器CT
■はI、−I■=210Aを検出することになる。その
精度を1%とすると検出誤差は2.IAとなる。 また
、第2の電流検出器CT2はIOOOAを検出し、精度
を1%とすると誤差はIOAとなる。しかし次の比例増
幅器Kにより、0.2倍されるので、検出値は200A
で誤差は、2Aとなる。すなわち、減算器Aに入力され
る2つの信号の誤差はともに約2Aということになる。
? .. =I■-I2-0.2・T7. ? ■■-1.2・T2? 1■-I2? For example, assuming I1 = 121OA and I2 = IOOOA, ignoring the phase difference, the current detector CT of the first part
(2) detects I, -I2 = 210A. If the accuracy is 1%, the detection error is 2. Becomes an IA. Further, the second current detector CT2 detects IOOOA, and assuming the accuracy is 1%, the error is IOA. However, the next proportional amplifier K multiplies it by 0.2, so the detected value is 200A.
The error is 2A. That is, the error between the two signals input to the subtracter A is approximately 2A.

従来の検出装置では1200Aの1%すなわち、12A
の誤差があったのに対し、約6倍の精度の向上が図れる
ことになる。
Conventional detection equipment uses 1% of 1200A, or 12A.
This means that the accuracy can be improved by about 6 times, compared to the previous error.

第3図は、変圧器TRの1次/2次巻数比が1対2.2
の場合を示す。
Figure 3 shows that the primary/secondary turns ratio of transformer TR is 1:2.2.
The case is shown below.

第1の電流検出器CT1は、 1次電流■、と2次電流
■2の2倍との差を検出し、減算器Aにその信号を入力
する。 また、第2の電流検出器CT2は2次電流■2
を検出し、比例増幅器Kにより0.2倍し、11 12 減算器Aにその信号を入力する。その結果、励磁電流■
。が次式のように求められる。
The first current detector CT1 detects the difference between the primary current (2) and twice the secondary current (2), and inputs the signal to the subtracter A. In addition, the second current detector CT2 has a secondary current ■2
is detected, multiplied by 0.2 by proportional amplifier K, and the signal is input to 11 12 subtracter A. As a result, the excitation current
. is calculated as follows.

?。=I1−2・I2−0.2・工2 =Iよ−2.2・■2 =■■−■2 ?えば、位相差を然視して工■=221OA、工210
00Aで考えると、第1の電流検出器CT1は、T12
・I2=210Aを検出することになる。その精度を1
%とすると、検出誤差は2.1Aとなる。また、第2の
電流検出器CT2は1000 Aを検出し精度を1%と
すると、誤差はIOAとなる。しかし、比例増幅器Kを
介して0.2倍されるので、誤差は2Aとなる。すなわ
ち、減算器Aに入力される2つの信号の誤差はともに約
2Aということになる。従来の検出装置では、2200
Aの1Iすなわち、22Aの誤差があったのに対し、約
11倍の精度の向」二が図れることになる。
? . =I1-2・I2-0.2・ENG2 =Iyo-2.2・■2 =■■-■2 ? For example, by looking directly at the phase difference, we have
Considering 00A, the first current detector CT1 is T12
・I2=210A will be detected. Its accuracy is 1
%, the detection error is 2.1A. Further, assuming that the second current detector CT2 detects 1000 A and has an accuracy of 1%, the error is IOA. However, since it is multiplied by 0.2 via the proportional amplifier K, the error becomes 2A. That is, the error between the two signals input to the subtracter A is approximately 2A. With conventional detection equipment, 2200
Compared to the error of 1I of A, that is, 22A, the accuracy can be improved by about 11 times.

第4図は、変圧器TRの1次72次巻数比がm対n+沼
の場合を示すもので、m,nは整数、β?一0.5≦β
≦0.5の実数となる。第3図に対応するとm==1,
n=2,β=0.2である。
Figure 4 shows the case where the primary 72nd turns ratio of the transformer TR is m to n + swamp, where m and n are integers and β? -0.5≦β
It is a real number of ≦0.5. Corresponding to Figure 3, m==1,
n=2, β=0.2.

第1の電流検出器CT1は、 1次電流■、のm倍と2
次電流1■のn倍との差m4■一n・12を一括して検
出する。第2の電流検出器CT2は2次電流丁,を検出
しその出力を比例増幅器K1により{倍する。
The first current detector CT1 has m times the primary current ■, and 2
The difference m4■-n·12 between the next current 1■ and n times is detected at once. The second current detector CT2 detects the secondary current D, and its output is multiplied by the proportional amplifier K1.

減算器Aにより、前記第1の電流検出器CT■の出力信
号m・工■−n−I2と前記比例増幅器H■の出力信号
沼・■2との差を演算し、さらに比例増幅器K2により
(1/m)倍することにより,次式で示される励磁電流
(1次側換算値)■oが求められる。
The subtracter A calculates the difference between the output signal m-n-I2 of the first current detector CT-1 and the output signal N-2 of the proportional amplifier H2, and the difference is calculated by the proportional amplifier K2. By multiplying by (1/m), the excitation current (primary side converted value) ■o is determined by the following formula.

?。=  (m・I,−(n十沼)L)/m=■■−(
n十4)Ti/m =I1−I2 ただし、工2は2次電流I2の1次側換算値である。
? . = (m・I,−(ntonuma)L)/m=■■−(
n14) Ti/m = I1 - I2 However, 2 is the primary side converted value of the secondary current I2.

変圧器の1次72次巻数比が1対1.4の場合、 2対
2.8として、m=2,n=3,  tA=−0.2と
して励磁電流■。を検出したほうが、検出誤差が小さく
なる利点がある。
When the primary and 72nd turns ratio of the transformer is 1 to 1.4, 2 to 2.8, m = 2, n = 3, tA = -0.2, and the exciting current ■. Detecting this has the advantage of reducing the detection error.

?5図は、変圧器の1次/2次巻数比が1.25対1の
場合を示す。降圧形の変圧器である。
? FIG. 5 shows a case where the transformer has a primary/secondary turns ratio of 1.25:1. It is a step-down type transformer.

第1の電流検出器CT1は、 1次電流■1と2次電流
■2の差を一括して検出する。また、第2の電流検出器
CT2は工次電流■1を検出し、 比例増幅器K1によ
り、その信号を0.25倍する。加減器Aにより、第工
の電流検出器CT1の出力信号■■一I2 と比例増幅
器K■の出力信号0.25・■1の和を求め、さらに第
2の比例増幅器K2により(1./1.25)倍するこ
とにより、励磁電流T。を検出する。
The first current detector CT1 collectively detects the difference between the primary current (1) and the secondary current (2). Further, the second current detector CT2 detects the output current ■1, and the proportional amplifier K1 multiplies the signal by 0.25. The adder/subtractor A calculates the sum of the output signal of the first current detector CT1 (I2) and the output signal of the proportional amplifier K (0.25.■1), and then the second proportional amplifier K2 calculates (1./ 1.25) By multiplying the excitation current T. Detect.

Io= (I1−L +0.25I.)/]..25?
■、− (1/1.25)・工2=工■一■2?こで、
第2の比例増幅器K2として、1倍を用いると、2次側
に換算した励磁電流■。が得られることは言うまでもな
い。
Io=(I1-L+0.25I.)/]. .. 25?
■、- (1/1.25)・Work 2 = Work■1■2? Here,
If 1x is used as the second proportional amplifier K2, the excitation current converted to the secondary side is ■. Needless to say, you can obtain

I1=].010A、1■=125OAの場合を考える
と、第1の電流検出器CT■は■■一I. = − 2
40Aを検出すればよく,精度を1%とすると、 検出
誤差は2.4Aとなる。 また、第2の電流検出器CT
2はI1=]O].0?を検出し、精度を工%とじた場
合、誤差は10.lAとなるが、次の比例増幅器K■に
より0.25倍されるので、誤差は2.525Aとなる
。 さらに第2の比例増幅器K2により( 1 /1.
25)倍されているので、上記2つの信号の誤差として
は、約2Aということになる。従来の検出装置では、I
OOOAの1%すなわちIOAの誤差があったのに対し
、約5倍の精度の向上が図れたことになる。
I1=]. 010A, 1■ = 125OA, the first current detector CT■ is ■■ - I. = − 2
It is sufficient to detect 40A, and if the accuracy is 1%, the detection error is 2.4A. In addition, a second current detector CT
2 is I1=]O]. 0? Detected and the accuracy is divided into %, the error is 10. 1A, but it is multiplied by 0.25 by the next proportional amplifier K■, so the error becomes 2.525A. Furthermore, by the second proportional amplifier K2 (1/1.
25) Since the signal is multiplied, the error between the above two signals is approximately 2A. In conventional detection devices, I
While there was an error of 1% of OOOA, that is, IOA, this means that the accuracy has been improved by about 5 times.

第6図は、変圧器TRの1次/2次巻数比が、工対0.
8の場合を示す。変圧器としては第5図と全く同一のも
のであるが、第1及び第2の電流検出器CT1及びCT
2の入れ方を変えている。
FIG. 6 shows that the primary/secondary turns ratio of the transformer TR is 0.0.
8 is shown. The transformer is exactly the same as that shown in Fig. 5, but the first and second current detectors CT1 and CT
The way in which 2 is inserted is changed.

第1の電流検出器CT■は1次電流I1と2次電流■2
の差を一括して検出する。第2電流検出器CT2は、2
次電流■2を検出し、比例増幅器Kにより、0.2倍す
る。さらに加算器Aにより、上記CT1の出力とKの出
力の和を演算し、励磁電流■。を求めている。
The first current detector CT■ has a primary current I1 and a secondary current ■2.
Detect differences in all at once. The second current detector CT2 is 2
The next current ■2 is detected and multiplied by 0.2 by the proportional amplifier K. Furthermore, the adder A calculates the sum of the output of CT1 and the output of K, and the excitation current (■) is calculated. I'm looking for.

:[o=I1−I2+0.2I2 15− 16− =Iよ−0.8・工2 =工、−■2 ?れは、第4図に対応させるとm=1,n=1,沼=−
0.2になる。
:[o=I1-I2+0.2I2 15- 16- =Iyo-0.8・Work2 =Work, -■2? Corresponding to Fig. 4, m = 1, n = 1, swamp = -
It becomes 0.2.

■■=1010A, I2=1250Aとした場合、第
1の電流検出器CT1は■、−I2=−240Aを検出
し、その精度を工%とすると、誤差は2.4Aとなる。
When ■■=1010A and I2=1250A, the first current detector CT1 detects ■, -I2=-240A, and if the accuracy is expressed as work%, the error is 2.4A.

 また、第2の電流検出器CT2は、L = 1250
Aを検出し、その精度を1%とすると、誤差は12.5
Aとなるが、比例増幅器Kを介して0.2倍されるので
、誤差は2.5Aとなる。第5図の手法に比較すると検
出誤差は少し大きくなる。しかし、従来の検出装置と比
較すれば、約4倍の精度の向上が期待できる。
Further, the second current detector CT2 has L = 1250
If A is detected and its accuracy is 1%, the error is 12.5
A, but since it is multiplied by 0.2 via the proportional amplifier K, the error becomes 2.5A. Compared to the method shown in FIG. 5, the detection error is slightly larger. However, compared to conventional detection devices, it is expected that the accuracy will be improved by about four times.

一般に、変圧器TRは、工次72次巻数比をm対nとし
て整数比で表わすことができる。例えば、1次巻線数5
0ターン、2次巻線数100ターンではm=1+ n=
2となって、簡単な数値となり、端数はでてこないで済
む。このような場合には、第1図あるいは、その応用例
で述べたように1つの電流検出器を用いて非常に精度良
く、励磁電流工。
In general, the transformer TR can be expressed as an integer ratio, where the turn ratio of the 72nd order is m to n. For example, the number of primary windings is 5
For 0 turns and 100 turns of secondary winding, m=1+ n=
2, which is a simple number, and there are no fractions. In such a case, as shown in Figure 1 or its application example, one current detector can be used to perform the excitation current measurement with high accuracy.

を検出できる。can be detected.

しかし例えば、工次巻線数、50ターンに対し、2次巻
線数110ターンの変圧器では、m = 5、n=11
となり、合計16本の電線がホールCTの磁路を交差し
なければらならず、構威が複雑になる。
However, for example, in a transformer with a primary winding of 50 turns and a secondary winding of 110 turns, m = 5, n = 11
Therefore, a total of 16 electric wires must cross the magnetic path of the Hall CT, making the structure complicated.

そこで、第4図で示したように、工次/2次巻数比とし
て、l対2.2として表現し、 n=2,,4=0.2
として励磁電流■。を検出する。検出精度はやや低下す
るが、構或が簡単になる利点があり、従来の方法に比較
すると大幅な精度の向上が期待できる。
Therefore, as shown in Figure 4, the ratio of turns/secondary turns is expressed as l to 2.2, n=2,,4=0.2
As excitation current■. Detect. Although the detection accuracy decreases slightly, it has the advantage of simplifying the structure and can be expected to significantly improve accuracy compared to conventional methods.

降圧形の変圧器の励磁電流I。を検出する場合、1次/
2次巻数比をn+k対mに考え、第工の電流検出器CT
1で(n−■.一m−I2)を一括して検出し、第2の
電流検出器CT2で検出したIエをす倍し、加算器によ
り上記CTエの出力信号に加える。その結果を1/(n
+沼)倍すれば、1次側に換算した励磁電流■。が求め
られることは第5図の実施例で示した。
Excitation current I of a step-down transformer. When detecting the primary/
Considering the secondary turns ratio as n+k to m, the current detector CT of the first stage
1, (n-■.1m-I2) is detected all at once, and the Ie detected by the second current detector CT2 is multiplied and added to the output signal of the CTe by an adder. The result is 1/(n
+ Swamp) If you multiply it, it will be the excitation current converted to the primary side■. It was shown in the example of FIG. 5 that this is required.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の変圧器の励磁電流検出装置によ
れば、変圧器の王次72次巻数比により、整数m,n及
び実数Aを適当に選ぶことにより、検出誤差を格段に小
さくすることが可能となり、正確な励磁電流制御が達或
できる。又、変圧器の直流偏磁に対し、正確な検出が可
能となり、その補正も適正に行うことができるようにな
る。
As described above, according to the excitation current detection device for a transformer of the present invention, the detection error can be significantly reduced by appropriately selecting the integers m, n, and the real number A according to the 72nd order turns ratio of the transformer. This makes it possible to achieve accurate excitation current control. Further, it becomes possible to accurately detect DC bias of the transformer, and to appropriately correct it.

【図面の簡単な説明】[Brief explanation of drawings]

第工図乃至第6図は本発明の変圧器の励磁電流検出装置
のそれぞれ異る実施例を示す構成図、第7図は従来の励
磁電流検出装置の構戒図である。 TR:変圧器 Wll臀2:変圧器の1次、2次巻線 CT. , CT2, CT :電流検出器K, K1
, K2:比例増幅器 A:加減算器
6 to 6 are configuration diagrams showing different embodiments of the excitation current detection device for a transformer according to the present invention, and FIG. 7 is a configuration diagram of a conventional excitation current detection device. TR: Transformer Wll Butt 2: Primary and secondary windings of transformer CT. , CT2, CT: Current detector K, K1
, K2: Proportional amplifier A: Adder/subtractor

Claims (1)

【特許請求の範囲】 (1)1次/2次の巻数比がm対n(m,nは整数)の
変圧器と、当該変圧器の1次電流のm倍と2次電流のn
倍との差を一括して検出する電流検出器と、当該電流検
出器の出力を(1/m)倍又は(1/n)倍する手段と
を具備してなる変圧器の励磁電流検出装置。(2)1次
/2次の巻数比がm対n+k(m,nは整数、kは−0
.5≦k≦0.5の実数)の変圧器と、当該変圧器の1
次電流のm倍と2次電流のn倍との差を一括して検出す
る第1の電流検出器と、前記変圧器の2次電流を検出す
る第2の電流検出器と、当該第2の電流検出器の出力を
k倍する手段と、前記第1の電流検出器の出力と上記k
倍する手段の出力の差又は和を求め、その値を(1/m
)倍又は1/(n+k)倍をする手段とを具備してなる
変圧器の励磁電流検出装置。 (3)1次/2次の巻数比がn+k対m(m,nは整数
、kは−0.5≦k≦0.5の実数)の変圧器と、当該
変圧器の1次電流のn倍と、2次電流のm倍との差を一
括して検出する第1の電流検出器と、前記変圧器の1次
電流を検出する第2の電流検出器と、当該第2の電流検
出器の出力をす倍する手段と、前記第1の電流検出器の
出力と上記k倍する手段の出力の和又は差を求め、その
値を(1/m)倍又は1/(n+k)倍をする手段とを
具備してなる変圧器の励磁電流検出装置。
[Claims] (1) A transformer with a primary/secondary turns ratio of m to n (m and n are integers), and m times the primary current and n times the secondary current of the transformer.
An excitation current detection device for a transformer, comprising a current detector that collectively detects the difference between the current detector and a means for multiplying the output of the current detector by (1/m) or (1/n). . (2) The primary/secondary turns ratio is m to n+k (m, n are integers, k is -0
.. 5≦k≦0.5 real number) and 1 of the transformer
a first current detector that collectively detects the difference between m times the secondary current and n times the secondary current; a second current detector that detects the secondary current of the transformer; means for multiplying the output of the first current detector by k; and the output of the first current detector and the k
Find the difference or sum of the outputs of the multiplying means and calculate the value (1/m
) or 1/(n+k) times. (3) A transformer with a primary/secondary turns ratio of n+k to m (m, n are integers, k is a real number of -0.5≦k≦0.5) and the primary current of the transformer. a first current detector that collectively detects the difference between n times the secondary current and m times the secondary current; a second current detector that detects the primary current of the transformer; and a second current detector that detects the primary current of the transformer; Find the sum or difference between the means for multiplying the output of the detector and the output of the first current detector and the means for multiplying by k, and multiply that value by (1/m) or 1/(n+k). An exciting current detection device for a transformer, comprising means for doubling the current.
JP16377889A 1989-06-28 1989-06-28 Exciting current detector of transformer Pending JPH0329865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16377889A JPH0329865A (en) 1989-06-28 1989-06-28 Exciting current detector of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16377889A JPH0329865A (en) 1989-06-28 1989-06-28 Exciting current detector of transformer

Publications (1)

Publication Number Publication Date
JPH0329865A true JPH0329865A (en) 1991-02-07

Family

ID=15780540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16377889A Pending JPH0329865A (en) 1989-06-28 1989-06-28 Exciting current detector of transformer

Country Status (1)

Country Link
JP (1) JPH0329865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028426A (en) * 2010-07-21 2012-02-09 Japan Ae Power Systems Corp Method and device for correcting change and distortion of secondary voltage of instrument transformer
WO2017169062A1 (en) * 2016-03-31 2017-10-05 住友電気工業株式会社 Chopper circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028426A (en) * 2010-07-21 2012-02-09 Japan Ae Power Systems Corp Method and device for correcting change and distortion of secondary voltage of instrument transformer
WO2017169062A1 (en) * 2016-03-31 2017-10-05 住友電気工業株式会社 Chopper circuit

Similar Documents

Publication Publication Date Title
US7184282B2 (en) Single-phase power conversion device and three-phase power conversion device
Le Bolloch et al. New masterless modular current-sharing technique for DC/DC parallel converters
JP2816175B2 (en) DC current measuring device
JPH0329865A (en) Exciting current detector of transformer
JPH0728534A (en) Controller for power converter
Gao et al. A transformer flux balancing scheme based on magnetizing current harmonic in dual-active-bridge converters
JP3518997B2 (en) Power converter
Gao et al. A flux balancing strategy for 10-kV SiC-based dual-active-bridge converter
JPH07298627A (en) Controller for power converter
JP2850096B2 (en) Inverter control method with constant measurement setting function
JPH11337591A (en) Direct current detecting device
JPS60139185A (en) Torque detector of ac machine
JP5640842B2 (en) Power conversion apparatus and control method thereof
Vukosavić Detection and suppression of parasitic DC voltages in 400 V AC grids
KR0128218Y1 (en) A flux detection circuit of an induction motor
JPH03195009A (en) Current transformer device of error compensation type
JPH0222529B2 (en)
JPS6324448Y2 (en)
JP3427656B2 (en) Control method of inverter for photovoltaic power generation
JPH0329866A (en) Exciting current detector of transformer
JPH08126341A (en) System interconnection inverter and its leakage current detecting device
JPH02122609A (en) Error compensation type current transformer
de Araújo et al. Multivariable DC Bias Control of a High Power AC-DC Dual-Active-Bridge Based Converter
JPH0345632B2 (en)
JPH07119777B2 (en) Current sensor