JPH03134917A - Manufacture of ceramic superconductor - Google Patents

Manufacture of ceramic superconductor

Info

Publication number
JPH03134917A
JPH03134917A JP1273009A JP27300989A JPH03134917A JP H03134917 A JPH03134917 A JP H03134917A JP 1273009 A JP1273009 A JP 1273009A JP 27300989 A JP27300989 A JP 27300989A JP H03134917 A JPH03134917 A JP H03134917A
Authority
JP
Japan
Prior art keywords
wire
ceramic
powder
ceramic superconductor
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1273009A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Kenji Enomoto
憲嗣 榎本
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1273009A priority Critical patent/JPH03134917A/en
Publication of JPH03134917A publication Critical patent/JPH03134917A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a ceramic superconductor excellent in critical current density by performing drawing process of a compound body or material for drawing process at a temperature cooled down to a specified value or lower at least for the first drawing process. CONSTITUTION:Using temporarily baked powder of Bi2Sr2CaCu2Ox as material powder, the powder is made into a wire of 10mm diameter for example by CIP forming process. The powder is then put in a 10mm diameter Ag tube by CIP forming process and both ends of the tube are sealed by electron beam welding while vacuum drawing the inside of the tube. This compound body is then subjected to swaging process at the room temperature down to 3mm diameter wire. The wire is then subjected to repeated compression processes of 20% of one pass reduction while cooling the wire at temperatures of 0 deg.C, -78 deg.C, and -196 deg.C by placing the wire in ice water, dry ice/ethanol, and liquefied N2 respectively to make a tape material of a constant thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、送配電線、電カケープル、機器リード線、マ
グネットワイヤー、磁気シールド体等に適用されるセラ
ミックス超電導4体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing four ceramic superconducting bodies that are applied to power transmission and distribution lines, power cables, equipment lead wires, magnet wires, magnetic shield bodies, and the like.

〔従来の技術とその課題) 近年、液体窒素温度で超電導を示すLnBazCusO
t    (Lnは希土類元素x<1)、Bizs r
tca Cut’s 、 (B i+−1lP bX)
gsfcazcuso+e(X <l)、Tfi=Ba
gCaCutoe 、TlzBatca2Cu30B等
のセラミックス超電導体が見出され、マグネットコイル
等への応用が盛んに検討されている。
[Conventional technology and its problems] In recent years, LnBazCusO, which exhibits superconductivity at liquid nitrogen temperature, has been developed.
t (Ln is a rare earth element x<1), Bizs r
tca Cut's, (B i+-1lP bX)
gsfcazcuso+e(X<l), Tfi=Ba
Ceramic superconductors such as gCaCutoe and TlzBatca2Cu30B have been discovered, and their application to magnet coils and the like is being actively studied.

ところで上記のセラミックス超電導体は脆い為、これを
線材等に加工するには、例えばセラミックス超電導体又
はその前駆体物質(以下セラミックス超電導物質と略記
)を金属製チューブに入れて室温以上の高温にて伸延加
工する方法によりなされており、得られた線材は加熱処
理することによりセラミックス超電導4体に製造される
ものである。
By the way, the ceramic superconductor mentioned above is brittle, so in order to process it into a wire etc., for example, the ceramic superconductor or its precursor material (hereinafter abbreviated as ceramic superconductor material) is placed in a metal tube and heated to a high temperature above room temperature. This is done by a stretching method, and the obtained wire is heat-treated to produce four ceramic superconducting bodies.

しかしながらセラミックス超電導4体は第2図に示した
ようにその外被となる金属製容器、つまり金属層4が伸
延加工中に連続的に局部破断して内部のセラミックス超
電導物質2が露出し、その結果超電導特性が低下してし
まうという問題があった。
However, as shown in FIG. 2, the metal container that forms the outer covering of the ceramic superconductor 4 body, that is, the metal layer 4, continuously breaks locally during the drawing process, exposing the internal ceramic superconducting material 2. As a result, there was a problem that the superconducting properties deteriorated.

〔課題を解決する為の手段〕[Means to solve problems]

本発明はか−る状況に鑑み鋭意研究を行った結果、伸延
加工を低温で施すことにより外被となる金属容器又は金
属層の延性が向上することを知見し、更に研究を重ねて
本発明を完成させるに到ったものある。
The present invention was developed in light of the above circumstances, and as a result of extensive research, it was discovered that the ductility of the metal container or metal layer that serves as the outer covering is improved by performing stretching at a low temperature.After further research, the present invention was developed. Some of them have been completed.

即ち、本発明はセラミックス超電導体又はその前駆物質
を金属容器内に装入して複合体となし、この複合体を伸
延加工して所望形状の線材に加工したのち、当該線材を
加熱処理してセラミックス超電導々体を製造する方法に
おいて、複合体又は伸延加工材を少なくとも最終の伸延
加工工程にて0°C以下の低温に冷却して伸延加工する
ことを特徴とするセラミックス超電導々体の製造方法で
ある。
That is, in the present invention, a ceramic superconductor or its precursor is charged into a metal container to form a composite, this composite is stretched and processed into a wire rod of a desired shape, and then the wire rod is heat-treated. A method for producing a ceramic superconductor, the method comprising cooling the composite or the drawn material to a low temperature of 0°C or less in at least the final drawing step to draw it. It is.

本発明方法はセラミックス超電導物質が金属容器内に装
入されてなる複合体を伸延加工するに際して、上記複合
体又は途中の伸延加工材を0°C以下の温度に冷却して
伸延加工して、セラミックス超電導々体の外被となる金
属容器、つまり金属層が伸延加工中に局部破断するのを
防止するようにしたものである。
In the method of the present invention, when drawing a composite body in which a ceramic superconducting material is charged into a metal container, the composite body or the partially drawn material is cooled to a temperature of 0° C. or less and then drawn, This is to prevent local breakage of the metal container, that is, the metal layer, which serves as the outer covering of the ceramic superconductor during stretching.

本発明方法において、複合体又はその伸延加工材をO′
C以下の温度にて伸延加工すると金属層の延性が向上す
る理由は、加工温度が低い為転位密度が増加し、その結
果セルが均一微細に形成される為と考えられる。
In the method of the present invention, the composite or its elongated material is
The reason why the ductility of the metal layer improves when stretching is carried out at a temperature below C is considered to be that the dislocation density increases due to the low processing temperature, and as a result, cells are formed in a uniform and fine shape.

本発明方法において、金属容器の材料にはCu、Ag、
Au、Ni、Pd、Pt又はその合金等の面心立方晶金
属を用いるのが低温での加工硬化が大きくて好ましい。
In the method of the present invention, the material of the metal container includes Cu, Ag,
It is preferable to use a face-centered cubic metal such as Au, Ni, Pd, Pt, or an alloy thereof, since it exhibits high work hardening at low temperatures.

中でもAgは酸素透過性が良好なので、後の加熱処理工
程においてセラミックス超電導体層への酸素の供給が充
分になされて高いJcが得られ、又Agは熱伝導性が高
いので耐クエンチ性に優れ使用時の通電量を高めること
ができて特に好ましいものである。
Among them, Ag has good oxygen permeability, so oxygen is sufficiently supplied to the ceramic superconductor layer in the subsequent heat treatment process, and a high Jc can be obtained.Also, Ag has high thermal conductivity, so it has excellent quench resistance. This is particularly preferable since the amount of current applied during use can be increased.

本発明方法において、セラミックス超電導物質には前記
したような種々系のセラミックス超電導体が広く適用さ
れるに加えて上記セラミックス超電導体の前駆物質であ
るセラミックス超電導体となし得る原料物質からセラミ
ックス超電導体に合成されるまでの中間体、例えばセラ
ミックス超電導体構成元素の混合体又は共沈混合物又は
酸素欠損型複合酸化物又は上記構成元素の合金等が使用
可能で、これらの前駆物質は酸素含存雰囲気中で加熱処
理することによりセラミックス超電導体に反応するもの
である。
In the method of the present invention, not only the various types of ceramic superconductors described above are widely applied to the ceramic superconducting material, but also the ceramic superconductors are produced from raw materials that can be made into ceramic superconductors, which are precursors of the ceramic superconductors. Intermediates until synthesis can be used, such as mixtures or coprecipitated mixtures of ceramic superconductor constituent elements, oxygen-deficient composite oxides, or alloys of the above constituent elements, and these precursors are prepared in an oxygen-containing atmosphere. It reacts with ceramic superconductors by heat treatment.

本発明方法において、金属容器内にセラミックス超電導
物質を装入した複合体の断面形状は第1図イ〜ハに示し
たように、1個又は複数の孔を設けたビレット1の上記
孔にそれぞれセラミックス超電導物質2を装入したもの
、又は断面円形の金属製チューブ3を複数個同心円状に
配置し上記金属製チューブ3の間隙にセラミックス超電
導物質2を装入したもの等任意の複合体が用いられる。
In the method of the present invention, the cross-sectional shape of the composite body in which the ceramic superconducting material is charged in the metal container is as shown in FIG. Any composite body can be used, such as one in which the ceramic superconducting material 2 is charged, or one in which a plurality of metal tubes 3 each having a circular cross section are arranged concentrically and the ceramic superconducting material 2 is charged in the gap between the metal tubes 3. It will be done.

上記において、セラミックス超電導物質は金属容器内に
粉体又は溶融体等として充填又は注入凝固する等して装
入がなされる。
In the above, the ceramic superconducting material is charged into a metal container by filling it as a powder or melt, or by injecting and solidifying it.

又上記の金属容器にセラミックス超電導物質が装入され
た複合体は、押出し、圧延、引抜き、スェージング等の
任意の伸延加工法により所望形状の線材に加工される。
Further, the composite body in which the ceramic superconducting material is charged into the metal container is processed into a wire rod of a desired shape by any stretching method such as extrusion, rolling, drawing, or swaging.

本発明方法において、伸延加工に際し上記複合体又は伸
延加工材をO′C以下に冷却する方法は、複合体又は伸
延加工材を氷水中(0°C)、ドライアイスを入れたア
ルコールやアセトン中(−78”c)又は液体N2中(
−196°C)等に入れて行う。
In the method of the present invention, the method of cooling the composite or the drawn material to below O'C during the drawing process is to cool the composite or the drawn material to below O'C or in alcohol or acetone containing dry ice. (-78”c) or in liquid N2 (
-196°C) etc.

本発明方法において、0°C以下の温度に冷却して行う
伸延加工は、複合体の初期の状態から行う必要はなく、
加工が進んで割れが生じる恐れのある最終の伸延加工工
程にて施すようにしてもよい。
In the method of the present invention, the stretching process performed by cooling to a temperature of 0°C or less does not need to be performed from the initial state of the composite.
It may be applied in the final stretching step, where there is a risk of cracking as the processing progresses.

又中間で焼鈍処理を施しても差し支えない。Further, annealing treatment may be performed in the middle.

〔作用〕[Effect]

本発明方法では、金属容器にセラミックス超電導物質を
装入した複合体又はその伸延加工材を0°C以下の温度
に冷却して伸延加工するので、上記複合体又は伸延加工
材の延性が向上し、その結果セラミックス超電導々体の
外被となる金属層に割れが生じるようなことがなく高品
質で高性能なセラミソクス超電導々体が得られる。
In the method of the present invention, a composite material in which a ceramic superconducting material is charged in a metal container or a drawn material thereof is cooled to a temperature of 0°C or less and drawn, so that the ductility of the composite material or drawn material is improved. As a result, a high-quality and high-performance ceramic superconductor can be obtained without cracking the metal layer that forms the outer covering of the ceramic superconductor.

本発明方法において伸延加工温度を0“C以下に限定し
た理由は、伸延加工温度がO′Cを超えた高い温度であ
ると金属層の延性が充分に得られず、金属層に割れが生
じる為である。
The reason why the drawing temperature is limited to 0'C or less in the method of the present invention is that if the drawing temperature is high above O'C, sufficient ductility of the metal layer will not be obtained and cracks will occur in the metal layer. It is for this purpose.

〔実施例] 以下に本発明を実施例により詳細に説明する。〔Example] The present invention will be explained in detail below using examples.

実施例1 原料粉体にB i z S r z Ca Cu z 
OXの仮焼成粉体を用い、この粉体をCIP成形法によ
り10nunφの棒材となした。次にこの棒材を外径1
5mm内径110n1のAg製チューブに装入し、上記
チューブ内を真空排気しつつ上記チューブの両端を電子
ビーム溶接により封止した。次にこの複合体を室温にて
スェージング加工して3mmφの線材となし、次いでこ
の線材を氷水、ドライアイス/エタノール、又は液体N
2中に入れてそれぞれ0°C78°C1−196°Cの
温度に冷却しつつ1パスリダクション20%の圧延加工
を繰り返し施して厚さ0.1mmのテープ材となした。
Example 1 Adding B i z S r z Ca Cu z to raw material powder
Using a pre-fired powder of OX, this powder was formed into a bar of 10 nunφ by the CIP molding method. Next, make this bar with an outer diameter of 1
It was placed in an Ag tube having an inner diameter of 5 mm and 110 n1, and while the inside of the tube was evacuated, both ends of the tube were sealed by electron beam welding. Next, this composite is swaged at room temperature to form a 3 mm diameter wire rod, and then this wire rod is heated in ice water, dry ice/ethanol, or liquid N
2 and were cooled to a temperature of 0° C. 78° C. 1-196° C. and repeatedly rolled with a 1-pass reduction of 20% to form a tape material with a thickness of 0.1 mm.

しかるのちこれを大気中にて870°C30H加熱処理
してセラミックス超電導々体を製造した。
Thereafter, this was heat-treated at 870° C. for 30 hours in the atmosphere to produce a ceramic superconductor.

実施例2 原料粉体にYBa2Cu30.の仮焼成粉体を用い、こ
の粉体を実施例1と同じ方法にて3mmφの線材となし
、次いでこの線材を実施例1と同じ方法で冷却しつつ溝
ロール圧延により0.3 mmφの細線に加工した。次
にこの細線に大気中にて900’C20Hの加熱処理を
施してセラミックス超電導々体を製造した。
Example 2 YBa2Cu30. This powder was made into a wire rod of 3 mm diameter using the same method as in Example 1, and then this wire rod was rolled into a fine wire of 0.3 mm diameter by groove roll rolling while cooling in the same manner as in Example 1. Processed into. Next, this fine wire was subjected to heat treatment at 900'C20H in the atmosphere to produce a ceramic superconductor.

比較例1 実施例1において、スェージング加工して作製した3m
mφの線材を室温にて圧延加工して厚さ0゜4mmのテ
ープ材となした他は実施例1と同じ方法にてセラミック
ス超電導々体を製造した。
Comparative Example 1 In Example 1, a 3m tube made by swaging
A ceramic superconductor was manufactured in the same manner as in Example 1, except that a wire rod of mφ was rolled at room temperature to form a tape material with a thickness of 0.4 mm.

比較例2 実施例2において、スェージング加工して作製した3m
mφの線材を室温にて溝ロール圧延して0゜3開φの細
線となした他は実施例2と同じ方法によりセラミックス
超電導々体を製造した。
Comparative Example 2 In Example 2, a 3m tube made by swaging
A ceramic superconductor was produced in the same manner as in Example 2, except that a wire rod of mφ was rolled at room temperature with grooved rolls to form a fine wire of 0°3 openings.

斯くのごとくして得られた各々のセラミックス超電導々
体について外被の金属層の品質を調査し又臨界温度(T
 c ) 、臨界電流密度(Jc)を測定した。上記に
おいてJcは液体N2  (77K)中、無磁場下にて
測定した。結果は第1表に示した。
For each ceramic superconductor obtained in this way, the quality of the metal layer of the outer jacket was investigated, and the critical temperature (T
c), critical current density (Jc) was measured. In the above, Jc was measured in liquid N2 (77K) without a magnetic field. The results are shown in Table 1.

第1表より明らかなように、本発明方法品(実施例1.
2)は金属層の品質が良好でJc等の特性が高い値のも
のであった。中でも3mmφ以下の伸延加工温度が低い
もの程、Jcは高い値となった。
As is clear from Table 1, the method of the present invention (Example 1.
In case 2), the quality of the metal layer was good and the properties such as Jc had high values. Among them, the lower the stretching temperature for 3 mmφ or less, the higher the Jc value.

これに対し比較例1.2は伸延加工を全て室温で行った
為金属層に割れが入り、その結果セラミックス超電導体
層の密度及び結晶配向性が低下してJcが低い値のもの
となった。
On the other hand, in Comparative Example 1.2, the stretching process was all performed at room temperature, which caused cracks in the metal layer, resulting in a decrease in the density and crystal orientation of the ceramic superconductor layer, resulting in a low Jc value. .

本実施例では0°C以下での伸延加工を後半の伸延加工
工程でのみ行ったが、全工程の伸延加工を0°C以下の
温度にて行って減面率を大きく取ることも可能である。
In this example, the distraction process at 0°C or lower was performed only in the latter half of the distraction process, but it is also possible to perform the distraction process in all steps at a temperature of 0°C or lower to obtain a large reduction in area. be.

〔効果〕〔effect〕

以上述べたように、本発明方法によれば外被となる金属
層に割れ等の欠陥が生じることがなく、従って内層のセ
ラミックス超電導体の密度や結晶配向性が向上してJc
等の特性に優れたセラミックス超電導々体が得られるな
ど、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, defects such as cracks do not occur in the metal layer serving as the outer covering, and therefore, the density and crystal orientation of the ceramic superconductor in the inner layer are improved, and Jc
It has significant industrial effects, such as the production of ceramic superconductors with excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ〜ハは本発明方法において用いる複合体の実施
例を示す断面図、第2図は金属層に割れを生じた伸延加
工材の平面図である。 1−  ビレット、2・−セラミックス超電導物質、3
−金属製チューブ、4金属層。
FIGS. 1A to 1C are cross-sectional views showing examples of composites used in the method of the present invention, and FIG. 2 is a plan view of an elongated material with cracks in the metal layer. 1- billet, 2--ceramic superconducting material, 3
- Metal tube, 4 metal layers.

Claims (1)

【特許請求の範囲】[Claims] セラミックス超電導体又はその前駆物質を金属容器内に
装入して複合体となし、この複合体を伸延加工して所望
形状の線材に加工したのち、当該線材を加熱処理してセ
ラミックス超電導々体を製造する方法において、複合体
又は伸延加工材を、少なくとも最終の伸延加工工程にて
0℃以下の低温に冷却して伸延加工することを特徴とす
るセラミックス超電導々体の製造方法。
A ceramic superconductor or its precursor is charged into a metal container to form a composite, and this composite is stretched into a wire rod of a desired shape, and then the wire is heat-treated to form a ceramic superconductor. A method for producing a ceramic superconductor, characterized in that the composite or the drawn material is drawn by cooling it to a low temperature of 0° C. or lower at least in the final drawing step.
JP1273009A 1989-10-20 1989-10-20 Manufacture of ceramic superconductor Pending JPH03134917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273009A JPH03134917A (en) 1989-10-20 1989-10-20 Manufacture of ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273009A JPH03134917A (en) 1989-10-20 1989-10-20 Manufacture of ceramic superconductor

Publications (1)

Publication Number Publication Date
JPH03134917A true JPH03134917A (en) 1991-06-07

Family

ID=17521884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273009A Pending JPH03134917A (en) 1989-10-20 1989-10-20 Manufacture of ceramic superconductor

Country Status (1)

Country Link
JP (1) JPH03134917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934162A (en) * 2015-06-09 2015-09-23 铜陵华洋特种线材有限责任公司 Enameled wire lubrication technology
CN110790309A (en) * 2019-10-30 2020-02-14 西北有色金属研究院 Preparation method of Bi-2212 superconducting wire strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934162A (en) * 2015-06-09 2015-09-23 铜陵华洋特种线材有限责任公司 Enameled wire lubrication technology
CN110790309A (en) * 2019-10-30 2020-02-14 西北有色金属研究院 Preparation method of Bi-2212 superconducting wire strip
CN110790309B (en) * 2019-10-30 2021-02-09 西北有色金属研究院 Preparation method of Bi-2212 superconducting wire strip

Similar Documents

Publication Publication Date Title
JPH0494019A (en) Manufacture of bismuth-based oxide superconductor
JP2005506671A (en) Method for manufacturing MgB2-based superconducting wire including heat treatment
JPH03134917A (en) Manufacture of ceramic superconductor
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH09129053A (en) Manufacture of oxide superconductive wire material
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH02192619A (en) Manufacture of oxide superconductor
JPH0528857A (en) Manufacture of ceramic superconductor
JPH01115805A (en) Production of oxide superconductor
JPH04137317A (en) Manufacture of ceramics superconductor
JPH05135636A (en) Manufacture of compound superconductive wire
JP2007173102A (en) PRECURSOR FOR MAKING Nb3Sn SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD
JPH01134825A (en) Manufacture of oxide superconductive compact
JPH0378915A (en) Manufacture of oxide superconductive cable
JPH08167336A (en) Manufacture of nb3sn superconducting wire
JPH04249812A (en) Manufacture of tape-shaped ceramic superconducting wire rod
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH11126522A (en) Oxide superconductive wire material and manufacture
JPH05190035A (en) Manufacture of ceramics superconductive conductor
JPH03291813A (en) Manufacture of ceramic superconductor
JPH01128317A (en) Manufacture of superconductive wire material
JPH0471113A (en) Manufacture of oxide superconducting wire