JPH03297137A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03297137A
JPH03297137A JP10095190A JP10095190A JPH03297137A JP H03297137 A JPH03297137 A JP H03297137A JP 10095190 A JP10095190 A JP 10095190A JP 10095190 A JP10095190 A JP 10095190A JP H03297137 A JPH03297137 A JP H03297137A
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
resist
film
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10095190A
Other languages
Japanese (ja)
Inventor
Shuji Kiriyama
桐山 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10095190A priority Critical patent/JPH03297137A/en
Publication of JPH03297137A publication Critical patent/JPH03297137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To flatten an interlayer insulating film in a short time by a wet etching operation by a method wherein a resist is applied to be thin and the difference in an etching rate by an impurity concentration is utilized. CONSTITUTION:An interconnection pattern 2 and an interlayer insulating film 3 are formed on a wafer substrate 1. Then, a resist film 4 whose viscosity is low is applied in such a way that protruding parts of the interlayer insulating film 3 are hardly covered. In this state, ions are implanted. Thereby, the ions are implanted selectively into the protruding parts of the interlayer insulating film 3. At this time, an accelerating voltage is selected in such a way that ion seeds are not pierced through the resist film 4 at recessed parts of the interlayer insulating film 3. Then, the resist film 4 is removed; after that, the interlayer insulating film 3 is etched wholly together with ion implanted parts 3a. Thereby, the ion implanted parts 3a are etched faster than other parts, and the interlayer insulating film 3 can be flattened in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の眉間絶縁膜の平坦化を目的と
した半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device for the purpose of planarizing a glabellar insulating film of a semiconductor device.

〔従来の技術〕[Conventional technology]

第2図は従来のこの種の層間絶縁膜の平坦化を示す工程
断面図であり、この図において、1はウェハ基板(配線
形成前までに形成された各種膜を含む) 2は前記ウェ
ハ基板1上に形成された配線パターン、3は前記ウェハ
基板1上全面に形成された層間絶縁膜、4は平坦化のた
めに形成されたレジスト膜である。
FIG. 2 is a process cross-sectional view showing the conventional planarization of this type of interlayer insulating film. In this figure, 1 is a wafer substrate (including various films formed before wiring is formed), 2 is the wafer substrate 1 is a wiring pattern formed on the wafer substrate 1, 3 is an interlayer insulating film formed on the entire surface of the wafer substrate 1, and 4 is a resist film formed for planarization.

次に、この平坦化工程について説明する。Next, this planarization process will be explained.

まず、第2図(a)に示すように、半導体装置の製造過
程で、配線前までに形成された各種膜パターンを含むウ
ェハ基板1上に、配線パターン2を形成する。さらに、
配線パターン2の上に、層間絶縁膜3を化学的気相成長
法等により形成する。
First, as shown in FIG. 2(a), in the process of manufacturing a semiconductor device, a wiring pattern 2 is formed on a wafer substrate 1 including various film patterns formed before wiring. moreover,
An interlayer insulating film 3 is formed on the wiring pattern 2 by chemical vapor deposition or the like.

層間絶縁膜3は、下部配線である配線パターン2の存在
する部分が突出し、逆に配線パターン2のない部分はへ
こんだ状態に、いわゆる凹凸状に形成される(実際には
、配線パターン2を形成前の各種膜の凹凸により複雑な
形状を示すが、ここでは簡略化して示している。)  
この状態のまま、層間絶縁膜3の上に次の配線を形成す
ると、配線の段差被覆性が悪くなったり、あるいは写真
製版時のレジスト塗布膜厚がばらついたり、さらにはそ
れによって配線幅がばらつく。すなわち、写真製版時に
は、層間絶縁膜3の凸部はレジストが薄(、凹部は厚く
なっているため、それによって凹部を適正露光条件にす
ると、凸部は露光過剰気味になり、配線幅がばらつく。
The interlayer insulating film 3 is formed in a so-called uneven shape, with the part where the wiring pattern 2, which is the lower wiring, is present protruding, and the part where the wiring pattern 2 is not present is concave. Although the shape is complicated due to the unevenness of the various films before formation, it is shown here in a simplified manner.)
If the next wiring is formed on the interlayer insulating film 3 in this state, the step coverage of the wiring will deteriorate, or the thickness of the resist coating during photolithography will vary, and furthermore, the wiring width will vary as a result. . In other words, during photolithography, the resist is thinner in the convex portions of the interlayer insulating film 3 (but thicker in the concave portions), so if the concave portions are subjected to proper exposure conditions, the convex portions will be slightly overexposed and the wiring width will vary. .

また、凸部を適正露光条件にすると、凹部は露光不足と
なり、この場合も配線幅がばらつく。また、配線自身の
凹凸による乱反射により、露光が乱される等の問題が生
じろ。それを解決するため、眉間絶縁膜3を下記のよう
にして平坦化する。
Further, when the convex portions are subjected to proper exposure conditions, the concave portions are underexposed, and the wiring width also varies in this case. Further, problems such as exposure disturbance may occur due to diffused reflection due to the unevenness of the wiring itself. In order to solve this problem, the glabellar insulating film 3 is planarized as follows.

すなわち、第2図(b)では、熱処理により、眉間絶縁
膜3をリフローしている。これは熱処理条件、眉間絶縁
膜3の種類、不純物の種類、#度によって平坦性は異な
るが、第2図(b)では完全に平坦化されていない状態
を示す。
That is, in FIG. 2(b), the glabellar insulating film 3 is reflowed by heat treatment. Although the flatness varies depending on the heat treatment conditions, the type of the glabella insulating film 3, the type of impurity, and the #degree, FIG. 2(b) shows a state that is not completely flattened.

これをさらに平坦化するため、従来は第2図(C)に示
すようにレジスト膜4を厚く塗布しく厚く塗布すると、
レジストの粘性により表面状態は平坦になる。) レジ
スト膜4と層間絶縁膜3のエツチングレートが同じにな
るようなドライエツチング条件で、第2図(d)に示す
ように、層間絶縁膜3の凸部がなくなるまで全面エツチ
ングしていた。
In order to further flatten this, conventionally the resist film 4 is coated thickly as shown in FIG. 2(C).
The surface condition becomes flat due to the viscosity of the resist. ) Under dry etching conditions such that the etching rates of the resist film 4 and the interlayer insulating film 3 were the same, the entire surface of the interlayer insulating film 3 was etched until the convex portions disappeared, as shown in FIG. 2(d).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置の製造方法は、以上のようにして眉間
絶縁膜3の平坦化を行っているので、し・シスト膜4を
厚く塗布しなければならず、また、レジスト膜4を長時
間エツチングすることが必要で、そのため異物等の発生
原因となる等の問題点があった。
In the conventional semiconductor device manufacturing method, the glabella insulating film 3 is flattened as described above, so the cyst film 4 must be applied thickly, and the resist film 4 must be etched for a long time. Therefore, there were problems such as the generation of foreign matter and the like.

この発明は、上記のような問題点を解消するためになさ
れたもので、レジス1−膜を薄くできるとともに、ウェ
ットエツチングで短時間で層間絶縁膜の平坦化を図れる
半導体装置の製造方法を得ることを目的とする。
This invention has been made to solve the above-mentioned problems, and provides a method for manufacturing a semiconductor device that can thin the resist film and flatten the interlayer insulating film in a short time by wet etching. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、層間絶縁膜の
凸部のみにイオン注入できるように、レジストを薄く塗
布するとともに、不純物濃度によるエツチングレートの
差を利用して、層間絶縁膜を平坦化するものである。
In the method for manufacturing a semiconductor device according to the present invention, a resist is applied thinly so that ions can be implanted only into the convex portions of the interlayer insulating film, and the interlayer insulating film is flattened by utilizing the difference in etching rate depending on the impurity concentration. It is something to do.

〔作用〕[Effect]

この発明においては、層間絶縁膜の凸部のみに選択的に
イオン注入することから、その不純物濃度の違いにより
、エツチングし・−1・にダが生じ、イオン注入された
層間絶縁膜の凸部のエツチングレートが速くなり、平坦
化される。
In this invention, since ions are selectively implanted only into the convex portions of the interlayer insulating film, due to the difference in impurity concentration, duffs occur in the etching process, and the convex portions of the interlayer insulating film into which ions have been implanted are etched. The etching rate becomes faster and the surface becomes flat.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図について説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、第2図と同一符号は同じものを示し、
3aは前記層間絶縁膜3の凸部に選択的にイオン注入さ
れた部分(イオン注入部という)である。
In Figure 1, the same symbols as in Figure 2 indicate the same things,
Reference numeral 3a denotes a portion (referred to as an ion implantation portion) where ions are selectively implanted into the convex portion of the interlayer insulating film 3.

次に、平坦化工程について説明する。Next, the planarization process will be explained.

まず、第1図(a)   (b)に示すように、第2図
(a3   (b)と同様にしてウェハ基板1上に配線
パターン22層間絶R膜3を形成する。次に、第1図(
c)に示すように、粘性の低いL−レス1−膜4を層間
絶縁膜3の凸部がほとんど覆われないように塗布し、そ
の状態でイオン注入する。
First, as shown in FIGS. 1(a) and 1(b), a wiring pattern 22 layer interlayer R film 3 is formed on a wafer substrate 1 in the same manner as in FIG. 2(a3(b)). figure(
As shown in c), a low-viscosity L-less 1-film 4 is applied so that the convex portions of the interlayer insulating film 3 are hardly covered, and ions are implanted in this state.

これにより、層間絶縁膜3の凸部に選択的にイオン注入
される。乙のとき、加速電圧は、イオン種が層間絶縁膜
3の凹部にあるレジス1−膜4を突き抜けないように選
ぶ必要がある。
As a result, ions are selectively implanted into the convex portions of the interlayer insulating film 3. In case (B), the accelerating voltage must be selected so that the ion species do not penetrate the resist 1-film 4 located in the recessed portion of the interlayer insulating film 3.

次に、第1図(d)に示すように、レジスト膜4を除去
した後、第1図(e)に示すように、層間絶縁膜3をイ
オン注入部3aとともに全面エツチングする。このとき
、イオン注入で不純物の濃度の高い部分、すなわちイオ
ン注入部3aは、イオン注入されなかった部分よりエツ
チングレートが速いため、速くエツチングされ、層間絶
縁膜3は平坦化される。平坦化ずろためには、エツチン
グレート比を調整する必要があるが、これはイオン注入
のドーズ量および加速電圧(注入深さ)を適度に選ぶこ
とにより可能となる。また、適度の熱処理による拡散に
より、不純物を深く入れることができる。
Next, as shown in FIG. 1(d), after removing the resist film 4, as shown in FIG. 1(e), the entire surface of the interlayer insulating film 3 is etched together with the ion implanted portion 3a. At this time, the portion where the impurity concentration is high due to the ion implantation, that is, the ion implanted portion 3a, has a higher etching rate than the portion where no ions are implanted, and therefore is etched quickly, and the interlayer insulating film 3 is planarized. In order to reduce the planarization shift, it is necessary to adjust the etching rate ratio, which can be achieved by appropriately selecting the ion implantation dose and accelerating voltage (implantation depth). Furthermore, impurities can be introduced deeply by diffusion through appropriate heat treatment.

なお、上記実施例では、層間絶縁膜3を形成した後、熱
処理を加え、リフローしてからレジスト膜4の塗布2イ
オン注入を行っているが、層間絶縁膜3を形成した直後
にレジスト膜4の塗布、イオン注入を行い、熱処理でリ
フローと不純物の拡散を兼ねてもよい。
In the above embodiment, after forming the interlayer insulating film 3, heat treatment is applied, and after reflowing, the coating 2 of the resist film 4 is ion implanted. Coating and ion implantation may be performed, and heat treatment may serve both as reflow and impurity diffusion.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、ウェハ基板上に配線
パターンを形成した後、全面に層間絶縁膜を形成する工
程2層間絶縁膜の配線パターン上部の凸部となった部分
がほとんど覆われないようにレジスl−を塗布し、その
後、シ・シストをマスクにして層間絶縁膜の凸部のみに
選択的にイオン注入する工程、前記レジストを除去した
後、前記イオン注入による不純物濃度の違いによるエラ
チングレー)・の差を利用してエツチングを行う工程に
より、層間絶縁膜を平坦化するようにしたので、異物付
着の要因を除去できるとともに、平坦化の際のエツチン
グに層間絶縁膜の凸部が速くエツチングされ、容易に平
坦化できろ。
As explained above, the present invention is a step of forming an interlayer insulating film on the entire surface after forming a wiring pattern on a wafer substrate.The protruding portion of the interlayer insulating film on the upper part of the wiring pattern is hardly covered. After applying a resist l- as shown in FIG. Since the interlayer insulating film is flattened by an etching process that takes advantage of the difference in the etching gray (eratin gray), it is possible to eliminate the cause of foreign matter adhesion, and to prevent convex parts of the interlayer insulating film from being etched during planarization. Etches quickly and flattens easily.

また、イオン注入の不純物濃度の制胛により、さらに精
度よく、平坦化が図れる等の効果がある。
In addition, by controlling the impurity concentration during ion implantation, there is an effect that planarization can be achieved with higher accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体装置の製造方
法を示す工程断面図、第2図は従来の半導体装置の製造
方法を示す工程断面図である。 図において、1はウェハ基板、2は配線バタン、3は層
間絶縁膜、3aはイオン注入部、4はレジスl−膜であ
る。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is a process sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a process sectional view showing a conventional method for manufacturing a semiconductor device. In the figure, 1 is a wafer substrate, 2 is a wiring button, 3 is an interlayer insulating film, 3a is an ion implantation part, and 4 is a resist l-film. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  ウェハ基板上に配線パターンを形成した後、全面に層
間絶縁膜を形成する工程、前記層間絶縁膜の配線パター
ン上部の凸部となった部分がほとんど覆われないように
レジストを塗布し、その後、前記レジストをマスクにし
て前記層間絶縁膜の凸部のみに選択的にイオン注入する
工程、前記レジストを除去した後、前記イオン注入によ
る不純物濃度の違いによるエッチングレートの差を利用
してエッチングを行い、前記層間絶縁膜を平坦化する工
程とからなることを特徴とする半導体装置の製造方法。
After forming a wiring pattern on a wafer substrate, a step of forming an interlayer insulating film on the entire surface, applying a resist so that the convex portion of the upper part of the wiring pattern of the interlayer insulating film is hardly covered, and then, A step of selectively implanting ions only into the convex portions of the interlayer insulating film using the resist as a mask, and after removing the resist, etching is performed using a difference in etching rate due to a difference in impurity concentration due to the ion implantation. A method for manufacturing a semiconductor device, comprising the steps of: planarizing the interlayer insulating film.
JP10095190A 1990-04-16 1990-04-16 Manufacture of semiconductor device Pending JPH03297137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095190A JPH03297137A (en) 1990-04-16 1990-04-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095190A JPH03297137A (en) 1990-04-16 1990-04-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03297137A true JPH03297137A (en) 1991-12-27

Family

ID=14287662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095190A Pending JPH03297137A (en) 1990-04-16 1990-04-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03297137A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970003651A (en) * 1995-06-20 1997-01-28 BPS film planarization method of semiconductor device
KR20000017361A (en) * 1998-08-18 2000-03-25 칼 하인쯔 호르닝어 Method for producing semiconductor-insulator layer and semiconductor component having the semiconductor-insulator layer
DE10329389A1 (en) * 2003-06-30 2005-02-10 Advanced Micro Devices, Inc., Sunnyvale Method for compensating etch rate nonuniformities by ion implantation
JP2016225526A (en) * 2015-06-02 2016-12-28 株式会社東芝 Method of manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970003651A (en) * 1995-06-20 1997-01-28 BPS film planarization method of semiconductor device
KR20000017361A (en) * 1998-08-18 2000-03-25 칼 하인쯔 호르닝어 Method for producing semiconductor-insulator layer and semiconductor component having the semiconductor-insulator layer
DE10329389A1 (en) * 2003-06-30 2005-02-10 Advanced Micro Devices, Inc., Sunnyvale Method for compensating etch rate nonuniformities by ion implantation
DE10329389B4 (en) * 2003-06-30 2006-05-04 Advanced Micro Devices, Inc., Sunnyvale Method for compensating etch rate nonuniformities by ion implantation
US7098140B2 (en) 2003-06-30 2006-08-29 Advanced Micro Devices, Inc. Method of compensating for etch rate non-uniformities by ion implantation
JP2016225526A (en) * 2015-06-02 2016-12-28 株式会社東芝 Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5229315A (en) Method for forming an isolated film on a semiconductor device
US4505025A (en) Method for manufacturing a semiconductor device
EP0256030B1 (en) Double layer photoresist process for well self-align and ion implantation masking
US4578859A (en) Implant mask reversal process
US5563098A (en) Buried contact oxide etch with poly mask procedure
JPH03297137A (en) Manufacture of semiconductor device
KR20000042870A (en) Forming method of trench of semiconductor device
KR0168149B1 (en) Method of forming flat layer on semiconductor device
JP2550601B2 (en) Method for manufacturing semiconductor device
KR100338091B1 (en) Method for manufacturing semiconductor device
KR100209732B1 (en) Method of fabricating a semiconductor device
KR920004907B1 (en) Semiconductor manufacturing method of reduced topology due to a formation of field separation
US5960301A (en) Method of forming isolation layer of semiconductor device
KR20020044682A (en) Method for forming isolation layer in semiconductor device
KR100226750B1 (en) Method for forming a contact hole of semiconductor device
KR0161727B1 (en) Element isolation method of semiconductor device
KR100494121B1 (en) Flattening method of semiconductor device
KR20030002702A (en) Method of forming an isolation layer in a semiconductor device
JPS5923522A (en) Dry etching method
KR920007356B1 (en) Method of fabricating isolation using a trench
KR100358127B1 (en) Method for forming contact hole in semiconductor device
JPH03254123A (en) Selective etching method
KR960013140B1 (en) Fabricating method of semiconductor device
KR0179155B1 (en) Method of manufacturing semiconductor device
JPS6367747A (en) Device isolation of semiconductor device