JPH03291813A - Manufacture of ceramic superconductor - Google Patents

Manufacture of ceramic superconductor

Info

Publication number
JPH03291813A
JPH03291813A JP2091903A JP9190390A JPH03291813A JP H03291813 A JPH03291813 A JP H03291813A JP 2091903 A JP2091903 A JP 2091903A JP 9190390 A JP9190390 A JP 9190390A JP H03291813 A JPH03291813 A JP H03291813A
Authority
JP
Japan
Prior art keywords
composite
sheet
superconductor
metal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2091903A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Yasuzo Tanaka
田中 靖三
Wataru Komatsu
亘 小松
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2091903A priority Critical patent/JPH03291813A/en
Publication of JPH03291813A publication Critical patent/JPH03291813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a ceramic superconductor with excellent superconductive properties and mechanical strength by carrying out heating treatment after preparing a composite material from raw materials and a metal material for reinforcement and repeating prescribed processes. CONSTITUTION:In a metal container 3 having a square cross section and hollow parts 1, 2, the hollow part 1 and the hollow part 2 are filled with raw material 4 and a reinforcing material 5, respectively, and after the open ends of the container 3 are vacuum-sealed, the container is extruded to give a sheet-like composite body 6. The sheet-like composite body 6 is a composite of a layer of the raw materials 4 and the reinforcing material 5 packed in a stabilized metal material 7. The obtained composite 6 is formed into, for example, a spiralled body 8, it is packed in a metal tube 9, and after the open end is vacuum-sealed, the tube is extruded to give a wire with a desired shape. Next, the wire is subjected to prescribed heat treatment to convert the raw material into a superconductor and a ceramic superconductive conductor is manufactured. As a result, owing to high mechanical strength of the superconductor, easy process of manufacture is achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマグネット、コイル、電流リード、限流器、ケ
ーブル等の導体として用いて好適な加工性並びに超電導
特性に優れたセラミックス超電導々体の製造方法に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a ceramic superconductor having excellent processability and superconducting properties suitable for use as a conductor for magnets, coils, current leads, current limiters, cables, etc. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

近年液体窒素温度で超電導を示すLa−Ba−Cu−0
系、La−5r−Cu−0系、Y−Ba−Cu−0系、
B 1−5r−Ca−Cu−0系、Tl−Ba−Ca−
Cu−0系等のセラミックス超電導体が見出され、マグ
ネット等への応用が盛んに検討されている。
In recent years, La-Ba-Cu-0 has shown superconductivity at liquid nitrogen temperatures.
system, La-5r-Cu-0 system, Y-Ba-Cu-0 system,
B 1-5r-Ca-Cu-0 system, Tl-Ba-Ca-
Ceramic superconductors such as Cu-0 series have been discovered, and their application to magnets and the like is being actively studied.

ところでセラミックス超電導体は脆い為、又使用中フラ
ックスジャンプ等に伴うクエンチ事故に備えて、靭性、
並びに熱及び電気伝導性に優れたAgやCu等の金属を
安定化材として複合して用いられている。
By the way, since ceramic superconductors are brittle, toughness and
In addition, metals such as Ag and Cu, which have excellent thermal and electrical conductivity, are used in combination as a stabilizing material.

セラミックス超電導体にCu等の金属材料等を複合して
セラミックス超電導々体となす方法としては、例えばセ
ラミックス超電導体となし得る原料物質に有機バインダ
ーや可塑側を加えて混練し、この混線体をシート状に成
形してグリーンシートとなし、更にこのグリーンシート
を金属製シートと複合し、この複合体を加熱乾燥してバ
インダーを除去したのち、所定の加熱処理を施す方法に
より行われている。
As a method for making a ceramic superconductor by compounding a ceramic superconductor with a metal material such as Cu, for example, an organic binder or a plastic material is added to a raw material that can be made into a ceramic superconductor and kneaded, and this mixed wire is made into a sheet. The green sheet is formed into a green sheet, the green sheet is composited with a metal sheet, the composite is heated and dried to remove the binder, and then a predetermined heat treatment is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこのようなグリーンシートを用いた製造方
法によると、脱バインダーが完全になされなかった場合
は、セラミックス超電導体内にバインダーの構成物質で
ある有機物が残存して超電導特性が低下し、又バインダ
ーを完全に除去しようとすると加熱乾燥に極めて長時間
を要して生産性に欠けるという問題があった。
However, according to the manufacturing method using such green sheets, if the binder is not completely removed, the organic matter that is the constituent material of the binder remains in the ceramic superconductor, resulting in a decrease in superconducting properties, and the binder is not completely removed. However, when attempting to remove the particles in a dry manner, it takes an extremely long time to heat and dry, resulting in a lack of productivity.

かかる状況に鑑み、本発明者等は、鋭意研究を重ねた結
果価れた超電導特性を持った超電導々体の製造方法とし
て金属製容器内にセラミックス超電導体となし得る原料
物質を充填し、次いでこれを伸延加工してシート状複合
体となし、このシート状複合体を渦巻状体又は同心円筒
状体に成形し、次いでこれをそのまま又は金属製管内に
充填したのち伸延加工して所望形状の線材となし、しか
るのちこの線材に所定の加熱処理を施して超電導体層が
微細に分布したセラミックス超電導々体を製造する方法
を発明し提案した。
In view of this situation, the inventors of the present invention have developed a method for manufacturing a superconductor having excellent superconducting properties as a result of intensive research. This is stretched to form a sheet-like composite, and this sheet-like composite is formed into a spiral body or a concentric cylindrical body, which is then stretched as it is or after being filled into a metal tube to form the desired shape. We have invented and proposed a method for manufacturing a ceramic superconductor having a finely distributed superconductor layer by preparing a wire and then subjecting the wire to a predetermined heat treatment.

しかし上記発明方法に基づいて製造したセラミックス超
電導々体はJo等の超電導特性に優れたものであったが
、機械的強度が低い為、渦巻状に成形する際の作業性に
劣り、伸延加工中に施す中間焼鈍によって軟弱なものと
なって、これの取扱いを慎重に行う必要がある等の問題
があった。
However, although the ceramic superconductor produced based on the above-mentioned method of the invention had excellent superconducting properties such as Jo, it had low mechanical strength, and therefore had poor workability when forming into a spiral shape, and was difficult to work with during stretching. There were problems such as the intermediate annealing applied to the steel made it soft and weak, which required careful handling.

〔課題を解決するための手段] 本発明はかかる状況に鑑みなされたものでその目的とす
るところは超電導特性に優れ且つ機械的強度が高く加工
しやすいセラミックス超電導々体の製造方法を提供する
ことにある。
[Means for Solving the Problems] The present invention was made in view of the above circumstances, and its purpose is to provide a method for manufacturing a ceramic superconductor that has excellent superconducting properties, high mechanical strength, and is easy to process. It is in.

即ち本発明は、長手方向に連続した中空部を少なくとも
2個設けた金属製容器の各々の中空部にセラミックス超
電導体となし得る原料物質及び補強用金属材料を別々に
充填して超電導複合素材を形成し、次いで前記複合素材
を伸延加工してシート状複合体となしたのち、前記シー
ト状複合体を渦巻状体又は同心円筒状体に成形し、次い
でこれをそのまま、又は再度金属製管内に充填したのち
、伸延加工して所望形状の線材となし、しかるのち前記
線材に所定の加熱処理を施すことを特徴とするものであ
る。
That is, the present invention produces a superconducting composite material by separately filling each hollow part of a metal container with at least two longitudinally continuous hollow parts with a raw material that can be made into a ceramic superconductor and a reinforcing metal material. The composite material is then stretched to form a sheet-like composite, and the sheet-like composite is then formed into a spiral body or a concentric cylinder, which is then placed as is or again into a metal tube. After filling, the wire rod is drawn into a desired shape, and then the wire rod is subjected to a predetermined heat treatment.

以下に本発明を図を参照して具体的に説明する。The present invention will be specifically explained below with reference to the drawings.

第1〜7図は、本発明の態様例を示す工程説明;椿キ=
4設けた安定化金属からなる金属製容器3の一方の中空
部lに第2図に示したように粉状の原料物’14を充填
し、他方の中空部2に補強材5を充填し、次いでこの金
属製容器3の開放端を真空封止したのち、これを伸延加
工して第3図に示したようなシート状複合体6となす、
このシート状複合体6は、安定化金属材7中に原料物質
4層及び補強材5が複合されたものである。
1 to 7 are process descriptions showing embodiments of the present invention;
As shown in FIG. 2, powdered raw material '14 is filled in one hollow part l of a metal container 3 made of a stabilizing metal provided in 4, and the reinforcing material 5 is filled in the other hollow part 2. Then, after vacuum sealing the open end of this metal container 3, it is stretched to form a sheet-like composite body 6 as shown in FIG.
This sheet-like composite body 6 is a composite of four layers of raw materials and a reinforcing material 5 in a stabilized metal material 7.

シート状複合体6の他の態様例としては、第4及び5図
に示したように原料物質4層又は補強材5を複数複合し
たもの等任意の構成のものが適用される。
As another embodiment of the sheet-like composite body 6, any structure such as a composite of four layers of raw materials or a plurality of reinforcing materials 5 as shown in FIGS. 4 and 5 can be applied.

而して斯かるシート状複合体6は、例えば第6属製管9
に充填し、開放端を真空封止したのち、伸延加工を施し
て所望形状の線材となし、次いで所定の加熱処理を施し
て原料物質を超電導体に反応せしめてセラミックス超電
導々体に製造がなされる。
Therefore, such a sheet-like composite body 6 is, for example, a sixth group pipe 9.
After the open end is vacuum-sealed, it is drawn into a wire rod of the desired shape, and then subjected to a prescribed heat treatment to cause the raw material to react with the superconductor to produce a ceramic superconductor. Ru.

上記においてシート状複合体の成形は芯材の周囲に渦巻
状に成形しても、又第7図に示したようにシート状複合
体を円筒状に加工してこれを芯材lOの周囲に同心状に
嵌合して同心円筒状体11に成形してもよい、上記の如
き渦巻状成形体8又は同心円筒状体11は、金属管に充
填せずにそのまま、伸延加工してもよい。
In the above, the sheet-like composite can be formed into a spiral shape around the core material, or the sheet-like composite can be formed into a cylindrical shape and shaped around the core material lO as shown in Fig. 7. The spirally formed body 8 or concentric cylindrical body 11 as described above, which may be fitted concentrically and formed into a concentric cylindrical body 11, may be stretched as is without being filled into a metal tube. .

尚、前述のような伸延加工、成形、充填、真空封止の一
連の工程を何度も繰返すことにより得られる複合材料は
原料物質層と安定化金属材層とがより微細に分布したも
のとなり、これを加熱処理して得られるセラミックス超
電導々体は、臨界電流密度(J、)等の特性が一層優れ
たものとなる。
In addition, the composite material obtained by repeating the series of stretching, forming, filling, and vacuum sealing processes described above has a finer distribution of the raw material layer and the stabilizing metal material layer. The ceramic superconductor obtained by heat-treating this has even better properties such as critical current density (J, ).

本発明方法において原料物質の占積率は金属マトリック
スの塑性変形が可能な範囲まで高めることができ、用い
る金属材料によって異なるが50%かそれを上回る比率
で複合することができる。
In the method of the present invention, the space factor of the raw materials can be increased to the extent that plastic deformation of the metal matrix is possible, and the composite can be made at a ratio of 50% or more, depending on the metal material used.

本発明方法において、金属製容器又は金属製管の材料に
は、Ag、Au5Cu、Ir、Pd、Pt又はその合金
が用いられるが、中でもAg又はAg合金は酸素透過性
が良好なので加熱処理工程においてセラミックス超電導
体への酸素の供給が充分になされて高いJ、をもつ超電
導体が得られる上、熱伝導性が高いので得られる線材は
耐クエンチ性に優れ、通電量を高めることができて好適
である。
In the method of the present invention, Ag, Au5Cu, Ir, Pd, Pt, or an alloy thereof is used as the material for the metal container or the metal tube. Among them, Ag or an Ag alloy has good oxygen permeability, so it can be used in the heat treatment step. Oxygen is sufficiently supplied to the ceramic superconductor, making it possible to obtain a superconductor with a high J, and since the wire material has high thermal conductivity, the obtained wire has excellent quench resistance and is suitable for increasing the amount of current flowing. It is.

又原料物質としては前記したような種々系のセラミック
ス超電導体が広く適用されるに加えて、酸素含有雰囲気
中で加熱処理することによりセラミックス超電導体に反
応するセラミックス超電導体に合成されるまでの中間体
、例えばセラミックス超電導体構成元素の混合体又は共
沈混合物又は酸素欠損型複合酸化物又は上記構成元素の
合金等が使用可能である。
In addition to the various types of ceramic superconductors mentioned above being widely used as raw materials, in addition to the various types of ceramic superconductors that are used as raw materials, intermediate materials are used to synthesize ceramic superconductors that react with ceramic superconductors by heat treatment in an oxygen-containing atmosphere. For example, a mixture or coprecipitated mixture of the constituent elements of a ceramic superconductor, an oxygen-deficient composite oxide, or an alloy of the above-mentioned constituent elements can be used.

又補強材には、NiSCN15CrS又はその合金又は
SUS等が耐熱性及び強度が高く適しており、その形状
はシート状、線状等任意の形状のものが用いられる。
Further, NiSCN15CrS or its alloy, SUS, or the like is suitable for the reinforcing material because of its high heat resistance and strength, and the reinforcing material may be in any shape such as a sheet shape or a linear shape.

補強材がシート状の場合は、第8図イ〜ハに示したよう
な穴あきシート(図イ)やネット状のシート(図口、ハ
)を用いると加熱処理時において安定化金属シート内の
酸素透過性が阻害されず好ましいものである。
If the reinforcing material is in the form of a sheet, using a perforated sheet (Fig. A) or a net-like sheet (Fig. This is preferable since the oxygen permeability of the material is not inhibited.

又、原料物質又は渦巻状体等を充填した金属製容器又は
金属製管は、真空封止したのち、伸延加工するのが、得
られる複合材料の密度が向上して好ましい。
Further, it is preferable that the metal container or metal tube filled with the raw material or the spiral body be vacuum-sealed and then elongated, since this will improve the density of the resulting composite material.

本発明方法において、伸延加工方法としては、押出、引
抜き、スェージング、圧延、鍛造、−軸プレス圧縮等の
任意の方法が適用できる。又伸延加工は冷間、熱間等任
意の温度で行うことができる。又伸延加工前後にHIP
、、CIP等の処理を施すと原料物質等の内層がより緻
密化されて好ましいものである。更に伸延加工の途中や
伸延加工後に焼鈍処理を施して加工歪の除去や原料物質
層の高密度化又は得られたセラミックス超電導々体の伸
びの回復を計ることができる。
In the method of the present invention, any method such as extrusion, drawing, swaging, rolling, forging, and -axial press compression can be applied as the stretching method. Further, the stretching process can be performed at any temperature such as cold or hot. Also, HIP before and after distraction processing.
, , CIP or the like is preferable because the inner layer of the raw material becomes more dense. Furthermore, annealing treatment can be performed during or after the drawing process to remove processing strain, increase the density of the raw material layer, or restore the elongation of the obtained ceramic superconductor.

〔作用] 本発明方法においては、長手方向に複数の中空部を有す
る金属製容器を用い各々の中空部にセラミックス超電導
体となし得る原料物質と補強用金属材料とを別々に充填
して起電導複合素材となすので、この素材を伸延加工し
てシート状体となす工程、このシート状体を渦巻状体等
に成形し、これを伸延加工して線材となす工程、この線
材を加熱処理する工程において、シート状体又は線材の
強度は高度に保持されて、加工並びに取扱いが容易にな
される。又原料物質と補強用金属材料とは金属製容器の
別々の中空部に充填するので、双方が接触して反応しセ
ラミックス超電導体が変質したりすることがない。
[Function] In the method of the present invention, a metal container having a plurality of hollow portions in the longitudinal direction is used, and each hollow portion is separately filled with a raw material that can be made into a ceramic superconductor and a reinforcing metal material to conduct electromotive conduction. Since this is a composite material, there is a process of stretching this material to form a sheet-like body, a process of forming this sheet-like body into a spiral body, etc., and a process of stretching this material to form a wire rod, and a heat treatment of this wire rod. During the process, the strength of the sheet or wire is maintained at a high level, making processing and handling easier. Furthermore, since the raw material and the reinforcing metal material are filled in separate hollow parts of the metal container, there is no possibility that the two will come into contact and react, causing the ceramic superconductor to change in quality.

又上記原料物質のシート状成形体は、渦巻状体又は同心
円筒状体に成形し伸延加工するので原料物質層は緻密な
ものとなり、これを加熱処理して得られるセラミックス
超電導々体はjo等の特性に優れたものとなる。
In addition, since the sheet-like molded body of the above-mentioned raw material is formed into a spiral body or a concentric cylindrical body and stretched, the raw material layer becomes dense, and the ceramic superconducting body obtained by heat-treating it becomes a JO etc. It has excellent characteristics.

[実施例] 以下に本発明を実施例により詳細に説明する。[Example] The present invention will be explained in detail below using examples.

実施例1 第1図に示した形状のAg製容器の一方の中空部に予め
大気中で仮焼成したB iz、s rzca Cu!0
8組成の粉状の原料物質を、又他方の中空部に第8図イ
に示した穿入型のSUS 316製板状材を充填し、次
いでこれを平ロール圧延して厚さ0.3面のシート状複
合体となした。次にこのシート状複合体を第6図に示し
たようにして13層渦巻状に巻回して渦巻状成形体とな
し、次いでこれを再度外径12−1内径9mのAg製管
に充填したのち、上記パイプの両端を10−’Torr
の真空中で電子ビーム溶接により封止し、次いでこれを
平ロール圧延により厚さ0.3閣のテープに、別に溝ロ
ール圧延により、1.5誼φの丸線にそれぞれ加工した
。しかるのち上記テープ及び丸線を大気中にて870°
C×20H加熱処理してテープ状及び丸線状のセラミッ
クス超電導々体となした。
Example 1 Biz,srzca Cu! was pre-baked in the atmosphere in one hollow part of an Ag container having the shape shown in FIG. 1. 0
Powdered raw materials of composition No. 8 were filled into the other hollow part with a perforated SUS 316 plate material shown in FIG. It was made into a sheet-like composite surface. Next, this sheet-like composite was wound into a 13-layer spiral as shown in Figure 6 to form a spiral molded body, which was then again filled into an Ag tube with an outer diameter of 12-1 and an inner diameter of 9 m. After that, both ends of the above pipe were heated to 10-'Torr.
This was sealed by electron beam welding in a vacuum, and then processed into a tape with a thickness of 0.3 mm by flat roll rolling, and separately into a round wire with a diameter of 1.5 mm by rolling with a groove roll. Afterwards, the above tape and round wire were heated at 870° in the atmosphere.
C×20H heat treatment was performed to obtain tape-shaped and round wire-shaped ceramic superconductors.

尚、Ag製容器には、断面の外寸が縦12醜、横20腫
、中空部の内寸が縦3腫、横14閣の形状のものを用い
た。又、上記のシート状複合体への伸延加工、及びテー
プ又は丸線への伸延加工工程において、適宜500℃2
Hの中間焼鈍を施した。
The Ag container used had a cross section with external dimensions of 12 cm long and 20 cm wide, and an inner dimension of the hollow part of 3 cm long and 14 cm wide. In addition, in the above-mentioned stretching process to the sheet-like composite and the stretching process to the tape or round wire, the temperature may be adjusted to 500°C2 as appropriate.
H intermediate annealing was performed.

実施例2 実施例1と同様にして作ったシート状複合体を3■φの
Ag製芯材に8層渦巻状に巻回して渦巻状成形体となし
た他は実施例1と同じ方法によりテープ状及び丸線状の
セラミックス超電導々体を製造した。
Example 2 The same method as in Example 1 was used except that the sheet-like composite made in the same manner as in Example 1 was wound in an 8-layer spiral around a 3 φ Ag core material to form a spiral molded body. Tape-shaped and round wire-shaped ceramic superconductors were manufactured.

実施例3 実施例1と同様にして作った渦巻状成形体をその端部を
電子ビーム溶接により固定し、これをそのまま平ロール
又は溝ロール圧延した他は実施例1と同じ方法によりテ
ープ状及び丸線状のセラミックス超電導々体を製造した
Example 3 A spiral molded body made in the same manner as in Example 1 was fixed at its end by electron beam welding, and then rolled into a tape shape and a tape shape in the same manner as in Example 1, except that this was rolled as it was with flat rolls or grooved rolls. A round wire-shaped ceramic superconductor was manufactured.

実施例4 実施例2と同様にして作った渦巻状成形体をその端部を
電子ビーム溶接により固定し、これをそのまま平ロール
又は溝ロール圧延した他は実施例1と同じ方法によりテ
ープ状及び丸線状のセラミックス超電導々体を製造した
Example 4 A spiral molded body made in the same manner as in Example 2 was fixed at its ends by electron beam welding, and then rolled into a tape shape and a tape shape in the same manner as in Example 1, except that this was rolled as it was with flat rolls or grooved rolls. A round wire-shaped ceramic superconductor was manufactured.

比較例I Ag製容器に断面の外寸が縦12m、横20閣で中央部
に内寸が縦3■、横14mの中空部を1個設けた形状の
Ag製容器を用いた他は実施例1と同じ方法によりテー
プ状及び丸線状のセラミックス超電導々体を製造した。
Comparative Example I Other than using an Ag container with a cross-sectional external dimension of 12 m in length and 20 m in width and one hollow part in the center with internal dimensions of 3 cm in length and 14 m in width, this was carried out. Tape-shaped and round wire-shaped ceramic superconductors were manufactured by the same method as in Example 1.

比較例2 比較例1と同様にして作ったシート状複合体を3mφの
Ag製棒材に8層渦巻状に巻回して渦巻状成形体となし
た他は比較例1と同じ方法によりテープ状及び丸線状の
セラミックス超電導々体を製造した。
Comparative Example 2 A sheet-like composite made in the same manner as Comparative Example 1 was wound into a tape shape by the same method as Comparative Example 1, except that it was wound 8 layers spirally around a 3 mφ Ag rod to form a spiral molded body. And a round wire-shaped ceramic superconductor was manufactured.

斯くの如くして得られた各々のセラミックス超電導々体
について、臨界温度(’rc )及び臨界電流密度(J
C)を測定した。JCは液体He中(4,2K)にて4
端子法により測定した。結果は第1表に示した。
For each ceramic superconductor thus obtained, the critical temperature ('rc) and critical current density (J
C) was measured. JC is 4 in liquid He (4,2K)
Measured by terminal method. The results are shown in Table 1.

尚、上記実施例において補強材を複合した本発明方法品
(実施例1〜4)は、機械的強度に優れる為、伸延加工
や渦巻状成形等の加工が容易になされた。
In addition, the products manufactured by the present invention (Examples 1 to 4) in which reinforcing materials were composited in the above examples had excellent mechanical strength, and therefore could be easily processed such as stretching and spiral forming.

これに対し比較方法品(比較例1.2)は、強度が低い
為、例えば伸延加工においては、1回当りの減面率や中
間焼鈍温度を低く抑える等の配慮を要し、又材料の取扱
いは、極めて慎重に行う必要があった。
On the other hand, the comparative method products (Comparative Example 1.2) have low strength, so consideration must be given to keeping the area reduction rate per pass and intermediate annealing temperature low during elongation processing, and the material It had to be handled extremely carefully.

第1表より明らかなように本発明方法品(Nut〜8)
は、比較方法品(No 9 、10)に較べていずれも
J、が高い値を示した。
As is clear from Table 1, the product produced by the method of the present invention (Nut~8)
All of the samples showed higher values of J than the comparison method products (No. 9 and No. 10).

このように本発明方法品は、加工性の改善に加えて超電
導特性が向上した理由は、補強材を複合した為にセラミ
ックス超電導体層が均質に加工され、又加熱処理におい
ては安定化金属材料と起電導体層との間の熱膨張差が緩
和されて、超電導体層にがかる熱歪が低減したこと等が
考えられる。
In this way, the products produced using the method of the present invention have improved superconducting properties in addition to improved workability.The reason for this is that the ceramic superconductor layer is processed homogeneously due to the composite reinforcing material, and the stabilizing metal material is used in the heat treatment. It is thought that the difference in thermal expansion between the superconductor layer and the electromotive conductor layer is alleviated, and the thermal strain applied to the superconductor layer is reduced.

尚、全般に芯材及び金属製管は有るものの方が又導体形
状はテープの方が、それぞれJcが高い値を示している
が、これはセラミックス超電導体層がより高度の加工を
受けて緻密化した為である〔効果〕 以上述べたように本発明方法によれば、製造が容易にな
され且つJC等の特性に優れたセラミックス超電導々体
が得られ、工業上顕著な効果を奏する。
In general, Jc values are higher when the core material and metal tube are used, and when the conductor shape is tape, but this is because the ceramic superconductor layer has undergone more advanced processing and is denser. [Effect] As described above, according to the method of the present invention, a ceramic superconductor can be easily produced and has excellent properties such as JC, and has a remarkable effect in industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜7図は本発明方法のB様例を示す工程説明図、
第8図イ〜ハは本発明にて用いられる補強材の態様例を
示す平面図である。 1゜ 2・・・中空部、 3・・・金属製容器、 4・・・原
1 to 7 are process explanatory diagrams showing example B of the method of the present invention,
FIGS. 8A to 8C are plan views showing embodiments of reinforcing materials used in the present invention. 1゜2...Hollow part, 3...Metal container, 4...Original

Claims (1)

【特許請求の範囲】[Claims] 長手方向に連続した中空部を少なくとも2個設けた金属
製容器の各々の中空部にセラミックス超電導体となし得
る原料物質及び補強用金属材料を別々に充填して超電導
複合素材を形成し、次いで前記複合素材を伸延加工して
シート状複合体となしたのち、前記シート状複合体を渦
巻状体又は同心円筒状体に成形し、次いでこれをそのま
ま、又は再度金属製管内に充填したのち、伸延加工して
所望形状の線材となし、しかるのち前記線材に所定の加
熱処理を施すことを特徴とするセラミックス超電導々体
の製造方法。
A superconducting composite material is formed by separately filling each hollow part of a metal container having at least two hollow parts continuous in the longitudinal direction with a raw material that can be used as a ceramic superconductor and a reinforcing metal material, and then forming a superconducting composite material. After stretching the composite material to form a sheet-like composite, the sheet-like composite is formed into a spiral body or a concentric cylindrical body, which is then filled as it is or filled into a metal tube again, and then stretched. 1. A method for producing a ceramic superconductor, which comprises processing the wire into a desired shape, and then subjecting the wire to a predetermined heat treatment.
JP2091903A 1990-04-06 1990-04-06 Manufacture of ceramic superconductor Pending JPH03291813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091903A JPH03291813A (en) 1990-04-06 1990-04-06 Manufacture of ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091903A JPH03291813A (en) 1990-04-06 1990-04-06 Manufacture of ceramic superconductor

Publications (1)

Publication Number Publication Date
JPH03291813A true JPH03291813A (en) 1991-12-24

Family

ID=14039535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091903A Pending JPH03291813A (en) 1990-04-06 1990-04-06 Manufacture of ceramic superconductor

Country Status (1)

Country Link
JP (1) JPH03291813A (en)

Similar Documents

Publication Publication Date Title
EP0832050B1 (en) Multifilamentary BSCCO 2223 oxide superconductor articles and method for their preparation
JPH03291813A (en) Manufacture of ceramic superconductor
JP3187829B2 (en) Superconductor and manufacturing method
JPH03291812A (en) Manufacture of ceramic superconductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH0855527A (en) Fabrication of nb3sn superconducting wire
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JPH05334921A (en) Ceramic superconductor
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JPH03156811A (en) Manufacture of ceramic superconductive conductor
JPH0528857A (en) Manufacture of ceramic superconductor
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH03204131A (en) Manufacture of oxide superconducting wire rod
JPH03134917A (en) Manufacture of ceramic superconductor
JPH05190035A (en) Manufacture of ceramics superconductive conductor
JPH01128317A (en) Manufacture of superconductive wire material
JPH05166426A (en) Manufacture for ceramics superconductor
JPH03250508A (en) Manufacture of ceramic superconductor
US6451742B1 (en) High temperature superconducting composite conductor and method for manufacturing the same
JPH04249812A (en) Manufacture of tape-shaped ceramic superconducting wire rod
JPH04155715A (en) Manufacture of ceramic superconductor
JPH02192619A (en) Manufacture of oxide superconductor
JPH05114319A (en) Manufacture of oxide superconducting wire rod
JPH06309967A (en) Manufacture of oxide type superconducting wire