JPH03297570A - Gas shielded arc welding method - Google Patents

Gas shielded arc welding method

Info

Publication number
JPH03297570A
JPH03297570A JP9986690A JP9986690A JPH03297570A JP H03297570 A JPH03297570 A JP H03297570A JP 9986690 A JP9986690 A JP 9986690A JP 9986690 A JP9986690 A JP 9986690A JP H03297570 A JPH03297570 A JP H03297570A
Authority
JP
Japan
Prior art keywords
welding
gas
wire
flux
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9986690A
Other languages
Japanese (ja)
Other versions
JP2560125B2 (en
Inventor
Yoshikazu Konishi
良和 小西
Tadashi Ito
正 伊藤
Keiichi Sakabe
坂部 恵一
Yoshinobu Hasegawa
吉伸 長谷川
Yozo Ashida
洋三 芦田
Koichi Koyama
小山 耕一
Shigehiro Hisamatsu
久松 茂洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumikin Welding Industries Ltd
Sumikin Welding Electrode Ltd
Original Assignee
Sumikin Welding Industries Ltd
Sumikin Welding Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Welding Industries Ltd, Sumikin Welding Electrode Ltd filed Critical Sumikin Welding Industries Ltd
Priority to JP2099866A priority Critical patent/JP2560125B2/en
Publication of JPH03297570A publication Critical patent/JPH03297570A/en
Application granted granted Critical
Publication of JP2560125B2 publication Critical patent/JP2560125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain a sound weld bead even under a high welding current by using a flux-cored wire having specified composition and shielding gas having specified composition consisting of Ar and CO2 to weld galvanized steel sheets by the pulsative welding current. CONSTITUTION:The galvanized or galvannealed steel sheets are subjected to gas shielded arc welding by the pulsative welding current. In the above- mentioned welding method, the flux-cored wire containing, by weight, 0.15-0.18% C, 0.4-0.7% Si, 1.5-3.0% Mn and 3-20% iron powder is used as welding material. In addition, mixed gas produced by mixing 5-50 volume % CO2 gas in Ar gas is used as the shielding gas. Consequently, the generation of blowholes in the weld bead is suppressed sufficiently even under the relatively high welding current and a weld zone of high quality can be obtained at high welding speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は亜鉛めっき鋼板、合金化亜鉛めっき鋼板等の亜
鉛めっき系鋼板のガスシールドアーク溶接方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for gas-shielded arc welding of galvanized steel sheets such as galvanized steel sheets and alloyed galvanized steel sheets.

〔従来の技術〕[Conventional technology]

建築用鉄骨部材、自動車の足廻り部品、家電機器、容器
などには、耐食性及び耐候性などの面から、亜鉛めっき
系鋼板が積極的に採用され、その需要量は年々増加の傾
向にある。亜鉛めっき系鋼板の溶接分野では、溶接の能
率性、いわゆる生産性の向上から、溶接の自動化、ロボ
ット化が進められている。これらのガスシールドアーク
自動溶接では、溶接材料としてソリッドワイヤ、フラッ
クス入りワイヤが使用されている。
Galvanized steel sheets are actively used in construction steel components, automobile suspension parts, home appliances, containers, etc. due to their corrosion resistance and weather resistance, and the demand for them is increasing year by year. In the field of welding galvanized steel sheets, automation and robotization of welding is progressing in order to improve welding efficiency, so-called productivity. These gas-shielded arc automatic welding systems use solid wires and flux-cored wires as welding materials.

一般に市販されているソリッドワイヤまたはフラックス
入りワイヤを用いて、亜鉛めっき系鋼板をアーク溶接す
ると、その溶接部には、亜鉛めっき系鋼板の目付量にも
よるが、溶接ビード表面に口の開いたピットと称される
礼状の溶接欠陥や、溶接金属中に生じるブローボールと
称される空洞状の溶接欠陥が生じ易い。ピントの発生は
、溶接ビードの外観を損なうばかりか、溶接部の強度低
下を招来し、ブローホールの発生は、外観を著しく損な
わないものの、溶接部の強度低下をもたらす。以下これ
らの欠陥を総称して気孔という。
When galvanized steel sheets are arc welded using generally commercially available solid wires or flux-cored wires, depending on the area weight of the galvanized steel sheets, there may be an open opening on the surface of the weld bead. Gradual welding defects called pits and hollow welding defects called blowballs that occur in the weld metal are likely to occur. The occurrence of focusing not only impairs the appearance of the weld bead, but also causes a decrease in the strength of the welded part, and the occurrence of blowholes does not significantly impair the appearance, but causes a decrease in the strength of the welded part. Hereinafter, these defects will be collectively referred to as pores.

このような気孔の発生は、溶接品質を低下せしめるばか
りでなく、その気孔発生が許容されない発生頻度に至れ
ば、溶接部の手直しが必要となり、手直し不可の場合に
はその部材が廃棄されることもあり、著しい不経済をも
たらす。
The occurrence of such pores not only deteriorates welding quality, but if the occurrence of pores reaches an unacceptable frequency, the welded part will need to be reworked, and if rework is not possible, the component may be discarded. This results in significant diseconomies.

亜鉛めっき系鋼板のアーク溶接において、その溶接部に
生じる気孔を抑制する技術として、一般には、溶接電流
を低く保ち、比較的遅い溶接速度を採用して気孔発生の
頻度を抑制する場合が多い。
In arc welding of galvanized steel sheets, techniques for suppressing pores that occur in the weld zone generally include keeping the welding current low and employing a relatively slow welding speed to suppress the frequency of pore generation.

また、最近では、フラックス入すワイヤに関して特開昭
645−31.596号、特開昭64−78699号、
特開昭62−24859号などが出願されており、ソリ
ンドワイヤを用いた溶接技術に関しては特開平1−1.
43775号などがある。
Recently, regarding flux-cored wire, Japanese Patent Application Laid-Open No. 645-31.596, Japanese Patent Application Laid-open No. 64-78699,
JP-A No. 62-24859 has been filed, and regarding welding technology using solind wire, JP-A No. 1-1.
43775 etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの最近技術をもってしても、15
0〜250Aというような比較的高い溶接電流下では、
溶接部の気孔発生を十分に抑制するに至っていない。
However, even with these recent technologies, 15
Under relatively high welding currents such as 0-250A,
The generation of pores in welded parts has not been sufficiently suppressed.

本発明の目的は、比較的高い溶接電流下でも気孔発生が
充分に抑制され、健全性に富む溶接ビー1が得られるガ
スシールドアーク溶接方法を提供することにある。
An object of the present invention is to provide a gas-shielded arc welding method that can sufficiently suppress the generation of pores even under a relatively high welding current and provide a weld bead 1 with excellent soundness.

〔課題を解決するための手段〕[Means to solve the problem]

亜鉛めっき系鋼板にめっきされる亜鉛は、沸点が907
°Cと鋼に比べて相当に低い。亜鉛めっき系鋼板の溶接
部における気孔発生の原因については、この亜鉛が、ア
ーク熱により加熱されて亜鉛蒸気となり、それが溶接部
において溶融金属が凝固に至る間に十分に外部に逸散せ
ず、凝固金属に閉し込められてブローホールを形成し、
また、その凝固過程でピットを生じるものと考えられる
The boiling point of zinc plated on galvanized steel sheets is 907.
°C, which is considerably lower than that of steel. The cause of porosity in welded parts of galvanized steel sheets is that this zinc is heated by arc heat and becomes zinc vapor, which is not sufficiently dissipated to the outside while the molten metal solidifies in the welded part. , trapped in the solidified metal to form a blowhole,
It is also believed that pits are generated during the solidification process.

さらに、シールドガス中に巻き込まれる大気、ワイヤ中
の微量な水分などからの水素などの影響も気孔発生の一
因と考えられる。何れにせよ、溶接アーク雰囲気中に生
成したガスが凝固金属中に溜まらず、溶融金属外に逸散
しやすくすれば、気孔の発生も少なくなるものと推定さ
れる。
Furthermore, the influence of hydrogen from the atmosphere entrained in the shielding gas, trace amounts of moisture in the wire, etc. is also considered to be a contributing factor to the generation of pores. In any case, it is presumed that the occurrence of pores will be reduced if the gas generated in the welding arc atmosphere does not accumulate in the solidified metal and can easily escape out of the molten metal.

ところで、フラックス入りワイヤには、被覆アーク溶接
棒の如く、溶接部にスラグを形成するものが広く採用さ
れている。しかし、亜鉛めっき系鋼板の溶接では、この
スラグ生成がガスの逸散を阻止するように働き、耐気孔
性の点で好ましくない。従って、フランクス入すワイヤ
の組成において、スラグを形成するものを極力避け、溶
接時に生成するスラグ量が少なくなるようなものが、耐
気孔性向上のためには必要と云える。
By the way, flux-cored wires that form a slag in the welding area, such as coated arc welding rods, are widely used. However, in welding galvanized steel sheets, this slag formation acts to prevent gas from escaping, which is unfavorable in terms of porosity resistance. Therefore, in order to improve the porosity resistance, it is necessary to avoid slag-forming materials as much as possible in the composition of the wire to be inserted into the franks, and to reduce the amount of slag produced during welding.

すなわち、フラックス入りワイヤは帯鋼からなる外皮と
、その中に充填されるフラックスとから構成され、充填
されるフラックスにより、ワイヤ特性が変化する。ワイ
ヤ中にスラグ形成をなすフラックス群が多く含まれると
、被覆アーク溶接棒の如く溶接ビードがスラグに覆われ
る。逆に、ワイヤの外皮中にスラグ形成をするスラグ形
成剤を全く含まないか、含んでも微量程度であるフラッ
クス群が充填されると、耐気孔性向上が期待できる。そ
のようなフラックスば、主として金属粉から構成される
That is, a flux-cored wire is composed of an outer shell made of a steel band and a flux filled therein, and the wire characteristics change depending on the flux filled. If the wire contains a large number of fluxes that form slag, the weld bead, like a coated arc welding rod, will be covered with slag. On the other hand, if the outer sheath of the wire is filled with a flux group that does not contain any slag-forming agent or contains only a small amount of slag-forming agent, improvement in porosity resistance can be expected. Such fluxes are primarily composed of metal powder.

本発明の溶接方法は、後者の金属粉系フラックス入りワ
イヤを使用する。しかし、金属粉系フランクス入すワイ
ヤの使用だけでは、150〜250Aというような比較
的高い溶接電流下での耐気孔性までは十分に改善されな
い。本発明者らは、特定の厳選された成分組成を有する
金属粉系フラックス入りワイヤに、アルゴンガスに特定
比率の炭酸ガスが混合されたシールドガスと、パルス状
溶接電流とが組み合わされたときに、高溶接電流下でも
著しく優れた耐気孔性が発揮されることを知見した。
The welding method of the present invention uses the latter metal powder-based flux-cored wire. However, the use of a metal powder-based franked wire alone does not sufficiently improve the porosity resistance under a relatively high welding current of 150 to 250 A. The present inventors have discovered that when a metal powder-based flux-cored wire having a specific carefully selected component composition is combined with a shielding gas consisting of a mixture of argon gas and carbon dioxide gas at a specific ratio, and a pulsed welding current. It was found that extremely excellent porosity resistance was exhibited even under high welding current.

本発明の溶接方法は、上記の知見に基づいて開発された
ものであり、重量%でC:0.15〜0.18%、S 
i :0.4〜0.7%、Mo : 1.5〜3.0%
および鉄粉=3〜20%を含むフラ・ノクス入すワイヤ
と、Arガス中に5〜50体積%の炭酸ガスを混合した
シールドガスとを用いて、パルス状溶接電流により亜鉛
めっき系鋼板を溶接することを特徴とする。
The welding method of the present invention was developed based on the above findings, and contains C: 0.15 to 0.18% and S: 0.15 to 0.18% by weight.
i: 0.4-0.7%, Mo: 1.5-3.0%
Galvanized steel sheets are welded using a pulsed welding current using a wire containing Fura-Nox containing 3-20% iron powder and a shielding gas containing 5-50% by volume of carbon dioxide in Ar gas. Characterized by welding.

(作  用〕 以下に本発明の溶接方法に使用するフラックス人ワイヤ
、シールドガスおよび溶接電流を詳述する。
(Function) The flux wire, shielding gas and welding current used in the welding method of the present invention will be detailed below.

スプJ’)ス入−リワイヤー 本発明の溶接方法に使用されるフラックス入りワイヤは
、重量%でc:o、15〜0.18%、SiO,4−0
,7%、Mn : 1.5−3.0%及び鉄粉=3〜2
0%を含有する。
Flux-cored wire used in the welding method of the present invention contains c:o, 15 to 0.18%, SiO, 4-0 in weight percent.
, 7%, Mn: 1.5-3.0% and iron powder = 3-2
Contains 0%.

ワイヤ外皮は、C,Si、Mn等の他、不可避的不純物
を含有する。ワイヤ中の炭素は黒鉛、高炭素フェロマン
ガンなどのフラックスにより、ワイヤ外皮でまかなえな
い炭素量を補う。同様にワイヤ中のマンガン量は金属マ
ンガン、低炭素フェロマンガン、高炭素フェロマンガン
などのフラ・ンクスで調整され、5iftはフェロシリ
コン、シリコンマンガンなどのフラックスで調整される
。鉄粉量については、ワイヤ外皮に充填されるフラック
スの充填率で調整される。フラックスには、さらに、ア
ークの安定性を向上せしめるアルカリ金属化合物も、本
発明効果を損なわない程度まで添加することができる。
The wire sheath contains unavoidable impurities in addition to C, Si, Mn, etc. The carbon in the wire is supplemented by fluxes such as graphite and high carbon ferromanganese to compensate for the amount of carbon that cannot be covered by the wire sheath. Similarly, the amount of manganese in the wire is adjusted with a flux such as metallic manganese, low carbon ferromanganese, or high carbon ferromanganese, and 5ift is adjusted with a flux such as ferrosilicon or silicon manganese. The amount of iron powder is adjusted by the filling rate of flux filled into the wire sheath. An alkali metal compound that improves the stability of the arc can also be added to the flux to an extent that does not impair the effects of the present invention.

そのアルカリ金属化合物の例として、Na、に、T−i
などの弗化物、炭酸塩などが挙げられる。本発明に供す
るフラ・ンクス入りワイヤの成分組成の限定理由は以下
のとおりである。
Examples of the alkali metal compounds include Na, Ti, Ti
Examples include fluorides and carbonates. The reason for limiting the composition of the flannel cored wire used in the present invention is as follows.

CTCは溶融金属の表面張力を低下させ気孔の要因とな
るガス分の逸散を助長する働きがあるが、0.15%未
満ではその効果は少ない。また、0.18%までにはそ
の効果が飽和し、0.18%を超えると気孔を生じ易く
なる。
CTC has the function of lowering the surface tension of molten metal and promoting the dissipation of gas components that cause pores, but if it is less than 0.15%, its effect is small. Moreover, the effect is saturated up to 0.18%, and when it exceeds 0.18%, pores are likely to occur.

Si :Siは、脱酸に寄与する元素であって、0.4
%未満では脱酸不足を招来し、気孔発生の要因となる。
Si: Si is an element that contributes to deoxidation, and has a content of 0.4
If it is less than %, deoxidation will be insufficient and this will become a factor in the formation of pores.

また0、7%を超えての添加は、過剰脱酸をきたし、却
って気孔発生を助長するようになる。
Moreover, addition of more than 0.7% causes excessive deoxidation, and on the contrary promotes the formation of pores.

Mn:MnはSiと同様に脱酸に寄与する元素であるが
、Siはど強く作用しない。1.5%未満では、Siと
同様に脱酸不足を招来し気孔発生の要因となる。また、
3.0%を超えて添加すると、気孔発生を助長するよう
になり、また溶接継手の強度が増加し好ましくない。
Mn: Like Si, Mn is an element that contributes to deoxidation, but Si does not act strongly. If it is less than 1.5%, as with Si, deoxidation is insufficient and becomes a factor in the generation of pores. Also,
Addition of more than 3.0% is undesirable because it promotes the generation of pores and increases the strength of the welded joint.

Fe粉:Fe粉は、フラックス充填率を調整する働きが
ある。Fe粉の添加は溶接能率性を高める作用もある。
Fe powder: Fe powder has the function of adjusting the flux filling rate. Addition of Fe powder also has the effect of increasing welding efficiency.

Fe粉の添加を増大せしめることにより、ワイヤ中に占
める外皮骨が減少し、外皮の溶接電流密度が高くなって
溶着速度が高まるのであるが、Fe粉量が30%未満で
は実体ワイヤに近くなり、その効果も少ない。また20
%を超えると、フラックスの充填率が高くなり、ワイヤ
製造上の伸線工程でその伸線性が損なわれる。
By increasing the addition of Fe powder, the outer skin bone occupied in the wire decreases, the welding current density of the outer skin increases, and the welding speed increases, but if the amount of Fe powder is less than 30%, the wire becomes close to a solid wire. , its effect is also small. 20 again
%, the flux filling rate becomes high and the wire drawability is impaired in the wire drawing process during wire manufacturing.

上記ワイヤは、下記に示すシールドガスおよび溶接電流
と組合せて亜鉛めっき系鋼板を溶接したとき、150〜
250Aといった高溶接電流下でも溶接部に発生する気
孔が著しく抑制される効果を発揮する。
When the above wire is welded to a galvanized steel plate in combination with the shielding gas and welding current shown below, the
Even under high welding current of 250A, it exhibits the effect of significantly suppressing the formation of pores in the welded area.

之二水上丸久 本発明の溶接方法に使用されるシールドガスは、アルゴ
ンガスに体積%で5〜50%の炭酸ガスが混合された混
合ガスである。
Maruhisa Minakami The shielding gas used in the welding method of the present invention is a mixed gas in which argon gas is mixed with carbon dioxide gas in an amount of 5 to 50% by volume.

炭酸ガスの混合比が5%未満では、その組成がアルゴン
ガスそのものに近くなり、溶接部での気孔発生が増加す
るようになる。また、アルゴンガス中に50%を超えて
炭酸ガスを混合した混合ガスでは、アルゴンガスによる
良好な溶接作業性が維持できなくなり、また、その溶接
部での気孔発生の頻度が高くなる。さらに、スパッタの
発生も多(なり、そのスパッタ除去などの溶接後処理が
必要とされ、生産性上好ましくないばかりか、溶接品質
をも劣化させる。
When the mixing ratio of carbon dioxide gas is less than 5%, its composition becomes close to that of argon gas itself, and the generation of pores in the weld zone increases. Further, in a mixed gas in which more than 50% of carbon dioxide gas is mixed with argon gas, it becomes impossible to maintain good welding workability due to argon gas, and the frequency of generation of pores in the welded portion increases. Furthermore, spatter is generated frequently, and post-welding treatment such as removal of spatter is required, which is not only unfavorable in terms of productivity but also deteriorates welding quality.

則1遁− 本発明の溶接方法に使用される溶接電流は、ピーク電1
.!i期とベース電流器を周期的に繰り返すいわゆるパ
ルス電流である。前記適正組成を有するフラックス入り
ワイヤを正極とし、前記適正組成からなる混合ガスをシ
ールドガスとして、このパルス電流により亜鉛めっき系
鋼板を溶接することにより、高溶接電流下でも溶接部に
おける気孔の発生が著しく抑制される。その理由は次の
ように推定される。
Rule 1 - The welding current used in the welding method of the present invention has a peak current of 1
.. ! This is a so-called pulse current that periodically repeats the i period and the base current. By using the flux-cored wire having the appropriate composition as the positive electrode and the mixed gas having the appropriate composition as the shielding gas, welding galvanized steel sheets with this pulse current prevents the formation of pores in the welded part even under high welding current. Significantly suppressed. The reason is presumed to be as follows.

パルスアーク溶接では、ピーク電流器とベース電流器が
周期的に繰り返される。この溶接電流の作用により溶融
池が攪拌され、その攪拌効果により気孔発生の要因とな
るガス体の逸散が促進されるものと考えられる。
In pulsed arc welding, peak and base amperage are repeated periodically. It is thought that the molten pool is stirred by the action of this welding current, and the stirring effect promotes the dissipation of the gas that causes the generation of pores.

また一般に、パルス電流を印加した場合、ワイヤ突出し
部の抵抗発熱効果(12R効果)が太き(なるので、ワ
イヤ溶融量は直状電流の溶接に比べて多くなる。当該フ
ラックス入りワイヤの場合、ソリ、ドワイヤに比べ」1
記効果は大きく、従って、ワイヤ溶融量も多くなる。す
なわち、単位溶着金属を得るのに溶接入熱量が低くなり
、亜鉛のガス化を抑えているものとも考えられる。
In addition, in general, when a pulsed current is applied, the resistance heating effect (12R effect) of the protruding part of the wire becomes thicker, so the amount of wire melting increases compared to straight current welding.In the case of the flux-cored wire, Soli, compared to Dwyer”1
This effect is large, and therefore the amount of wire melting also increases. In other words, it is thought that the welding heat input becomes lower to obtain a unit weld metal, thereby suppressing the gasification of zinc.

パルス電流の特性は、ベース電流値、ピーク電流値、パ
ルス波形及びパルス時間などに左右される。また、適用
するワイヤ径によっても、その径に適した値を選定する
必要があり、一元的に決められるものではない。直径1
.2 mmの当該フラックス入りワイヤの場合、ピーク
電流値が380A以上、ベース電流値が80A以下が効
果的である。
The characteristics of the pulse current depend on the base current value, peak current value, pulse waveform, pulse time, and the like. Further, it is necessary to select a value suitable for the wire diameter to be applied, and it cannot be determined uniformly. Diameter 1
.. In the case of the 2 mm flux-cored wire, it is effective to have a peak current value of 380 A or more and a base current value of 80 A or less.

〔実施例] 第1表に示す種々のワイヤ組成を有するフランクス人す
ワイヤを作製して溶接試験に供した。ワイヤ径は、ガス
シールドアーク溶接で多用されている1、2画を採用し
た。溶接試験は、第1図および第2図に示す如く、板厚
2.3 +nm、幅50mm、長さ300 mmの合金
化溶融亜鉛めっき鋼板(亜鉛目付量45 / 45 g
 / rr員を間隙が生じないように重ね合わせ、その
重ね部にすみ肉溶接を行い、溶接ビード表面に発生した
ピント数によりワイヤの耐気孔性を評価する試験とした
[Example] Franks wires having various wire compositions shown in Table 1 were prepared and subjected to welding tests. The wire diameter was 1 or 2 strokes, which is often used in gas shielded arc welding. As shown in Figures 1 and 2, the welding test was carried out on an alloyed hot-dip galvanized steel plate (with a zinc coating weight of 45/45 g) with a thickness of 2.3 + nm, a width of 50 mm, and a length of 300 mm.
/rr members were overlapped so that no gaps were formed, fillet welding was performed on the overlapped portion, and the porosity resistance of the wire was evaluated based on the number of focuses generated on the weld bead surface.

第3図は、第1表にNo、 5で示すワイヤ(本発明条
件内)を用い、第2表に示す条件で溶接を実施する際に
、シールドガス組成を変化させたときの試験結果を、溶
接電流にパルス電流を使用した場合と、使用しない場合
とについて示したものである。
Figure 3 shows the test results when welding was carried out under the conditions shown in Table 2 using the wires shown as No. 5 in Table 1 (within the conditions of the present invention) and the shielding gas composition was changed. , shows cases in which a pulsed current is used as the welding current and cases in which a pulsed current is not used.

溶接電流にパルス電流を使用しない場合には、いかなる
シールドガス組成においても溶接ビード表面に多数のピ
ントを発生し、その発生数はシールドガス中のアルゴン
比が高くなるに従い増加する傾向にある。溶接電流にパ
ルス電流を使用した場合には、比較的高い電流(180
A)下であるにもかかわらず、アルゴンガス中に5〜5
0vO!%の炭酸ガスを混合したシールドガス組成範囲
で、ビード表面に発生するピント数が3個以下に2 抑制され、良好な耐気孔性が確保される。アルゴンガス
中に10〜20■Op%の炭酸ガスを混合したシールド
ガスは特に好ましい耐気孔性を示す。
When a pulsed current is not used as the welding current, a large number of focal spots occur on the weld bead surface regardless of the shielding gas composition, and the number of focal spots tends to increase as the argon ratio in the shielding gas increases. When a pulsed current is used as the welding current, a relatively high current (180
A) 5 to 5 in argon gas even though it is under
0vO! Within the composition range of the shielding gas mixed with carbon dioxide gas of 2%, the number of foci generated on the bead surface is suppressed to 3 or less, and good porosity resistance is ensured. A shielding gas prepared by mixing 10 to 20 OP% carbon dioxide gas in argon gas exhibits particularly favorable porosity resistance.

第1表に示す全てのワイヤを前記第2表に示す条件(但
し溶接電流はパルス電流、シールドガスは90体積%−
10体積%C02)で溶接を行った結果をとりまとめて
第1表に併記した。
All the wires shown in Table 1 were used under the conditions shown in Table 2 (however, the welding current was a pulse current, and the shielding gas was 90% by volume).
The results of welding with 10 volume % CO2) are summarized and listed in Table 1.

ワイヤNo、 1〜4および11〜13は、高溶接電流
(180A)下では耐気孔性が低く、溶接作業も悪い。
Wire Nos. 1-4 and 11-13 have low porosity resistance and poor welding work under high welding current (180A).

ワイヤNo、 11〜13で耐気孔性が不十分なことか
ら、リン、銅、酸化亜鉛、酸化鉄、酸化アルミの添加で
は、高溶接電流下での耐気孔性は改善できないことがわ
かる。これに対し、ワイヤNo、 5〜10および14
〜17は高溶接電流でも優れた耐気孔性および溶接作業
性を示す。
Since the porosity resistance was insufficient for wires Nos. 11 to 13, it can be seen that the addition of phosphorus, copper, zinc oxide, iron oxide, and aluminum oxide cannot improve the porosity resistance under high welding current. In contrast, wire Nos. 5 to 10 and 14
-17 exhibits excellent porosity resistance and welding workability even at high welding currents.

第 2 表 が達成され、なおかつ高品質な溶接部が得られる。No. 2 table is achieved, and high-quality welds can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は溶接試験の説明図、第3図は耐気
孔性に対するシールドガス組成およびパルス電流の影響
度を示す図表である。 なお、」−記溶接試験における溶接電流値180Aは平
均電流値であり、ピーク電流値400A、ヘースTH流
4a 50 A、パルス時間1.5 m sにより得た
。 (発明の効果〕 以」−の説明から明らかなように、本発明のガスシール
l゛アーク溶接方法は、亜鉛めっき系鋼板の溶接におい
て比較的高い溶接電流下でも十分に気孔発生を抑制し得
る。従って、溶接速度の高速化5 6
FIGS. 1 and 2 are explanatory diagrams of welding tests, and FIG. 3 is a chart showing the degree of influence of shielding gas composition and pulse current on porosity resistance. Note that the welding current value of 180 A in the welding test described in "-" is an average current value, and was obtained using a peak current value of 400 A, a Heas TH flow of 4a 50 A, and a pulse time of 1.5 ms. (Effects of the Invention) As is clear from the explanation below, the gas-sealed arc welding method of the present invention can sufficiently suppress the generation of pores even under relatively high welding current in welding galvanized steel sheets. .Therefore, the welding speed can be increased 5 6

Claims (1)

【特許請求の範囲】[Claims] (1)重量%でC:0.15〜0.18%、Si:0.
4〜0.7%、Mn:1.5〜3.0%および鉄粉:3
〜20%を含むフラックス入りワイヤと、Arガスに5
〜50体積%の炭酸ガスを混合したシールドガスとを用
いて、パルス状溶接電流により亜鉛めっき系鋼板を溶接
することを特徴とするガスシールドアーク溶接方法。
(1) C: 0.15-0.18%, Si: 0.
4-0.7%, Mn: 1.5-3.0% and iron powder: 3
Flux-cored wire containing ~20% and 5% in Ar gas
A gas-shielded arc welding method characterized by welding galvanized steel sheets with a pulsed welding current using a shielding gas mixed with ~50% by volume of carbon dioxide gas.
JP2099866A 1990-04-16 1990-04-16 Gas shield arc welding method Expired - Fee Related JP2560125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099866A JP2560125B2 (en) 1990-04-16 1990-04-16 Gas shield arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099866A JP2560125B2 (en) 1990-04-16 1990-04-16 Gas shield arc welding method

Publications (2)

Publication Number Publication Date
JPH03297570A true JPH03297570A (en) 1991-12-27
JP2560125B2 JP2560125B2 (en) 1996-12-04

Family

ID=14258731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099866A Expired - Fee Related JP2560125B2 (en) 1990-04-16 1990-04-16 Gas shield arc welding method

Country Status (1)

Country Link
JP (1) JP2560125B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285643A (en) * 1993-04-06 1994-10-11 Toyota Motor Corp Arc welding method for steel
CN105057916A (en) * 2015-07-30 2015-11-18 洛阳双瑞特种合金材料有限公司 Stainless steel flux-cored wire capable of receiving postweld heat treatment
CN105081531A (en) * 2015-09-22 2015-11-25 武汉钢铁(集团)公司 Gas-protected butt welding method for high-strength bridge steel K-shaped connectors
CN105127558A (en) * 2015-09-22 2015-12-09 武汉钢铁(集团)公司 Method for hybrid welding of high-strength bridge steel K type joint
WO2018159038A1 (en) * 2017-03-02 2018-09-07 日新製鋼株式会社 Arc welding method for hot-dip galvanized steel sheet, and method for manufacturing welded member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922083B (en) * 2012-11-19 2015-08-19 江苏科技大学 A kind of welding method of nuclear grade stainless steel
CN103111722A (en) * 2013-02-21 2013-05-22 上海电气核电设备有限公司 Method for welding tubes with tube sheets under protection action of mixed gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285643A (en) * 1993-04-06 1994-10-11 Toyota Motor Corp Arc welding method for steel
CN105057916A (en) * 2015-07-30 2015-11-18 洛阳双瑞特种合金材料有限公司 Stainless steel flux-cored wire capable of receiving postweld heat treatment
CN105081531A (en) * 2015-09-22 2015-11-25 武汉钢铁(集团)公司 Gas-protected butt welding method for high-strength bridge steel K-shaped connectors
CN105127558A (en) * 2015-09-22 2015-12-09 武汉钢铁(集团)公司 Method for hybrid welding of high-strength bridge steel K type joint
CN105127558B (en) * 2015-09-22 2017-11-07 武汉钢铁(集团)公司 A kind of high-strength bridge steel K-type joint complex welding method
WO2018159038A1 (en) * 2017-03-02 2018-09-07 日新製鋼株式会社 Arc welding method for hot-dip galvanized steel sheet, and method for manufacturing welded member

Also Published As

Publication number Publication date
JP2560125B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
KR100733804B1 (en) Cored electrode, method of forming a weld bead, and arc stabilizing component
KR910009158B1 (en) Consumable welding electrode
JP3529362B2 (en) Metal shielded wire for gas shielded arc welding
US11426824B2 (en) Aluminum-containing welding electrode
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
KR100355581B1 (en) Flux cored wire for gas shield arc welding
JP3439019B2 (en) Flux-cored wire for gas shielded arc welding
KR20190019020A (en) Electrodes for forming austenitic and duplex steel weld metal
JP2500020B2 (en) Basic flux-cored wire for gas shield arc welding
JPH03297570A (en) Gas shielded arc welding method
JPH0420720B2 (en)
JP3513380B2 (en) Carbon dioxide arc welding flux cored wire for DC positive polarity and welding method
US3328557A (en) Nickel arc welding electrode
KR20140116821A (en) Flux cored wire for gas shielded arc welding
JP3880826B2 (en) Flux-cored wire for gas shielded arc welding
JPH03146295A (en) Flux cored wire for gas shielded arc welding
JP2528341B2 (en) Solid wire for gas shield arc welding
JPH03294092A (en) Flux cored wire electrode for gas shielded arc welding
JPH10180487A (en) Flux cored wire for self shield arc welding
JP3340570B2 (en) Metal flux cored wire for galvanized steel sheet and gas shielded arc welding method
JP3197404B2 (en) Flux-cored wire for gas shielded arc welding
KR100570902B1 (en) Flux cored wire for self-shield arc welding
KR101856703B1 (en) Flux cored wire for galva-annealed steel welding
JP3730477B2 (en) Flux-cored wire for gas shielded arc welding
JPH0455797B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees