JPH03293003A - Method for shortening ageing time of silica flocculant - Google Patents

Method for shortening ageing time of silica flocculant

Info

Publication number
JPH03293003A
JPH03293003A JP9559290A JP9559290A JPH03293003A JP H03293003 A JPH03293003 A JP H03293003A JP 9559290 A JP9559290 A JP 9559290A JP 9559290 A JP9559290 A JP 9559290A JP H03293003 A JPH03293003 A JP H03293003A
Authority
JP
Japan
Prior art keywords
flocculant
acid
powder
ore
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9559290A
Other languages
Japanese (ja)
Inventor
Ryuichi Abe
隆一 阿部
Nobuyuki Uematsu
信行 植松
Masao Yamaguchi
雅夫 山口
Shunichi Naito
俊一 内藤
Yoshitaka Ichimaru
市丸 義隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP9559290A priority Critical patent/JPH03293003A/en
Publication of JPH03293003A publication Critical patent/JPH03293003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To shorten the ageing time of a silica flocculant by ageing a soln. contg. a polyvalent metal ion such as Al ion, an alkaline-earth metal ion such as Ca ion and silicic acid and then diluting the soln. with water to restrain its gelling. CONSTITUTION:A powdered ore contg. Si, Al and Ca is dissolved in hydrochloric acid, sulfuric acid or their mixture to prepare a soln. contg. a polyvalent metal ion such as aluminum ion, an alkaline-earth metal ion such as calcium ion and silicic acid. The soln. is aged and then diluted with water to restrain its gelling, and the ageing time of the silica flocculant is shortened. A mineral powder obtained by melting blast-furnace slag powder and an ore contg. Si, Al and Ca to change its mineral crystal structure is appropriately used as the powdered ore.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、凝集作用を利用する水処理に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to water treatment using flocculation.

[従来の技術] 水処理に関しては各種方法があるが、その1つである凝
集法において、一般的な凝集剤である硫酸バンドと共に
重合シリカコロイド(コロイドケイ酸、シリカゾル、無
定形ケイ酸コロイドなどと呼ばれるか以下活性ケイ酸と
略す)を濁水の凝集に用いて効果をあげている例が浄水
場で報告されている(水道協会雑誌第387号)。
[Prior Art] There are various methods for water treatment, and one of them, the flocculation method, uses polymerized silica colloids (colloidal silicic acid, silica sol, amorphous silicic acid colloid, etc.) together with sulfuric acid band, which is a general flocculant. An example of the use of activated silicic acid (hereinafter referred to as activated silicic acid) to coagulate turbid water has been reported to be effective at a water treatment plant (Water Works Association Magazine No. 387).

この方法は@集剤である硫酸バンドの単独使用より凝集
フロックが強国で大きく且つ重いので沈降速度が速くな
り、従って残留濁度がより小さくなる効果があるが、特
に原水水温が10℃以下に低下して凝集フロックの成長
が悪い冬期や、厚木濁度が300度を越えるときに、活
性ケイ酸の凝集助剤としての効果が高い。
This method has the effect of lowering the residual turbidity because the flocs are larger and heavier than the single use of sulfuric acid band, which is a collection agent, so the sedimentation rate is faster and the residual turbidity is lower. Activated silicic acid is highly effective as a coagulation aid in the winter when the turbidity is low and the growth of coagulated flocs is poor, or when Atsugi turbidity exceeds 300 degrees.

ところで活性ケイ酸の製造方法はいろいろあるが、ケイ
酸ソーダ(水ガラス)の薄い溶液(Sin、として約1
,5%)に硫酸等の稀酸を加えて作るのが一般的である
。しかし、ケイ酸ソーダ溶液中の大部分のアルカリ度が
中和された後、1〜2時間静置すると淡い白濁を呈する
ようになり、さらに時間がたつと液全体が寒天状に固化
し、いわゆるゲル化したケイ酸は凝集助剤として効果が
無いばかりか、装置や配管を詰まらせて大きな支障とな
るので、実際はゲル化の進行を実用上支障のない程度に
遅らせるため、1〜2時間静置した後、溶液中の5j0
2を0.5%程度まで希釈してから使用している。
By the way, there are various methods for producing activated silicic acid, but a dilute solution of sodium silicate (water glass) (Sin, about 1
, 5%) by adding a dilute acid such as sulfuric acid. However, after most of the alkalinity in the sodium silicate solution has been neutralized, if it is allowed to stand still for 1 to 2 hours, it becomes slightly cloudy, and as time passes, the entire solution solidifies into an agar-like state, which is called Gelled silicic acid is not only ineffective as a flocculation aid, but also clogs equipment and piping, causing a major problem.In fact, in order to slow down the gelation process to a point that does not cause any practical problems, it is best to leave it still for 1 to 2 hours. After placing the 5j0 in the solution
2 is diluted to about 0.5% before use.

従って、実際の活性ケイ酸製造設備では、計量器の誤差
や停止信号から閉弁までの時間遅れ等のため、使用する
硫酸の計量に若干の誤差を生じ、これがケイ酸ソーダの
中和率に大きく影響するため、硫酸を加えた後のpHを
測定しながら、ケイ酸ソーダまたは硫酸をさらに添加し
て適正な残留アルカリ度になるように必ず補正を行って
いる。
Therefore, in actual activated silicic acid production equipment, there is a slight error in measuring the sulfuric acid used due to errors in the measuring instrument and the time delay from the stop signal to the valve closing, etc., and this causes the neutralization rate of sodium silicate to vary. Since this has a large effect, while measuring the pH after adding sulfuric acid, we always make corrections by adding more sodium silicate or sulfuric acid to ensure that the residual alkalinity is at an appropriate level.

このようにケイ酸の活性化作業は、ゲル化を防止するた
めに溶液のpHや残留アルカリ度等管理すべき項目も多
く簡単ではない。なお、作業簡略化のため複雑な自動計
装を導入した場合は、保守に高度の技術を必要とするの
で小規模水処理には向かない。
As described above, activating silicic acid is not easy as there are many items that need to be controlled, such as the pH of the solution and the residual alkalinity, in order to prevent gelation. In addition, if complicated automatic instrumentation is introduced to simplify the work, it will require advanced technology for maintenance, so it is not suitable for small-scale water treatment.

また、活性ケイ酸製造設備は第4図にフローを示すとお
り、装置的にもケイ酸ソーダ貯蔵檀1 (一般にエポキ
シライニング)、濃硫酸タンク2、活性化反応槽3(攪
拌機付、一般に軟買塩ビライニング)の他、ケイ酸ソー
ダ受入ポンプ4、ケイ酸ソーダ送液ポンプ5、硫酸送液
ポンプ6、活性ケイ酸注入ポンプ7及び配管と、これら
の運転操作と運転状況の表示を行う操作・監視盤から構
成されているのが一般的であり、設備として簡単でない
In addition, as shown in the flowchart in Figure 4, the activated silicic acid production equipment also includes a sodium silicate storage tank 1 (generally lined with epoxy), a concentrated sulfuric acid tank 2, and an activation reaction tank 3 (with a stirrer, generally available from soft-purchase). PVC lining), sodium silicate receiving pump 4, sodium silicate liquid feeding pump 5, sulfuric acid liquid feeding pump 6, activated silicic acid injection pump 7, and piping, as well as operations and operations for operating these and displaying the operating status. Generally, it consists of a monitoring panel, which is not a simple piece of equipment.

このように、ケイ酸の活性化が作業的にも装置的にも簡
単でないため、我国では東京都の全町・長浜・東村山な
どの各浄水場、及び北九州市や愛知用水公団系の浄水場
などで5〜10年間使用された実績があるが、現在はい
ずれも使用が中止されている。
In this way, activating silicic acid is not easy in terms of work and equipment, so in Japan, water treatment plants in all towns of Tokyo, Nagahama, Higashimurayama, etc., as well as water treatment plants in Kitakyushu City and Aichi Water Public Corporation, It has a track record of being used for 5 to 10 years, but all of them are currently discontinued.

[発明が解決しようとする課題コ 活性ケイ酸を凝集剤の硫酸バンドと共に使用すれば、強
固で大きく且つ重いフロックを作るという活性ケイ酸の
凝集助剤としての働きにより、濁X濃度の低減、赤潮プ
ランクトンの駆除及び藻類の除去が促進される効果は著
しい。
[Problem to be Solved by the Invention] When co-activated silicic acid is used together with the flocculant sulfuric acid band, activated silicic acid acts as a flocculation aid to form strong, large and heavy flocs, thereby reducing the turbidity X concentration. The effect of promoting the extermination of red tide plankton and the removal of algae is remarkable.

しかし、このケイ酸の活性化は作業的にも設備的にも簡
単でないため活性ケイ酸は一部の浄水場でかつて使用さ
れていたにすぎない。
However, activation of this silicic acid is not easy in terms of work and equipment, so activated silicic acid has only been used in some water purification plants.

以上の如く、現在一般的に使用されている水処理用の凝
集剤は、凝集主剤機能と助剤機能を併せ持つ物が少なく
凝集操作が複雑になっている。
As described above, among the currently commonly used flocculants for water treatment, there are few that have both the function of a flocculant main agent and an auxiliary agent function, making the flocculation operation complicated.

本発明は、これらの課題を解決するために重合化度の高
い活性ケイ酸を含んだ凝集剤を提供するものである。本
凝集剤の製造過程でケイ酸が極短時間で活性化されるた
め、別途ケイ酸ソーダから活性ケイ酸を製造して添加す
る必要もなく、設備も作業も大幅に簡略化され、安価な
凝集剤が提供できるものである。
In order to solve these problems, the present invention provides a flocculant containing active silicic acid with a high degree of polymerization. Because silicic acid is activated in a very short time during the manufacturing process of this flocculant, there is no need to separately manufacture activated silicic acid from sodium silicate and add it, which greatly simplifies equipment and work, and makes it inexpensive. A flocculant can be provided.

[課題を解決するための手段および作用]発明者らは、
前記の課題を解決させるために研究を重ねた結果、高炉
スラグ粉末に注目し、これを原料として濃度調整した硫
酸、塩酸またはこれらの混酸に溶解し熟成させることに
より重合度の高い活性ケイ酸を含んだ凝集剤を容易に且
つ低コストで製造することに成功し、さらに本発明の凝
集剤が優れた凝集性能を持つことを見出したものである
。即ち本発明の凝集剤は、Si、 AI、 Caを含む
鉱石粉末を硫酸、塩酸またはこれらの混酸のいずれかに
溶解して得られるアルミニウムイオン等の多価金属イオ
ン、カルシウムイオン等アルカリ土類金属イオン、およ
び活性ケイ酸を含有することを特徴とする液状の凝集剤
である。
[Means and effects for solving the problem] The inventors
As a result of repeated research to solve the above problems, we focused on blast furnace slag powder, and by dissolving it in sulfuric acid, hydrochloric acid, or a mixed acid of these with an adjusted concentration as a raw material and aging it, we were able to produce activated silicic acid with a high degree of polymerization. The present inventors succeeded in producing a flocculant containing a flocculant easily and at low cost, and further discovered that the flocculant of the present invention has excellent flocculation performance. That is, the flocculant of the present invention contains polyvalent metal ions such as aluminum ions, alkaline earth metals such as calcium ions, etc., obtained by dissolving ore powder containing Si, AI, and Ca in sulfuric acid, hydrochloric acid, or a mixed acid thereof. It is a liquid flocculant characterized by containing ions and active silicic acid.

本発明の凝集剤の製造は、例えばまず高炉スラグ粉末を
1規定〜7規定の硫酸、塩酸またはこれらの混酸中に溶
解させ高炉スラグ粉末から酸溶液中へアルミニウムイオ
ン等の多価金属イオン、カルシウムイオン等アルカリ土
類金属イオンと共に溶解性シリカ(分子分散状ケイ酸、
ケイ酸千ツマ−イオン状ケイ酸とも呼ばれる)を溶解さ
せ短時間の熟成をさせることで得られる。
To produce the flocculant of the present invention, for example, first, blast furnace slag powder is dissolved in 1N to 7N sulfuric acid, hydrochloric acid, or a mixed acid thereof, and polyvalent metal ions such as aluminum ions and calcium are added from the blast furnace slag powder to an acid solution. Soluble silica (molecularly dispersed silicic acid,
It is obtained by dissolving silicic acid (also called ionic silicic acid) and aging it for a short time.

後述の実施例−1の表−2に示す凝集剤製造条件で製造
した凝集剤を用いて、濁水処理実験を実施した結果、表
−3に示す如く優れた凝集性能を示した。これら優れた
凝集性能を示す凝集剤製造条件として、高炉スラグ粉末
と酸濃度との好ましい混合比率は、1規定酸溶液の場合
は高炉スラグ粉末10重量部当り酸溶液200重量部以
上400重量部以下、7規定酸?8液の場合は高炉スラ
グ粉末10重量部当り酸溶液35重量部以上300重量
部以下、塩酸と硫酸との混酸を用いる場合においても、
上記の混合比率を目安としてよい。
A turbid water treatment experiment was conducted using a flocculant produced under the flocculant manufacturing conditions shown in Table 2 of Example 1 below, and as a result, excellent flocculation performance was shown as shown in Table 3. As conditions for producing a flocculant that exhibits these excellent flocculation properties, the preferred mixing ratio of blast furnace slag powder and acid concentration is, in the case of a 1N acid solution, 200 parts by weight or more and 400 parts by weight or less of acid solution per 10 parts by weight of blast furnace slag powder. , 7N acid? In the case of 8 liquids, 35 parts by weight or more and 300 parts by weight or less of acid solution per 10 parts by weight of blast furnace slag powder, even when using a mixed acid of hydrochloric acid and sulfuric acid,
The above mixing ratio may be used as a guide.

上記の割合で、高炉スラグ粉末を酸溶液に溶解すると高
炉スラグ粉末に含まれるCaO等によって中和反応が進
み酸溶液のpHは次第に上昇する。この平衡状態におい
て定まる溶解度まで高炉粉末各成分が溶解する。さらに
、溶解性シリカは酸性溶液中で重合反応が進み次第に活
性ケイ酸になる。
When the blast furnace slag powder is dissolved in the acid solution at the above ratio, the neutralization reaction progresses due to CaO and the like contained in the blast furnace slag powder, and the pH of the acid solution gradually increases. In this equilibrium state, each component of the blast furnace powder is dissolved to a certain solubility. Furthermore, soluble silica becomes active silicic acid as the polymerization reaction progresses in an acidic solution.

末法で用いる高炉スラグ粉末は、塊状の鉱石に比べ、粒
径が100μ以下の微粉末状で比表面積が大きいことか
ら、酸溶液に対する溶解性、反応性に優れていることに
着目して考案された、熟成期間の短縮をするシリカ凝集
剤の製造方法である。
The blast furnace slag powder used in the powdering method was designed with the focus on its superior solubility and reactivity in acid solutions, as it is in the form of a fine powder with a particle size of 100μ or less and has a large specific surface area compared to lumpy ore. In addition, it is a method for producing a silica flocculant that shortens the aging period.

高炉スラグの鉱物組成は、2CaO・AfhOs・Si
n。
The mineral composition of blast furnace slag is 2CaO・AfhOs・Si
n.

(ゲーレナイト)、2Ca(l MgO・2Si02 
(アケルマナイト)、2CaO−5iO2(珪酸2石灰
)、Cab・5in2(ウオラストナイト)からなると
推定され、溶融状態の鉱滓の冷却過程において結晶性珪
酸塩やガラス状珪酸塩を生しる。これらが強酸溶液中に
おいて、カルシウムイオン、マグネシウムイオン等アル
カリ土類金属イオンの溶出と同時に溶解性シリカ、アル
ミニウムイオン等の多価金属イオンが容易に溶解する。
(Gehlenite), 2Ca(l MgO・2Si02
It is estimated to consist of (akermanite), 2CaO-5iO2 (dicalcium silicate), and Cab.5in2 (wollastonite), and crystalline silicates and glassy silicates are produced in the cooling process of molten slag. When these are in a strong acid solution, polyvalent metal ions such as soluble silica and aluminum ions are easily dissolved at the same time as alkaline earth metal ions such as calcium ions and magnesium ions are eluted.

本発明において用いる高炉スラグ粉末の作用は、溶解性
シリカを凝集助剤として効果のある活性ケイ酸に変える
ことであり、共晶構造を有する高炉スラグ粉末を用いて
強酸中溶出させ同時に酸性溶液をケイ酸の重合反応促進
助剤として用いる事を特徴としている。
The action of the blast furnace slag powder used in the present invention is to convert soluble silica into active silicic acid, which is effective as a flocculation aid.The blast furnace slag powder with a eutectic structure is used to elute it in a strong acid, and at the same time, it is dissolved in an acidic solution. It is characterized by its use as an auxiliary agent for promoting the polymerization reaction of silicic acid.

本凝集剤中のケイ酸の重合度を高くするには、熟成時間
を長く取ることで重合度を高める方法と酸性溶液の酸濃
度を高くしかつ酸性溶液中の溶解性シリカ濃度を高くす
ることにより酸による溶解性シリカ重合促進と反応熱に
よる溶液温度上昇による重合促進により短時間に熟成を
させる方γ去がある。
In order to increase the degree of polymerization of the silicic acid in this flocculant, the degree of polymerization can be increased by increasing the aging time, and by increasing the acid concentration of the acidic solution and increasing the soluble silica concentration in the acidic solution. Therefore, there is a method of aging in a short time by promoting the polymerization of soluble silica by acid and by increasing the temperature of the solution due to reaction heat.

しかし、前者は熟成に長時間を要し適度の熟成したもの
を安定して得ることが難しいのに対し、後者は短時間で
かつ容易に適度な熟成をおこなわせることができる。
However, the former requires a long time to ripen and it is difficult to stably obtain a properly aged product, whereas the latter can be easily and appropriately aged in a short period of time.

短時間でかつ容易に適度な熟成をおこなわせるためには
酸溶液の濃度は1規定以上7規定以下にする必要がある
。これは、酸溶液の濃度が1規定以下であると酸溶液の
濃度が低く、粉末の酸溶液への溶解による反応熱での溶
液温度上昇も小さいことから凝集剤の熟成に長時間を要
し工業的でない。一方、酸溶液の濃度が7規定以上であ
ると酸溶液の濃度が高く、粉末の酸溶液への溶解による
反応熱での溶液温度上昇も大鮒いことから凝集剤の熟成
が非常に速く瞬時にゲル化現象を発現して工業的でない
In order to easily carry out appropriate ripening in a short period of time, the concentration of the acid solution needs to be 1N or more and 7N or less. This is because when the concentration of the acid solution is 1N or less, the concentration of the acid solution is low and the rise in temperature of the solution due to the reaction heat caused by dissolving the powder in the acid solution is also small, so it takes a long time to mature the flocculant. Not industrial. On the other hand, if the concentration of the acid solution is 7N or more, the concentration of the acid solution is high and the temperature of the solution increases significantly due to the heat of reaction caused by dissolving the powder in the acid solution, so the maturation of the flocculant is very fast and instantaneous. However, it is not suitable for industrial use because it exhibits a gelation phenomenon.

粉末の添加量を増やし、製造した凝集剤のpHが2.0
以上になると凝集剤液中に不溶解性シリカが生じゲル化
も促進されるため、適度な熟成期間をとることか難しく
、凝集剤がゲルとなり取扱い上トラブルをきたすばかり
か凝集効果が低減することから、本凝集剤のp)Iは2
.0以下好ましくは1.6以下になる鉱石粉末の溶解量
にする必要かある。
By increasing the amount of powder added, the pH of the produced flocculant was 2.0.
If the temperature exceeds this level, insoluble silica will be generated in the flocculant solution and gelation will be promoted, making it difficult to allow an appropriate aging period, and the flocculant will turn into a gel, causing trouble in handling and reducing the flocculating effect. Therefore, p)I of this flocculant is 2
.. It is necessary to make the amount of ore powder dissolved to be 0 or less, preferably 1.6 or less.

これに対し本凝集剤の活性ケイ酸への重合反応は酸溶液
と粉末中のアルカリ成分との反応熱による@度上昇での
液温とpHに主に依存するため、ゲル化は粉末の添加量
及び添加方法にて簡単に防止できる。即ち、適度な熟成
の後、酸溶液濃度を一定濃度以下に水で希釈することに
より、ゲル化速度を実用上問題にならない程度まで抑制
することができる。
On the other hand, the polymerization reaction of this flocculant to active silicic acid mainly depends on the temperature and pH of the solution due to the heat of reaction between the acid solution and the alkaline components in the powder. It can be easily prevented by adjusting the amount and addition method. That is, by diluting the acid solution concentration with water to a certain concentration or less after appropriate ripening, the gelation rate can be suppressed to a level that does not pose a practical problem.

本凝集剤の場合は、高炉スラグ粉末を酸溶液に溶解して
An等を主成分とする無機凝集剤を製造する過程で、同
時に活性ケイ酸ができるため、従来技術のように別途ケ
イ酸ソーダから活性ケイ酸を製造して添加する必要もな
く、製造設備フローは第1図に示すとおり簡略化される
。図において11は、粉末を貯蔵する粉末ホッパーであ
り、溶媒(I)が張込まれている溶解槽13に溶解槽攪
拌機を運転しながら粉末供給装置12により所定量の粉
末を投入する。
In the case of this flocculant, active silicic acid is produced at the same time during the process of dissolving blast furnace slag powder in an acid solution to produce an inorganic flocculant mainly composed of An, etc. There is no need to manufacture and add activated silicic acid from the silicic acid, and the manufacturing equipment flow is simplified as shown in FIG. In the figure, reference numeral 11 denotes a powder hopper for storing powder, and a predetermined amount of powder is fed into a dissolution tank 13 filled with solvent (I) using a powder supply device 12 while operating a dissolution tank agitator.

上記状態で一定時間、攪拌後溶解液抜出し弁19を開放
し、溶媒(II )が張込まれるでいる希釈槽14に希
釈檜攪拌機を運転しながら流入し、溶解液を希釈して目
的とする凝集剤を造水する。
After stirring for a certain period of time in the above state, the solution extraction valve 19 is opened, and the solvent (II) is poured into the dilution tank 14 while operating the dilution stirrer, and the solution is diluted to the desired purpose. Water is produced from the flocculant.

前記したように、張り込む溶媒(I)(酸溶液)濃度を
事前に一定濃度に調整し粉末を規定量添加するだけで、
短時間で熟成させ、溶媒(II)(水)で、酸の濃度を
一定以下にすることにより、ゲル化を抑制することがで
きるため、従来技術のようにケイ酸ソーダの中和率や残
留アルカリ度等の項目について管理する必要もなく作業
も簡略化される。
As mentioned above, by simply adjusting the concentration of solvent (I) (acid solution) to be poured to a constant concentration in advance and adding the specified amount of powder,
By aging for a short time and using solvent (II) (water) to reduce the acid concentration to a certain level, gelation can be suppressed. There is no need to manage items such as alkalinity, and the work is simplified.

本凝集剤は、成分的にも凝集主剤として働くアルミニウ
ムイオン等の多価金属イオン、フロック形成補助剤とし
ての活性ケイ酸、アルカリ度調整剤としてのカルシウム
イオン等のアルカリ土類金属イオン及びpH調整剤とし
ての水素イオンを含むために、アルミニウムイオン等の
凝集主剤だけから成る従来の凝集剤(例えば硫酸バンド
)に比べて凝集能力が高い。
The components of this flocculant include polyvalent metal ions such as aluminum ions that act as the main flocculating agent, active silicic acid as a floc formation aid, alkaline earth metal ions such as calcium ions as an alkalinity regulator, and pH adjusters. Since it contains hydrogen ions as an agent, it has a higher flocculating ability than conventional flocculants (for example, sulfuric acid band) consisting only of a main flocculant such as aluminum ions.

また、製鉄所の副産物である高炉スラグを原料に用いる
ため、安価な凝集剤を提供できるものである。
Furthermore, since blast furnace slag, which is a byproduct of steel mills, is used as a raw material, it is possible to provide an inexpensive flocculant.

本発明において用いられる鉱石粉末の原料となる高炉ス
ラグは、鉄鉱石中の不要成分であるシリカ(SjCh)
やアルミナ(Aρ20.)が、フラックス(石灰; C
aO、マグネシア、 MgO等)と反応して得られる副
産物である。
Blast furnace slag, which is the raw material for the ore powder used in the present invention, contains silica (SjCh), which is an unnecessary component in iron ore.
or alumina (Aρ20.), flux (lime; C
aO, magnesia, MgO, etc.).

一般に生成された直後の高炉スラグは、1500℃以上
の高温の溶融状態にあるため、まず6却処理されるが、
冷却方法によって次の2種類の高炉スラグとなる。
Generally, immediately after being produced, blast furnace slag is in a molten state at a high temperature of 1,500°C or higher, so it is first disposed of by 60°C.
Depending on the cooling method, there are two types of blast furnace slag:

自然放冷散水により徐冷処理された高炉スラグ(以下徐
冷スラグと呼ぶ)は、塊状となりスラグのCab、 5
i02などの酸化物は単体としては存在せず互いに結合
してケイ酸塩をはじめとする硬質緻密な結晶質となる。
Blast furnace slag that has been slowly cooled by natural cooling water spraying (hereinafter referred to as slow-cooled slag) becomes lumpy and the slag Cab, 5
Oxides such as i02 do not exist as a single substance, but combine with each other to form hard, dense crystals such as silicates.

加圧水を噴射するなどして急?4iIQ理された高炉ス
ラグ(以下急冷スラグと呼ぶ)は、徐冷スラグのように
結晶を形成する時間的余裕がなく、組織はガラス質とな
っている。
Is it sudden by spraying pressurized water? Blast furnace slag subjected to 4iIQ treatment (hereinafter referred to as quenched slag) does not have time to form crystals unlike slow-cooled slag, and has a glassy structure.

これら2種類の高炉スラグは、いずれも本発明の凝集剤
の原料として用いることができる。
Both of these two types of blast furnace slag can be used as raw materials for the flocculant of the present invention.

高炉スラグの組成は、装入原料や操業方法などによって
異なるが、代表的な組成例を表−1に示す。
Although the composition of blast furnace slag varies depending on the charging raw material and the operating method, typical composition examples are shown in Table 1.

表−1高炉スラグの組成例  (単位 at%)[実 
施 例] 本発明をいっそう理解しやすくするために、°以下に実
施例を示すが、下記の実施例は本発明を制限するもので
はない。
Table-1 Example of composition of blast furnace slag (unit: at%) [actual
Examples] In order to make the present invention easier to understand, Examples are shown below, but the following Examples are not intended to limit the present invention.

実施例−1 100μm以下に微粉砕された高炉スラグ粉末を攪拌中
の塩酸、硫酸またはそれらの混酸溶液に投入し、所定の
時間、全量均一混合後、一定の容積比になるよう水で希
釈することによって凝集剤を製造した。
Example-1 Blast furnace slag powder pulverized to 100 μm or less is added to a stirring solution of hydrochloric acid, sulfuric acid, or a mixed acid solution of these, and after uniformly mixing the entire amount for a predetermined period of time, it is diluted with water to a constant volume ratio. A flocculant was prepared by this method.

凝集剤の製造条件を表−2に示す。Table 2 shows the conditions for producing the flocculant.

次に凝集剤の使用例を示す。Next, an example of using a flocculant will be shown.

陶芸用粘土を水に溶かし、24時間静置後、沈降しなっ
た高濁度水を採取し、さらに水にて濁度を調整して検水
(原木)とした。
Pottery clay was dissolved in water, left to stand for 24 hours, and highly turbid water that had not settled was collected, and the turbidity was further adjusted with water and used as water test (raw wood).

濁度の測定は、カオリン標準液で検定した濁度計を、凝
集実験には凝集反応水買試験器を用いて実施した。
Turbidity was measured using a turbidimeter calibrated with a kaolin standard solution, and flocculation experiments were performed using a flocculation reaction water purifier.

この原水に凝集剤を対原水量比で1/101000(t
oooppの割合で添加し、150回転回転子2分間急
速攪拌し、ざら40回転/分で2分間緩速攪拌したあと
静置させ、2分間間隔で10分経通するまでの間上澄水
採取して濁度を測定した。以下の実験に使用する検水(
原水)はすべて上記のものを使用する。
A flocculant was added to this raw water at a ratio of 1/101000 (t) to the raw water volume.
ooopp, stirred rapidly for 2 minutes using a rotor at 150 rpm, slowly stirred for 2 minutes at 40 rpm, allowed to stand, and collected supernatant water at 2-minute intervals until passed for 10 minutes. The turbidity was measured. Sample water used for the following experiments (
(Raw water) Use all of the above.

表−3に原水と処理水濁度の測定結果を示す。Table 3 shows the measurement results of raw water and treated water turbidity.

表−3の陶芸用粘土濁水の処理結果を表−2の凝集剤の
製造条件て整理して第2図に示す。
The treatment results of the pottery clay muddy water shown in Table 3 are summarized in accordance with the manufacturing conditions of the flocculant shown in Table 2, and are shown in FIG.

用いる酸種によって凝集剤の凝集効果は若干異なるか(
硫酸に比へ塩酸がやや((ねており、混酸はその中間)
、凝集効果ての有意差は計められない。
Is the flocculating effect of the flocculant slightly different depending on the type of acid used?
Compared to sulfuric acid, hydrochloric acid is slightly different from that of sulfuric acid.
, no significant difference in agglomeration effect could be determined.

第2図で明らかの様に、使用する酸溶液の濃度、鉱石粉
末の添加量には、最適、専(酸熔a、濃度4〜6規定)
が存在する事を示している。まさに、この点が本凝集剤
製造技術の最適点である。またプロトタイプの実験機を
用いて同様の実験を実施した結果、製造過程ての凝集剤
液温の放勢王か発生する反応熱に比へ無視できる(ヒー
カーテストては影響しケル化速度が遅くなる)ため第3
図に示す結果よりも最適な酸濃度は低くなりその価!′
i3〜4規定である。
As is clear from Figure 2, the concentration of the acid solution used and the amount of ore powder added are determined by the optimal
shows that it exists. This point is exactly the optimum point of this flocculant production technology. In addition, as a result of conducting a similar experiment using a prototype experimental machine, it was found that the reaction heat generated during the production process due to the release of the flocculant liquid temperature can be ignored (in the heater test, it has an effect and the kelization rate is 3rd because it will be late)
The optimal acid concentration is lower than the results shown in the figure and its value! ′
i3-4 regulations.

又酸g Jのi1度と添加する鉱石粉末量における凝集
剤のケル化時間を測定した。酸溶液の濃度か高くなるに
つれてゲル化する速度は、急激に速くなり酸溶イ夜の濃
度か7規定を越えると凝集剤は瞬間ゲル化する。また、
酸溶液の濃度が1規定以下の場合、凝集剤の熟成が緩慢
であり、本凝集剤の能力を発揮するには長時間の熟成を
必要とすることか確認された。第3図に酸溶液の濃度と
添加する鉱石粉末量における凝集剤のケル化時間の関係
を示す。
In addition, the kelization time of the flocculant was measured depending on the i1 degree of acid gJ and the amount of ore powder added. As the concentration of the acid solution increases, the rate of gelation increases rapidly, and when the concentration of the acid solution exceeds 7N, the flocculant gels instantaneously. Also,
It was confirmed that when the concentration of the acid solution is 1N or less, the aging of the flocculant is slow, and that a long period of aging is required for the flocculant to exhibit its ability. FIG. 3 shows the relationship between the concentration of the acid solution and the amount of ore powder added to the flocculant gelation time.

比較例−1 本方式にて得られた凝集剤の凝集性能について、−数的
に使用されているPAC(ポリ塩化アルミニウム)と比
較するため、濁度560の欅準濁度水を陶芸用粘土を用
いて作成し、本凝集剤の駁集主剤であるAl (アルミ
ニウムイオン)を等量として除濁効果を比較する。
Comparative Example 1 Regarding the flocculation performance of the flocculant obtained by this method, - In order to compare numerically with PAC (polyaluminum chloride), which is used, Keyaki quasi-turbidity water with a turbidity of 560 was mixed with pottery clay. The turbidity removal effect was compared using an equal amount of Al (aluminum ion), which is the main coagulant of this flocculant.

添加する凝集剤中のAP(アルミニウムイオン)量は、
一般に添加されている濁度50D程度のfA度水に対す
るPACの添加量20〜30ppmに相当するへ9量1
 ppm及び2 ppmについて表−4に示す如く比較
実験結果を得た。
The amount of AP (aluminum ion) in the flocculant to be added is:
The amount of PAC added to fA water with a turbidity of about 50 D, which is generally added, is equivalent to 20 to 30 ppm.
Comparative experimental results were obtained for ppm and 2 ppm as shown in Table 4.

上記の実験結果から、凝集剤製造条件(表−2)に示す
如く使用する酸溶液の濃度が4規定及び7規定の場合、
PACに比べ優れた凝集効果を発揮するが、酸溶液の濃
度が1規定の場合、PACに比べやや劣っている事が確
認された。
From the above experimental results, when the concentration of the acid solution used is 4N and 7N as shown in the flocculant production conditions (Table 2),
Although it exhibits a superior flocculating effect compared to PAC, it was confirmed that it was slightly inferior to PAC when the concentration of the acid solution was 1N.

実施例−2 フライアッシュ100重量部に対し高炉スラグ45重量
部以上を混合して、鉱石中の^920゜100重量部に
対しアルカリ分(CaO−1−Mg0) 100重量部
以上になるようにし、電気炉を用いて1200℃以上に
昇温して鉱石を完全に溶融混合させることにより鉱物結
晶構造を変化させた鉱石を冷却した後、鉱石を100μ
以下の粉末に粉砕して実施例−1と同様に以下の凝集剤
を得た。
Example-2 45 parts by weight or more of blast furnace slag is mixed with 100 parts by weight of fly ash so that the alkaline content (CaO-1-Mg0) is 100 parts by weight or more per 100 parts by weight of ^920° in the ore. , the ore was heated to 1200℃ or higher using an electric furnace to completely melt and mix the ore, which changed the mineral crystal structure. After cooling the ore, the ore was heated to 100μ
The following flocculant was obtained in the same manner as in Example-1 by pulverizing the powder into the following powder.

ここで用いたフライアッシュの組成例を表−5に、夫々
の鉱石混合比率を表−6に、又混合鉱石を用いた凝集剤
の製造条件を表−7に示す。
An example of the composition of the fly ash used here is shown in Table 5, the mixing ratio of each ore is shown in Table 6, and the manufacturing conditions of the flocculant using the mixed ore are shown in Table 7.

表−5 表−6 フライアッシュの組成例 (単位:wt%) フライアッシュと高炉スラグの混合比率次に凝集剤の使
用例を示す。
Table-5 Table-6 Composition example of fly ash (unit: wt%) Mixing ratio of fly ash and blast furnace slag Next, an example of the use of the flocculant is shown.

実施例−1と同様に調整した検水(原水)を用いて凝集
性能試験を実施する。
A flocculation performance test is conducted using test water (raw water) prepared in the same manner as in Example-1.

表−8に原水と処理水濁度の測定結果を示す。Table 8 shows the measurement results of raw water and treated water turbidity.

上記の実験結果から、表−3に示す濁水処理結果と同様
に凝集剤製造条件(表−7)に示す如く使用する酸溶液
の濃度が4規定及び7規定の場合、PACに比べ優れた
凝集効果を発揮するが、酸溶液の濃度が1規定の場合、
PACに比べやや劣っている事が確認された。
From the above experimental results, similar to the turbid water treatment results shown in Table 3, flocculant manufacturing conditions (Table 7) show that when the concentration of the acid solution used is 4N and 7N, the flocculation is superior to that of PAC. It is effective, but if the concentration of the acid solution is 1N,
It was confirmed that it was slightly inferior to PAC.

以上の結果から、本凝集剤製造に用いる鉱石粉末として
、St、 Affi、 Caを含む鉱石を用いて本凝集
剤の製造が可能であることが確認された。
From the above results, it was confirmed that the present flocculant can be produced using ore containing St, Affi, and Ca as the ore powder used for producing the present flocculant.

[発明の効果] 従来の凝集剤による水処理では、凝集主剤と凝集助剤を
併用させることにより十分なる凝集効果を発揮させてい
るが、凝集操作が複雑となっている。これに比べ、Si
、^l、 Caを含む鉱石粉末を酸溶液に溶解させたこ
とで、凝集主剤であるAM、 Fe等を溶出させると共
に凝集助剤となる活性ケイ酸(Sin2を溶出させつつ
ポリマー化を促進させる)を短時間で作ることが可能と
なり、凝集主剤と凝集助剤を併せもつ凝集剤を安価に製
造することが可能となった。
[Effects of the Invention] In conventional water treatment using a flocculant, a sufficient flocculating effect is achieved by using a flocculating main agent and a flocculating aid in combination, but the flocculating operation is complicated. In comparison, Si
, ^l, By dissolving the ore powder containing Ca in an acid solution, AM, Fe, etc., which are the main agents of aggregation, are eluted, and active silicic acid (Sin2, which is a coagulation aid) is eluted, and polymerization is promoted. ) can be made in a short time, and it has become possible to inexpensively produce a flocculant that has both a flocculating main agent and a flocculating aid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の粉末造水フローを示す図、第2図は酸
溶液の濃度と添加する鉱石粉末量における凝集剤の凝集
効果の相関を示す図、$3図は酸溶液の濃度と添加する
鉱石粉末量におけるa某剤のゲル化時間の相関を示す図
、344図は従来の活性ケイ酸製造設備のフローを示す
図である。 1・・・ケイ酸ソーダ貯蔵槽 2・・・濃硫酸タンク  3・・・活性化反応槽4・・
・ケイ酸ソーダ受入ポンプ 5・・・ケイ酸ソーダ送液ポンプ 6・・・硫酸送液ポンプ 7・・・活性ケイ酸注入ポンプ 11・・・粉末ホッパー 12・・・粉末供給装置13
・・・溶解N    14・・・希釈槽15・・・溶解
液抜出し弁 他4名 第1図 第3図 第2図 原水槽:陶芸用粘土濁水 第4図 (*1)酸溶液の濃度を1規定に希釈した場合の酸溶液
100mβに対する鉱石粉末量 7:活性ケイ酸注入ポンプ
Figure 1 is a diagram showing the powder water generation flow of the present invention, Figure 2 is a diagram showing the correlation between the concentration of the acid solution and the flocculant effect of the flocculant depending on the amount of ore powder added, and Figure 3 is the diagram showing the correlation between the concentration of the acid solution and the flocculant effect. Figure 344 is a diagram showing the correlation between the gelation time of agent a and the amount of ore powder added, and Figure 344 is a diagram showing the flow of conventional activated silicic acid manufacturing equipment. 1...Sodium silicate storage tank 2...Concentrated sulfuric acid tank 3...Activation reaction tank 4...
- Sodium silicate receiving pump 5...Sodium silicate liquid feeding pump 6...Sulfuric acid liquid feeding pump 7...Activated silicate injection pump 11...Powder hopper 12...Powder feeding device 13
...Dissolution N 14...Dilution tank 15...Dissolved liquid extraction valve and 4 other people Fig. 1 Fig. 3 Fig. 2 Raw water tank: Clay muddy water for pottery Fig. 4 (*1) Concentration of acid solution Amount of ore powder per 100 mβ of acid solution when diluted to 1 normal 7: Activated silicic acid injection pump

Claims (1)

【特許請求の範囲】 1 Si、Al、Caを含む鉱石粉末を塩酸、硫酸また
はそれらの混酸溶液に溶解して得られる、アルミニウム
イオン等の多価金属イオン、カルシウムイオン等アルカ
リ土類金属イオン、およびケイ酸を含有する溶液を熟成
させた後、水で希釈しゲル化を抑制することを特徴とす
るシリカ凝集剤熟成期間の短縮方法。 2 鉱石粉末として高炉スラグ粉末を用いることを特徴
とする請求項1記載のシリカ凝集剤熟成期間の短縮方法
。 3 鉱石粉末としてSi、Al、Caを含む鉱石を溶融
させることにより鉱物結晶構造を変化させた鉱物粉末を
用いることを特徴とする請求項1記載のシリカ凝集剤熟
成期間の短縮方法。 4 請求項3記載のSi、Al、Caを含む鉱石として
フライアッシュを用いることを特徴とする請求項1記載
のシリカ凝集剤熟成期間の短縮方法。
[Claims] 1. Polyvalent metal ions such as aluminum ions, alkaline earth metal ions such as calcium ions, obtained by dissolving ore powder containing Si, Al, and Ca in hydrochloric acid, sulfuric acid, or a mixed acid solution thereof; and a method for shortening the aging period of a silica flocculant, which comprises aging a solution containing silicic acid and then diluting it with water to suppress gelation. 2. The method for shortening the maturation period of a silica flocculant according to claim 1, characterized in that blast furnace slag powder is used as the ore powder. 3. The method for shortening the maturation period of a silica flocculant according to claim 1, characterized in that a mineral powder whose mineral crystal structure has been changed by melting ore containing Si, Al, and Ca is used as the ore powder. 4. The method for shortening the maturation period of a silica flocculant according to claim 1, characterized in that fly ash is used as the ore containing Si, Al, and Ca according to claim 3.
JP9559290A 1990-04-11 1990-04-11 Method for shortening ageing time of silica flocculant Pending JPH03293003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9559290A JPH03293003A (en) 1990-04-11 1990-04-11 Method for shortening ageing time of silica flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9559290A JPH03293003A (en) 1990-04-11 1990-04-11 Method for shortening ageing time of silica flocculant

Publications (1)

Publication Number Publication Date
JPH03293003A true JPH03293003A (en) 1991-12-24

Family

ID=14141848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9559290A Pending JPH03293003A (en) 1990-04-11 1990-04-11 Method for shortening ageing time of silica flocculant

Country Status (1)

Country Link
JP (1) JPH03293003A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082789A1 (en) * 2004-03-02 2005-09-09 Tokuyama Corporation Method for treating papermaking waste water and method for utilizing silica sol in papermaking
EP1666115A1 (en) * 2003-07-25 2006-06-07 Keiichiro Asaoka Coagulant, process for producing the same, and method of coagulation with the coagulant
WO2006121411A1 (en) * 2005-05-13 2006-11-16 Protectron Nanocomposites Pte Ltd Improved colloidal gel for protective fabric, improved protective fabric and method of producing both
CN1296287C (en) * 2004-04-23 2007-01-24 邵婧鑫 Making method of ferroaluminosilicate turbid water purifying agent
WO2013035314A1 (en) * 2011-09-09 2013-03-14 鹿児島県 Flocculant
CN105836864A (en) * 2016-05-30 2016-08-10 江西旭锂矿业有限公司 Method of using lithium-extracted waste residue to prepare polymerized aluminum calcium chloride water purifying agent
CN107902735A (en) * 2017-10-23 2018-04-13 昆明理工大学 A kind of yellow phosphorus furnace slag and coal ash for manufacturing for polysilicate flocculant method
JP2020025530A (en) * 2018-08-18 2020-02-20 Isf合同会社 Aquaculture method of marine life, aquaculture kit, aquaculture system, and marine life farmed by its aquaculture method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666115A1 (en) * 2003-07-25 2006-06-07 Keiichiro Asaoka Coagulant, process for producing the same, and method of coagulation with the coagulant
EP1666115A4 (en) * 2003-07-25 2008-07-23 Keiichiro Asaoka Coagulant, process for producing the same, and method of coagulation with the coagulant
WO2005082789A1 (en) * 2004-03-02 2005-09-09 Tokuyama Corporation Method for treating papermaking waste water and method for utilizing silica sol in papermaking
CN1296287C (en) * 2004-04-23 2007-01-24 邵婧鑫 Making method of ferroaluminosilicate turbid water purifying agent
WO2006121411A1 (en) * 2005-05-13 2006-11-16 Protectron Nanocomposites Pte Ltd Improved colloidal gel for protective fabric, improved protective fabric and method of producing both
WO2013035314A1 (en) * 2011-09-09 2013-03-14 鹿児島県 Flocculant
CN105836864A (en) * 2016-05-30 2016-08-10 江西旭锂矿业有限公司 Method of using lithium-extracted waste residue to prepare polymerized aluminum calcium chloride water purifying agent
CN107902735A (en) * 2017-10-23 2018-04-13 昆明理工大学 A kind of yellow phosphorus furnace slag and coal ash for manufacturing for polysilicate flocculant method
JP2020025530A (en) * 2018-08-18 2020-02-20 Isf合同会社 Aquaculture method of marine life, aquaculture kit, aquaculture system, and marine life farmed by its aquaculture method

Similar Documents

Publication Publication Date Title
JPS63130189A (en) Water treatment method and flocculating agent used therefor
JPH03293003A (en) Method for shortening ageing time of silica flocculant
JPS61158810A (en) Production of high-purity silica sol
CN101198552A (en) Method of treating silicon powder-containing drainage water
JPH0220315B2 (en)
JPS5916588A (en) Removal of silica in hot water
JPS6087813A (en) Coagulating, settling and solidifying agent
JP3769010B2 (en) Flocculant, method for producing the same, and aggregating method using the flocculant
JP3700892B2 (en) Method for producing flocculant
JP2000154013A (en) Production of activated silica
JPH11310412A (en) Iron-active silica composite liquid, its production and apparatus therefor
JPH03157107A (en) Silica-based liquid flocculant and its production
US3535259A (en) Process and flocculating agent produced thereby of the reaction products of sulfuric acid and allophane
JPH11216478A (en) Flocculation treatment of water and inorganic flocculant
JP2000308803A (en) Flocculant for water treatment and its production and flocculating method for water
US7988866B2 (en) Method of treating fumed silica-containing drainage water
JPH11349322A (en) Production of activated silica
JP2007061749A (en) Method for treating cement-containing waste liquid
US3350303A (en) Process for preparing a coagulant from pyrophyllite and clarifying water with it
US807412A (en) Process of purifying water.
JP2013119068A (en) Treatment agent for construction work waste solution
JP2005262044A (en) Dephosphorization method from water and dephosphorization agent
JPS61271087A (en) Treatment of waste water containing phosphate
JPH02191509A (en) Flocculant utilizing slag and its production
JP2000093704A (en) Preparation of iron and activated silica composite flocculant